Skip to content
2000
image of Advancements in CDK-based Dual-target Inhibitors for Cancer Therapy

Abstract

Background

The cyclin-dependent kinases (CDKs) play a crucial role in the normal progression of these stages. In tumor cells, CDKs are often highly expressed, leading to uncontrolled cell proliferation. Inhibiting the activity of CDKs in tumor cells can inhibit their growth and proliferation, thereby achieving anti-tumor effects. In recent years, many CDKs inhibitors have been developed, but due to side effects and drug resistance issues, only a few CDKs inhibitors have been approved by the FDA.

Methods

Publications on CDK-based dual-target inhibitors were reviewed using SciFinder and PubMed, excluding reviews, patents, and studies with irrelevant content.

Results

The study outlines advancements in CDK-based dual-target inhibitors as antitumor agents, offering insights to support the development and application of more effective cancer therapies.

Conclusion

Dual-targeted anti-tumor drugs may have better therapeutic effects than single-targeted drugs, which may address drug resistance issues and overcome drug interactions and pharmacokinetic issues associated with combination therapy. As an important direction in cancer treatment, dual target inhibitors have broad development prospects. By continuing to explore and improve dual target therapies, it has potential to overcome many limitations of single target therapy and provide more effective and lasting treatment outcomes for cancer patients.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673368870250602112835
2025-06-23
2025-09-11
Loading full text...

Full text loading...

References

  1. Siegel R.L. Miller K.D. Wagle N.S. Jemal A. Cancer statistics, 2023. CA Cancer J. Clin. 2023 73 1 17 48 10.3322/caac.21763 36633525
    [Google Scholar]
  2. Hanahan D. Weinberg R.A. Hallmarks of cancer: The next generation. Cell 2011 144 5 646 674 10.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  3. Vogelstein B. Kinzler K.W. Cancer genes and the pathways they control. Nat. Med. 2004 10 8 789 799 10.1038/nm1087 15286780
    [Google Scholar]
  4. Cohen P. Protein kinases — The major drug targets of the twenty-first century? Nat. Rev. Drug Discov. 2002 1 4 309 315 10.1038/nrd773 12120282
    [Google Scholar]
  5. Roskoski R. Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes. Pharmacol. Res. 2016 103 26 48 10.1016/j.phrs.2015.10.021 26529477
    [Google Scholar]
  6. Wu P. Nielsen T.E. Clausen M.H. Small-molecule kinase inhibitors: An analysis of FDA-approved drugs. Drug Discov. Today 2016 21 1 5 10 10.1016/j.drudis.2015.07.008 26210956
    [Google Scholar]
  7. Attwood M.M. Fabbro D. Sokolov A.V. Knapp S. Schiöth H.B. Trends in kinase drug discovery: Targets, indications and inhibitor design. Nat. Rev. Drug Discov. 2021 20 11 839 861 10.1038/s41573‑021‑00252‑y 34354255
    [Google Scholar]
  8. Palmer A.C. Sorger P.K. Combination cancer therapy can confer benefit via patient-to-patient variability without drug additivity or synergy. Cell 2017 171 7 1678 1691.e13 10.1016/j.cell.2017.11.009 29245013
    [Google Scholar]
  9. Galbraith M.D. Bender H. Espinosa J.M. Therapeutic targeting of transcriptional cyclin-dependent kinases. Transcription 2019 10 2 118 136 10.1080/21541264.2018.1539615 30409083
    [Google Scholar]
  10. Hu X. Zhang J. Zhang Y. Jiao F. Wang J. Chen H. Ouyang L. Wang Y. Dual-target inhibitors of poly (ADP-ribose) polymerase-1 for cancer therapy: Advances, challenges, and opportunities. Eur. J. Med. Chem. 2022 230 114094 10.1016/j.ejmech.2021.114094 34998039
    [Google Scholar]
  11. Wang C. Zhang Y. Zhang T. Xu J. Yan S. Liang B. Xing D. Epidermal growth factor receptor dual-target inhibitors as a novel therapy for cancer: A review. Int. J. Biol. Macromol. 2023 253 Pt 7 127440 10.1016/j.ijbiomac.2023.127440 37839594
    [Google Scholar]
  12. Liu M. Ju X. Zou J. Shi J. Jia G. Recent researches for dual Aurora target inhibitors in antitumor field. Eur. J. Med. Chem. 2020 203 112498 10.1016/j.ejmech.2020.112498 32693295
    [Google Scholar]
  13. Chen L. Liu Z.P. Li X. Recent advances in dual BRD4-kinase inhibitors based on polypharmacology. ChemMedChem 2022 17 6 e202100731 10.1002/cmdc.202100731 35146935
    [Google Scholar]
  14. Cui Y. Zhang J. Zhang G. The potential strategies for overcoming multidrug resistance and reducing side effects of monomer tubulin inhibitors for cancer therapy. Curr. Med. Chem. 2024 31 14 1874 1895 10.2174/0929867330666230622142505 37349994
    [Google Scholar]
  15. Nandi S. Dey R. Dey S. Samadder A. Saxena A.K. Naturally sourced CDK inhibitors and current trends in structure-based synthetic anticancer drug design by crystallography. Anticancer. Agents Med. Chem. 2022 22 3 485 498 10.2174/1871520621666210908101751 34503422
    [Google Scholar]
  16. Kciuk M. Gielecińska A. Mujwar S. Mojzych M. Kontek R. Cyclin-dependent kinases in DNA damage response. Biochim. Biophys. Acta Rev. Cancer 2022 1877 3 188716 10.1016/j.bbcan.2022.188716 35271993
    [Google Scholar]
  17. Asghar U. Witkiewicz A.K. Turner N.C. Knudsen E.S. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat. Rev. Drug Discov. 2015 14 2 130 146 10.1038/nrd4504 25633797
    [Google Scholar]
  18. Zhang M. Zhang L. Hei R. Li X. Cai H. Wu X. Zheng Q. Cai C. CDK inhibitors in cancer therapy, an overview of recent development. Am. J. Cancer Res. 2021 11 5 1913 1935 34094661
    [Google Scholar]
  19. Liu J. Cheng M. Xu J. Liang Y. Yin B. Liang J. Effect of CDK4/6 inhibitors on tumor immune microenvironment. Immunol. Invest. 2024 53 3 437 449 10.1080/08820139.2024.2304565 38314676
    [Google Scholar]
  20. Wang F. Wang L. Fisher L.A. Li C. Wang W. Peng A. Phosphatase 1 nuclear targeting subunit (PNUTS) regulates aurora kinases and mitotic progression. Mol. Cancer Res. 2019 17 1 10 19 10.1158/1541‑7786.MCR‑17‑0670 30190438
    [Google Scholar]
  21. Cetin B. Wabl C.A. Gumusay O. CDK4/6 inhibitors: Mechanisms of resistance and potential biomarkers of responsiveness in breast cancer. Future Oncol. 2022 18 9 1143 1157 10.2217/fon‑2021‑0842 35137602
    [Google Scholar]
  22. El-Gazzar M.G.M. El-Gazzar M.G. Ghorab M.M. Quinazolinone derivatives as new potential CDK4/6 inhibitors, apoptosis inducers and radiosensitizers for breast cancer. Future Med. Chem. 2023 15 13 1133 1147 10.4155/fmc‑2023‑0126 37529897
    [Google Scholar]
  23. Zha C. Deng W. Fu Y. Tang S. Lan X. Ye Y. Su Y. Jiang L. Chen Y. Huang Y. Ding J. Geng M. Huang M. Wan H. Design, synthesis and biological evaluation of tetrahydronaphthyridine derivatives as bioavailable CDK4/6 inhibitors for cancer therapy. Eur. J. Med. Chem. 2018 148 140 153 10.1016/j.ejmech.2018.02.022 29459274
    [Google Scholar]
  24. Tadesse S. Caldon E.C. Tilley W. Wang S. Cyclin-dependent kinase 2 inhibitors in cancer therapy: An update. J. Med. Chem. 2019 62 9 4233 4251 10.1021/acs.jmedchem.8b01469 30543440
    [Google Scholar]
  25. Otto T. Sicinski P. Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer 2017 17 2 93 115 10.1038/nrc.2016.138 28127048
    [Google Scholar]
  26. Goel S. DeCristo M.J. McAllister S.S. Zhao J.J. CDK4/6 inhibition in cancer: Beyond cell cycle arrest. Trends Cell Biol. 2018 28 11 911 925 10.1016/j.tcb.2018.07.002 30061045
    [Google Scholar]
  27. O’Leary B. Finn R.S. Turner N.C. Treating cancer with selective CDK4/6 inhibitors. Nat. Rev. Clin. Oncol. 2016 13 7 417 430 10.1038/nrclinonc.2016.26 27030077
    [Google Scholar]
  28. He J. McLaughlin R.P. van der Noord V. Foekens J.A. Martens J.W.M. van Westen G. Zhang Y. van de Water B. Multi-targeted kinase inhibition alleviates mTOR inhibitor resistance in triple-negative breast cancer. Breast Cancer Res. Treat. 2019 178 2 263 274 10.1007/s10549‑019‑05380‑z 31388935
    [Google Scholar]
  29. Abdelgalil A.A. Alkahtani H.M. Al-Jenoobi F.I. Sorafenib. Profiles Drug Subst. Excip. Relat. Methodol. 2019 44 239 266 10.1016/bs.podrm.2018.11.003 31029219
    [Google Scholar]
  30. Qin S. Chan S.L. Gu S. Bai Y. Ren Z. Lin X. Chen Z. Jia W. Jin Y. Guo Y. Hu X. Meng Z. Liang J. Cheng Y. Xiong J. Ren H. Yang F. Li W. Chen Y. Zeng Y. Sultanbaev A. Pazgan-Simon M. Pisetska M. Melisi D. Ponomarenko D. Osypchuk Y. Sinielnikov I. Yang T.S. Liang X. Chen C. Wang L. Cheng A.L. Kaseb A. Vogel A. Qin S. Chan S.L. Cheng A-L. Kaseb A. Vogel A. Gu S. Bai Y. Ren Z. Lin X. Chen Z. Jia W. Jin Y. Guo Y. Hu X. Meng Z. Liang J. Cheng Y. Xiong J. Ren H. Yang F. Li W. Chen Y. Zeng Y. Sultanbaev A. Pazgan-Simon M. Pisetska M. Melisi D. Ponomarenko D. Osypchuk Y. Sinielnikov I. Yang T-S. Liang X. Chen C. Wang L. Zhang M. Xu L. Yuan X. Li D. Ying J. Zhang J. Zhang T. Gu K. He Y. Hao P. Jiang D. Zhang S. Xing B. Zhang B. Wang D. Zhai X. Liang H. Cybulska-Stopa B. Dvorkin M. Stroyakovskiy D. Nechaeva M. Yen C-J. Su W-W. Chen Y-H. Bondarenko I. Yang L. Fang W. Gomez-Martin C. Ryu M-H. Kim H-S. Kim J-H. Zarubenkov O. Orlova R. Poddubskaya E. Fadeeva N. Makarova Y. Chao Y. Hung C-H. Neffa M. Vynnychenko O. Burgoyne A. Hao C. Mohr R.U. Diaz-Beveridge R. Feliu-Batlle J. Cubillo-Gracian A. Lee A-S. Daniele B. Antonuzzo L. Sangiovanni A. Gasbarrini A. Scartozzi M. Ahn M.S. Oh S-Y. Orlov S. Harputluoglu H. Oksuzoglu B. Hsu C. Rau K-M. Krechkovskyi O. Yareshko V. Xiong H. Lee F-C. Jiang Y. Gabayan A. Crow M. Van Steenkiste C. Verset G. Camrelizumab plus rivoceranib versus sorafenib as first-line therapy for unresectable hepatocellular carcinoma (CARES-310): A randomised, open-label, international phase 3 study. Lancet 2023 402 10408 1133 1146 10.1016/S0140‑6736(23)00961‑3 37499670
    [Google Scholar]
  31. Voigtlaender M. Schneider-Merck T. Trepel M. Lapatinib. Recent Results Cancer Res. 2018 211 19 44 10.1007/978‑3‑319‑91442‑8_2 30069757
    [Google Scholar]
  32. Gawel A.M. Godlewska M. Grech-Baran M. Stachurska A. Gawel D. MIX2: A novel natural multi-component modulator of multidrug-resistance and hallmarks of cancer cells. Nutr. Cancer 2019 71 2 334 347 10.1080/01635581.2018.1560480 30676767
    [Google Scholar]
  33. Maeda S. Sakai K. Kaji K. Iio A. Nakazawa M. Motegi T. Yonezawa T. Momoi Y. Lapatinib as first-line treatment for muscle-invasive urothelial carcinoma in dogs. Sci. Rep. 2022 12 1 4 10.1038/s41598‑021‑04229‑0 35027594
    [Google Scholar]
  34. Ren S. Rollins B.J. Cyclin C/cdk3 promotes Rb-dependent G0 exit. Cell 2004 117 2 239 251 10.1016/S0092‑8674(04)00300‑9 15084261
    [Google Scholar]
  35. Sun Z.J. Yu G.T. Huang C.F. Bu L.L. Liu J.F. Ma S.R. Zhang W.F. Liu B. Zhang L. Hypoxia induces TFE3 expression in head and neck squamous cell carcinoma. Oncotarget 2016 7 10 11651 11663 10.18632/oncotarget.7309 26872381
    [Google Scholar]
  36. Huang J.M. Sheard M.A. Ji L. Sposto R. Keshelava N. Combination of vorinostat and flavopiridol is selectively cytotoxic to multidrug-resistant neuroblastoma cell lines with mutant TP53. Mol. Cancer Ther. 2010 9 12 3289 3301 10.1158/1535‑7163.MCT‑10‑0562 21159612
    [Google Scholar]
  37. Yu Y. Ran D. Jiang J. Pan T. Dan Y. Tang Q. Li W. Zhang L. Gan L. Gan Z. Discovery of novel 9H-purin derivatives as dual inhibitors of HDAC1 and CDK2. Bioorg. Med. Chem. Lett. 2019 29 16 2136 2140 10.1016/j.bmcl.2019.06.059 31272794
    [Google Scholar]
  38. Cheng C. Yun F. Ullah S. Yuan Q. Discovery of novel cyclin-dependent kinase (CDK) and histone deacetylase (HDAC) dual inhibitors with potent in vitro and in vivo anticancer activity. Eur. J. Med. Chem. 2020 189 112073 10.1016/j.ejmech.2020.112073 31991336
    [Google Scholar]
  39. Li Y. Luo X. Guo Q. Nie Y. Wang T. Zhang C. Huang Z. Wang X. Liu Y. Chen Y. Zheng J. Yang S. Fan Y. Xiang R. Discovery of N 1-(4-((7-Cyclopentyl-6-(dimethylcarbamoyl)-7 H -pyrrolo[2,3- d]pyri- midin-2-yl)amino)phenyl)- N 8-hydroxyoctanediamide as a Novel Inhibitor Targeting Cyclin-dependent Kinase 4/9 (CDK4/9) and Histone Deacetlyase1 (HDAC1) against Malignant Cancer. J. Med. Chem. 2018 61 7 3166 3192 10.1021/acs.jmedchem.8b00209 29518312
    [Google Scholar]
  40. Cao Z. Yang F. Wang J. Gu Z. Lin S. Wang P. An J. Liu T. Li Y. Li Y. Lin H. Zhao Y. He B. Indirubin derivatives as dual inhibitors targeting cyclin-dependent kinase and histone deacetylase for treating cancer. J. Med. Chem. 2021 64 20 15280 15296 10.1021/acs.jmedchem.1c01311 34624191
    [Google Scholar]
  41. Liu S.V. Subramaniam D. Cyriac G.C. Abdul-Khalek F.J. Giaccone G. Emerging protein kinase inhibitors for non-small cell lung cancer. Expert Opin. Emerg. Drugs 2014 19 1 51 65 10.1517/14728214.2014.873403 24354593
    [Google Scholar]
  42. Liu T.C. Jin X. Wang Y. Wang K. Role of epidermal growth factor receptor in lung cancer and targeted therapies. Am. J. Cancer Res. 2017 7 2 187 202 28337370
    [Google Scholar]
  43. Hara N. Ichihara E. Kano H. Ando C. Morita A. Nishi T. Okawa S. Nakasuka T. Hirabae A. Abe M. Asada N. Ninomiya K. Makimoto G. Fujii M. Kubo T. Ohashi K. Hotta K. Tabata M. Maeda Y. Kiura K. CDK4/6 signaling attenuates the effect of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in EGFR-mutant non-small cell lung cancer. Transl. Lung Cancer Res. 2023 12 10 2098 2112 10.21037/tlcr‑23‑99 38025818
    [Google Scholar]
  44. La Monica S. Fumarola C. Cretella D. Bonelli M. Minari R. Cavazzoni A. Digiacomo G. Galetti M. Volta F. Mancini M. Petronini P.G. Tiseo M. Alfieri R. Efficacy of the CDK4/6 dual inhibitor Abemaciclib in EGFR- mutated NSCLC cell Lines with different resistance mechanisms to Osimertinib. Cancers 2020 13 1 6 10.3390/cancers13010006 33374971
    [Google Scholar]
  45. Frejat F.O.A. Zhao B. Furaijit N. Wang L. Abou-Zied H.A. Fathy H.M. Mohamed F.A.M. Youssif B.G.M. Wu C. New pyrrolidine‐carboxamide derivatives as dual antiproliferative EGFR/CDK2 inhibitors. Chem. Biol. Drug Des. 2024 103 1 e14422 10.1111/cbdd.14422 38230772
    [Google Scholar]
  46. Shawish I. Nafie M.S. Barakat A. Aldalbahi A. Al-Rasheed H.H. Ali M. Alshaer W. Al Zoubi M. Al Ayoubi S. De la Torre B.G. Albericio F. El-Faham A. Pyrazolyl-s-triazine with indole motif as a novel of epidermal growth factor receptor/cyclin-dependent kinase 2 dual inhibitors. Front Chem. 2022 10 1078163 10.3389/fchem.2022.1078163 36505739
    [Google Scholar]
  47. Salem M.E. Mahrous E.M. Ragab E.A. Nafie M.S. Dawood K.M. Synthesis and anti-breast cancer potency of mono- and bis-(pyrazolyl[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine) derivatives as EGFR/CDK-2 target inhibitors. ACS Omega 2023 8 38 35359 35369 10.1021/acsomega.3c05309 37779952
    [Google Scholar]
  48. Musa A. Ihmaid S.K. Hughes D.L. Said M.A. Abulkhair H.S. El-Ghorab A.H. Abdelgawad M.A. Shalaby K. Shaker M.E. Alharbi K.S. Alotaibi N.H. Kays D.L. Taylor L.J. Parambi D.G.T. Alzarea S.I. Al-Karmalawy A.A. Ahmed H.E.A. El-Agrody A.M. The anticancer and EGFR-TK/CDK-9 dual inhibitory potentials of new synthetic pyranopyrazole and pyrazolone derivatives: X-ray crystallography, in vitro, and in silico mechanistic investigations. J. Biomol. Struct. Dyn. 2023 41 21 12411 12425 10.1080/07391102.2023.2167000 36661285
    [Google Scholar]
  49. Altowyan M.S. Soliman S.M. Haukka M. Al-Shaalan N.H. Alkharboush A.A. Barakat A. Synthesis, characterization, and cytotoxicity of new spirooxindoles engrafted furan structural motif as a potential anticancer agent. ACS Omega 2022 7 40 35743 35754 10.1021/acsomega.2c03790 36249408
    [Google Scholar]
  50. Brown J.S. O’Carrigan B. Jackson S.P. Yap T.A. Targeting DNA repair in cancer: Beyond PARP inhibitors. Cancer Discov. 2017 7 1 20 37 10.1158/2159‑8290.CD‑16‑0860 28003236
    [Google Scholar]
  51. Curtin N.J. Szabo C. Poly(ADP-ribose) polymerase inhibition: Past, present and future. Nat. Rev. Drug Discov. 2020 19 10 711 736 10.1038/s41573‑020‑0076‑6 32884152
    [Google Scholar]
  52. da Costa A.A.B.A. Chowdhury D. Shapiro G.I. D’Andrea A.D. Konstantinopoulos P.A. Targeting replication stress in cancer therapy. Nat. Rev. Drug Discov. 2023 22 1 38 58 10.1038/s41573‑022‑00558‑5 36202931
    [Google Scholar]
  53. Li S. Wang L. Wang Y. Zhang C. Hong Z. Han Z. The synthetic lethality of targeting cell cycle checkpoints and PARPs in cancer treatment. J. Hematol. Oncol. 2022 15 1 147 10.1186/s13045‑022‑01360‑x 36253861
    [Google Scholar]
  54. Wu C. Peng S. Pilié P.G. Geng C. Park S. Manyam G.C. Lu Y. Yang G. Tang Z. Kondraganti S. Wang D. Hudgens C.W. Ledesma D.A. Marques-Piubelli M.L. Torres-Cabala C.A. Curry J.L. Troncoso P. Corn P.G. Broom B.M. Thompson T.C. PARP and CDK4/6 inhibitor combination therapy induces apoptosis and suppresses neuroendocrine differentiation in prostate cancer. Mol. Cancer Ther. 2021 20 9 1680 1691 10.1158/1535‑7163.MCT‑20‑0848 34158347
    [Google Scholar]
  55. Zhu X. Chen L. Huang B. Li X. Yang L. Hu X. Jiang Y. Shao Z. Wang Z. Efficacy and mechanism of the combination of PARP and CDK4/6 inhibitors in the treatment of triple-negative breast cancer. J. Exp. Clin. Cancer Res. 2021 40 1 122 10.1186/s13046‑021‑01930‑w 33832512
    [Google Scholar]
  56. Tian C. Wei Y. Li J. Huang Z. Wang Q. Lin Y. Lv X. Chen Y. Fan Y. Sun P. Xiang R. Chang A. Yang S. A novel CDK4/6 and PARP dual inhibitor ZC-22 effectively suppresses tumor growth and improves the response to cisplatin treatment in breast and ovarian cancer. Int. J. Mol. Sci. 2022 23 5 2892 10.3390/ijms23052892 35270034
    [Google Scholar]
  57. Dai M. Boudreault J. Wang N. Poulet S. Daliah G. Yan G. Moamer A. Burgos S.A. Sabri S. Ali S. Lebrun J.J. Differential regulation of cancer progression by CDK4/6 plays a central role in DNA replication and repair pathways. Cancer Res. 2021 81 5 1332 1346 10.1158/0008‑5472.CAN‑20‑2121 33372040
    [Google Scholar]
  58. Dean J.L. McClendon A.K. Knudsen E.S. Modification of the DNA damage response by therapeutic CDK4/6 inhibition. J. Biol. Chem. 2012 287 34 29075 29087 10.1074/jbc.M112.365494 22733811
    [Google Scholar]
  59. Yang Y. Luo J. Chen X. Yang Z. Mei X. Ma J. Zhang Z. Guo X. Yu X. CDK4/6 inhibitors: A novel strategy for tumor radiosensitization. J. Exp. Clin. Cancer Res. 2020 39 1 188 10.1186/s13046‑020‑01693‑w 32933570
    [Google Scholar]
  60. Tang A. Gao K. Chu L. Zhang R. Yang J. Zheng J. Aurora kinases: Novel therapy targets in cancers. Oncotarget 2017 8 14 23937 23954 10.18632/oncotarget.14893 28147341
    [Google Scholar]
  61. Iemura K. Natsume T. Maehara K. Kanemaki M.T. Tanaka K. Chromosome oscillation promotes Aurora A–dependent Hec1 phosphorylation and mitotic fidelity. J. Cell Biol. 2021 220 7 e202006116 10.1083/jcb.202006116 33988677
    [Google Scholar]
  62. Carmena M. Wheelock M. Funabiki H. Earnshaw W.C. The chromosomal passenger complex (CPC): From easy rider to the godfather of mitosis. Nat. Rev. Mol. Cell Biol. 2022 23 12 872 890 23175282
    [Google Scholar]
  63. Wellard S.R. Schindler K. Jordan P.W. Aurora B and C kinases regulate chromosome desynapsis and segregation during mouse and human spermatogenesis. J. Cell Sci. 2020 133 23 jcs248831 10.1242/jcs.248831 33172986
    [Google Scholar]
  64. Pradhan T. Gupta O. Singh G. Monga V. Aurora kinase inhibitors as potential anticancer agents: Recent advances. Eur. J. Med. Chem. 2021 221 113495 10.1016/j.ejmech.2021.113495 34020340
    [Google Scholar]
  65. Emanuel S. Rugg C.A. Gruninger R.H. Lin R. Fuentes-Pesquera A. Connolly P.J. Wetter S.K. Hollister B. Kruger W.W. Napier C. Jolliffe L. Middleton S.A. The in vitro and in vivo effects of JNJ-7706621: A dual inhibitor of cyclin-dependent kinases and aurora kinases. Cancer Res. 2005 65 19 9038 9046 10.1158/0008‑5472.CAN‑05‑0882 16204078
    [Google Scholar]
  66. Řezníčková E. Weitensteiner S. Havlíček L. Jorda R. Gucký T. Berka K. Bazgier V. Zahler S. Kryštof V. Strnad M. Characterization of a pyrazolo[4,3-d]pyrimidine inhibitor of cyclin-dependent kinases 2 and 5 and aurora A with pro-apoptotic and anti-angiogenic activity in vitro. Chem. Biol. Drug Des. 2015 86 6 1528 1540 10.1111/cbdd.12618 26198005
    [Google Scholar]
  67. Yuan H. Li X. Zhang X. Kang R. Tang D. CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation. Biochem. Biophys. Res. Commun. 2016 478 2 838 844 10.1016/j.bbrc.2016.08.034 27510639
    [Google Scholar]
  68. Jiang X. Stockwell B.R. Conrad M. Ferroptosis: Mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 2021 22 4 266 282 10.1038/s41580‑020‑00324‑8 33495651
    [Google Scholar]
  69. Lee J. Roh J.L. Targeting GPX4 in human cancer: Implications of ferroptosis induction for tackling cancer resilience. Cancer Lett. 2023 559 216119 10.1016/j.canlet.2023.216119 36893895
    [Google Scholar]
  70. Abbas T. Dutta A. p21 in cancer: intricate networks and multiple activities. Nat. Rev. Cancer 2009 9 6 400 414 10.1038/nrc2657 19440234
    [Google Scholar]
  71. Venkatesh D. Stockwell B.R. Prives C. p21 can be a barrier to ferroptosis independent of p53. Aging 2020 12 18 17800 17814 10.18632/aging.103961 32979260
    [Google Scholar]
  72. Hao J. Chen Q. Feng Y. Jiang Q. Sun H. Deng B. Huang X. Guan J. Chen Q. Liu X. Wang Y. Cao P. Feng F. Li X. Combination treatment with FAAH inhibitors/URB597 and ferroptosis inducers significantly decreases the growth and metastasis of renal cell carcinoma cells via the PI3K-AKT signaling pathway. Cell Death Dis. 2023 14 4 247 10.1038/s41419‑023‑05779‑z 37024452
    [Google Scholar]
  73. Zhu J. Cai Y. Kong M. Li Y. Zhu L. Zhang J. Yu Z. Xu S. Hong L. Chen C. Luo J. Kong L. Design, synthesis, and biological evaluation for first GPX4 and CDK dual inhibitors. J. Med. Chem. 2024 67 4 2758 2776 10.1021/acs.jmedchem.3c01890 38295524
    [Google Scholar]
  74. Steinmetz M.O. Prota A.E. Microtubule-targeting agents: Strategies to Hijack the cytoskeleton. Trends Cell Biol. 2018 28 10 776 792 10.1016/j.tcb.2018.05.001 29871823
    [Google Scholar]
  75. Jordan M.A. Wilson L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer 2004 4 4 253 265 10.1038/nrc1317 15057285
    [Google Scholar]
  76. Sonawane V. Mohd Siddique M.U. Jadav S.S. Sinha B.N. Jayaprakash V. Chaudhuri B. Cink4T, a quinazolinone-based dual inhibitor of CDK4 and tubulin polymerization, identified via ligand-based virtual screening, for efficient anticancer therapy. Eur. J. Med. Chem. 2019 165 115 132 10.1016/j.ejmech.2019.01.011 30665142
    [Google Scholar]
  77. Mahale S. Bharate S.B. Manda S. Joshi P. Jenkins P.R. Vishwakarma R.A. Chaudhuri B. Antitumour potential of BPT: A dual inhibitor of cdk4 and tubulin polymerization. Cell Death Dis. 2015 6 5 e1743 10.1038/cddis.2015.96 25950473
    [Google Scholar]
  78. Mahale S. Bharate S.B. Manda S. Joshi P. Bharate S.S. Jenkins P.R. Vishwakarma R.A. Chaudhuri B. Biphenyl-4-carboxylic acid [2-(1H-indol-3-yl)-ethyl]-methylamide (CA224), a nonplanar analogue of fascaplysin, inhibits Cdk4 and tubulin polymerization: Evaluation of in vitro and in vivo anticancer activity. J. Med. Chem. 2014 57 22 9658 9672 10.1021/jm5014743 25368960
    [Google Scholar]
  79. Mahale S. Aubry C. Jenkins P.R. Maréchal J.D. Sutcliffe M.J. Chaudhuri B. Inhibition of cancer cell growth by cyclin dependent kinase 4 inhibitors synthesized based on the structure of fascaplysin. Bioorg. Chem. 2006 34 5 287 297 10.1016/j.bioorg.2006.06.004 16904725
    [Google Scholar]
  80. Claesson-Welsh L. Welsh M. VEGFA and tumour angiogenesis. J. Intern. Med. 2013 273 2 114 127 10.1111/joim.12019 23216836
    [Google Scholar]
  81. Jang S. Strickland B. Finis L. Kooijman J.J. Melis J.J.T.M. Zaman G.J.R. Van Tornout J. Comparative biochemical kinase activity analysis identifies rivoceranib as a highly selective VEGFR2 inhibitor. Cancer Chemother. Pharmacol. 2023 91 6 491 499 10.1007/s00280‑023‑04534‑7 37148323
    [Google Scholar]
  82. Huang Z. Zhao B. Qin Z. Li Y. Wang T. Zhou W. Zheng J. Yang S. Shi Y. Fan Y. Xiang R. Novel dual inhibitors targeting CDK4 and VEGFR2 synergistically suppressed cancer progression and angiogenesis. Eur. J. Med. Chem. 2019 181 111541 10.1016/j.ejmech.2019.07.044 31382120
    [Google Scholar]
  83. Vaishnavi A. Le A.T. Doebele R.C. TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov. 2015 5 1 25 34 10.1158/2159‑8290.CD‑14‑0765 25527197
    [Google Scholar]
  84. Cocco E. Scaltriti M. Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat. Rev. Clin. Oncol. 2018 15 12 731 747 10.1038/s41571‑018‑0113‑0 30333516
    [Google Scholar]
  85. Hong D.S. DuBois S.G. Kummar S. Farago A.F. Albert C.M. Rohrberg K.S. van Tilburg C.M. Nagasubramanian R. Berlin J.D. Federman N. Mascarenhas L. Geoerger B. Dowlati A. Pappo A.S. Bielack S. Doz F. McDermott R. Patel J.D. Schilder R.J. Tahara M. Pfister S.M. Witt O. Ladanyi M. Rudzinski E.R. Nanda S. Childs B.H. Laetsch T.W. Hyman D.M. Drilon A. Larotrectinib in patients with TRK fusion-positive solid tumours: A pooled analysis of three phase 1/2 clinical trials. Lancet Oncol. 2020 21 4 531 540 10.1016/S1470‑2045(19)30856‑3 32105622
    [Google Scholar]
  86. Doebele R.C. Drilon A. Paz-Ares L. Siena S. Shaw A.T. Farago A.F. Blakely C.M. Seto T. Cho B.C. Tosi D. Besse B. Chawla S.P. Bazhenova L. Krauss J.C. Chae Y.K. Barve M. Garrido-Laguna I. Liu S.V. Conkling P. John T. Fakih M. Sigal D. Loong H.H. Buchschacher G.L. Garrido P. Nieva J. Steuer C. Overbeck T.R. Bowles D.W. Fox E. Riehl T. Chow- Maneval E. Simmons B. Cui N. Johnson A. Eng S. Wilson T.R. Demetri G.D. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: Integrated analysis of three phase 1–2 trials. Lancet Oncol. 2020 21 2 271 282 10.1016/S1470‑2045(19)30691‑6 31838007
    [Google Scholar]
  87. Albanese C. Alzani R. Amboldi N. Avanzi N. Ballinari D. Brasca M.G. Festuccia C. Fiorentini F. Locatelli G. Pastori W. Patton V. Roletto F. Colotta F. Galvani A. Isacchi A. Moll J. Pesenti E. Mercurio C. Ciomei M. Dual targeting of CDK and tropomyosin receptor kinase families by the oral inhibitor PHA-848125, an agent with broad-spectrum antitumor efficacy. Mol. Cancer Ther. 2010 9 8 2243 2254 10.1158/1535‑7163.MCT‑10‑0190 20682657
    [Google Scholar]
  88. Rana S. Kour S. Sonawane Y.A. Robb C.M. Contreras J.I. Kizhake S. Zahid M. Karpf A.R. Natarajan A. Symbiotic prodrugs (SymProDs) dual targeting of NFkappaB and CDK. Chem. Biol. Drug Des. 2020 96 2 773 784 10.1111/cbdd.13684 32237047
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673368870250602112835
Loading
/content/journals/cmc/10.2174/0109298673368870250602112835
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test