Skip to content
2000
Volume 32, Issue 33
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

 Background

Oral cancers, with oral squamous cell carcinoma (OSCC) as the predominant type, have a significant impact on morbidity and mortality rates. Therefore, targeting the NFκB pathway shows promise in cancer therapy.

Materials and Methods

This study investigated the impact of two NFκB inhibitors, LY2409881 and MLN4924, on cell proliferation, apoptosis susceptibility, and tumorigenesis in OSCC cell lines CAL27 and SCC15.

Results

The results revealed that both LY2409881 and MLN4924 effectively suppressed cell proliferation, induced apoptosis, and arrested the cell cycle at the G2/M phase—a phenomenon likely associated with the NFκB pathway. Furthermore, MLN4924 demonstrated potent inhibitory effects on cell proliferation at low μM concentrations, surpassing the effectiveness of LY2409881 as an inhibitor (All results: <0.05).

Conclusion

These findings highlight the potential of LY2409881 and MLN4924 as novel therapeutic agents for OSCC, thereby offering new insights for the clinical management of this condition.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673309489240816063313
2024-08-26
2025-10-01
Loading full text...

Full text loading...

/deliver/fulltext/cmc/32/33/CMC-32-33-08.html?itemId=/content/journals/cmc/10.2174/0109298673309489240816063313&mimeType=html&fmt=ahah

References

  1. GuZ. YaoY. YangG. ZhuG. TianZ. WangR. WuQ. WangY. WuY. ChenL. WangC. GaoJ. KangX. ZhangJ. WangL. DuanS. ZhaoZ. ZhangZ. SunS. Pharmacogenomic landscape of head and neck squamous cell carcinoma informs precision oncology therapy.Sci. Transl. Med.202214661eabo598710.1126/scitranslmed.abo598736070368
    [Google Scholar]
  2. ChengY. ChenJ. ShiY. FangX. TangZ. MAPK signaling pathway in oral squamous cell carcinoma: Biological function and targeted therapy.Cancers (Basel)20221419462510.3390/cancers1419462536230547
    [Google Scholar]
  3. AlmangushA. MäkitieA.A. TriantafyllouA. de BreeR. StrojanP. RinaldoA. Hernandez-PreraJ.C. SuárezC. KowalskiL.P. FerlitoA. LeivoI. Staging and grading of oral squamous cell carcinoma: An update.Oral Oncol.202010710479910.1016/j.oraloncology.2020.10479932446214
    [Google Scholar]
  4. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  5. NgJ.H. IyerN.G. TanM.H. EdgrenG. Changing epidemiology of oral squamous cell carcinoma of the tongue: A global study.Head Neck201739229730410.1002/hed.2458927696557
    [Google Scholar]
  6. DuM. NairR. JamiesonL. LiuZ. BiP. incidence trends of lip, oral cavity, and pharyngeal cancers: Global burden of disease 1990–2017.J. Dent. Res.202099214315110.1177/002203451989496331874128
    [Google Scholar]
  7. WuX. TangJ. ChengB. Oral squamous cell carcinoma gene patterns connected with RNA methylation for prognostic prediction.Oral Dis.2022302odi.1434110.1111/odi.1434135934835
    [Google Scholar]
  8. GowdaB.H.J. AhmedM.G. AlshehriS.A. WahabS. VoraL.K. Singh ThakurR.R. KesharwaniP. The cubosome-based nanoplatforms in cancer therapy: Seeking new paradigms for cancer theranostics.Environ. Res.2023237Pt 111689410.1016/j.envres.2023.11689437586450
    [Google Scholar]
  9. GowdaB.H.J. AhmedM.G. ChinnamS. PaulK. AshrafuzzamanM. ChavaliM. GahtoriR. PanditS. KesariK.K. GuptaP.K. Current trends in bio-waste mediated metal/metal oxide nanoparticles for drug delivery.J. Drug Deliv. Sci. Technol.20227110330510.1016/j.jddst.2022.103305
    [Google Scholar]
  10. GowdaB.H.J. AhmedM.G. AlmoyadM.A.A. WahabS. AlmalkiW.H. KesharwaniP. Nanosponges as an emerging platform for cancer treatment and diagnosis.Adv. Funct. Mater.2023347230707410.1002/adfm.202307074
    [Google Scholar]
  11. KorbeckiJ. SimińskaD. Gąssowska-DobrowolskaM. ListosJ. GutowskaI. ChlubekD. Baranowska-BosiackaI. Chronic and cycling hypoxia: Drivers of cancer chronic inflammation through hif-1 and nf-κb activation: A review of the molecular mechanisms.Int. J. Mol. Sci.202122191070110.3390/ijms22191070134639040
    [Google Scholar]
  12. MirzaeiS. SaghariS. BassiriF. RaesiR. ZarrabiA. HushmandiK. SethiG. TergaonkarV. NF-κB as a regulator of cancer metastasis and therapy response: A focus on epithelial–mesenchymal transition.J. Cell. Physiol.202223772770279510.1002/jcp.3075935561232
    [Google Scholar]
  13. JimiE. KatagiriT. Critical roles of NF-κB signaling molecules in bone metabolism revealed by genetic mutations in osteopetrosis.Int. J. Mol. Sci.20222314799510.3390/ijms2314799535887342
    [Google Scholar]
  14. BarnabeiL. LaplantineE. MbongoW. Rieux-LaucatF. WeilR. NF-κB: At the borders of autoimmunity and inflammation.Front. Immunol.20211271646910.3389/fimmu.2021.71646934434197
    [Google Scholar]
  15. ScheurerM.J.J. BrandsR.C. El-MeseryM. HartmannS. Müller-RichterU.D.A. KüblerA.C. SeherA. The selection of NFκB inhibitors to block inflammation and induce sensitisation to fasl-induced apoptosis in hnscc cell lines is critical for their use as a prospective cancer therapy.Int. J. Mol. Sci.2019206130610.3390/ijms2006130630875877
    [Google Scholar]
  16. MitchellS. VargasJ. HoffmannA. Signaling via the NFκB system.Wiley Interdiscip. Rev. Syst. Biol. Med.20168322724110.1002/wsbm.133126990581
    [Google Scholar]
  17. YangS. MagnutzkiA. AlamiN.O. LattkeM. HeinT.M. SchellerJ.S. KrögerC. OswaldF. Yilmazer-HankeD. WirthT. BaumannB. IKK2/NF-κB activation in astrocytes reduces amyloid β deposition: A process associated with specific microglia polarization.Cells20211010266910.3390/cells10102669
    [Google Scholar]
  18. YangP. GaoX. JiaoJ. XuL.Y. SangW. SunX.K. XuK.L. Effect of IKK2 inhibitor LY2409881 on diffuse large B-cell lymphoma cell apoptosis and its mechanism.Zhongguo Shi Yan Xue Ye Xue Za Zhi20182641086109230111412
    [Google Scholar]
  19. DengC. LipsteinM. RodriguezR. SerranoX.O.J. McIntoshC. TsaiW.Y. WasmuthA.S. JakenS. O’ConnorO.A. The novel IKK2 inhibitor LY2409881 potently synergizes with histone deacetylase inhibitors in preclinical models of lymphoma through the downregulation of NF-κB.Clin. Cancer Res.201521113414510.1158/1078‑0432.CCR‑14‑038425355930
    [Google Scholar]
  20. WangH. ZhongM. CuiB. YanH. WuS. WangK. LiY. Neddylation of enterovirus 71 VP2 protein reduces its stability and restricts viral replication.J. Virol.20229610e00598-2210.1128/jvi.00598‑2235510863
    [Google Scholar]
  21. LiuH. BeiQ. LuoX. MLN4924 inhibits cell proliferation by targeting the activated neddylation pathway in endometrial carcinoma.J. Int. Med. Res.202149610.1177/0300060521101859234082605
    [Google Scholar]
  22. VijayasimhaK. Leestemaker-PalmerA.L. GibbsJ.S. YewdellJ.W. DolanB.P. MLN4924 inhibits defective ribosomal product antigen presentation independently of direct NEDDylation of protein antigens.J. Immunol.2022208102273228210.4049/jimmunol.210058435428693
    [Google Scholar]
  23. YuH. LuoH. ChangL. WangS. GengX. KangL. ZhongY. CaoY. WangR. YangX. ZhuY. ShiM.J. HuY. LiuZ. YinX. RanY. YangH. FanW. ZhaoB.Q. The NEDD8-activating enzyme inhibitor MLN4924 reduces ischemic brain injury in mice.Proc. Natl. Acad. Sci. USA20221196e211189611910.1073/pnas.211189611935101976
    [Google Scholar]
  24. SoucyT.A. SmithP.G. MilhollenM.A. BergerA.J. GavinJ.M. AdhikariS. BrownellJ.E. BurkeK.E. CardinD.P. CritchleyS. CullisC.A. DoucetteA. GarnseyJ.J. GaulinJ.L. GershmanR.E. LublinskyA.R. McDonaldA. MizutaniH. NarayananU. OlhavaE.J. PelusoS. RezaeiM. SintchakM.D. TalrejaT. ThomasM.P. TraoreT. VyskocilS. WeatherheadG.S. YuJ. ZhangJ. DickL.R. ClaiborneC.F. RolfeM. BolenJ.B. LangstonS.P. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer.Nature2009458723973273610.1038/nature0788419360080
    [Google Scholar]
  25. ChenY. SunL. Inhibition of NEDD8 NEDDylation induced apoptosis in acute myeloid leukemia cells via p53 signaling pathway.Biosci. Rep.2022428BSR2022099410.1042/BSR2022099435880551
    [Google Scholar]
  26. CapeceD. VerzellaD. FlatiI. ArborettoP. CorniceJ. FranzosoG. NF-κB: blending metabolism, immunity, and inflammation.Trends Immunol.202243975777510.1016/j.it.2022.07.00435965153
    [Google Scholar]
  27. ZhangZ. ChengL. LiJ. QiaoQ. KarkiA. AllisonD.B. ShakerN. LiK. UtturkarS.M. Atallah LanmanN.M. RaoX. RychahouP. HeD. KoniecznyS.F. WangC. ShaoQ. EversB.M. LiuX. Targeting Plk1 Sensitizes Pancreatic Cancer to Immune Checkpoint Therapy.Cancer Res.202282193532354810.1158/0008‑5472.CAN‑22‑001835950917
    [Google Scholar]
  28. JiangY. ZhaoJ. LiuY. HuJ. GaoL. WangH. CuiD. CircKPNB1 mediates a positive feedback loop and promotes the malignant phenotypes of GSCs via TNF-α/NF-κB signaling.Cell Death Dis.202213869710.1038/s41419‑022‑05149‑135945192
    [Google Scholar]
  29. NakayamaH. IkebeT. BeppuM. ShirasunaK. High expression levels of nuclear factor κB, IκB kinase α and Akt kinase in squamous cell carcinoma of the oral cavity.Cancer200192123037304410.1002/1097‑0142(20011215)92:12<3037::AID‑CNCR10171>3.0.CO;2‑#11753981
    [Google Scholar]
  30. OndreyF.G. DongG. SunwooJ. ChenZ. WolfJ.S. Crowl-BancroftC.V. MukaidaN. Van WaesC. Constitutive activation of transcription factors NF-?B, AP-1, and NF-IL6 in human head and neck squamous cell carcinoma cell lines that express pro-inflammatory and pro-angiogenic cytokines.Mol. Carcinog.199926211912910.1002/(SICI)1098‑2744(199910)26:2<119::AID‑MC6>3.0.CO;2‑N10506755
    [Google Scholar]
  31. LiQ. EstepaG. MemetS. IsraelA. VermaI.M. Complete lack of NF-κB activity in IKK1 and IKK2 double-deficient mice: additional defect in neurulation.Genes Dev.200014141729173310.1101/gad.14.14.172910898787
    [Google Scholar]
  32. GhantousY. Abu ElnaajI. Global incidence and risk factors of oral cancer.Harefuah20171561064564929072384
    [Google Scholar]
  33. QuanH. ShanZ. LiuZ. LiuS. YangL. FangX. LiK. WangB. DengZ. HuY. YaoZ. HuangJ. YuJ. XiaK. TangZ. FangL. The repertoire of tumor-infiltrating lymphocytes within the microenvironment of oral squamous cell carcinoma reveals immune dysfunction.Cancer Immunol. Immunother.202069346547610.1007/s00262‑020‑02479‑x31950224
    [Google Scholar]
  34. KerawalaC. RoquesT. JeannonJ-P. BisaseB. Oral cavity and lip cancer: United Kingdom national multidisciplinary guidelines.J. Laryngol. Otol.2016130S2S83S8910.1017/S002221511600049927841120
    [Google Scholar]
  35. TangJ. FangX. ChenJ. ZhangH. TangZ. Long non-coding RNA (lncRNA) in oral squamous cell carcinoma: biological function and clinical application.Cancers (Basel)20211323594410.3390/cancers1323594434885054
    [Google Scholar]
  36. KerkS.A. FinkelK.A. PearsonA.T. WarnerK.A. ZhangZ. NörF. WagnerV.P. VargasP.A. WichaM.S. HurtE.M. HollingsworthR.E. TiceD.A. NörJ.E. 5T4-targeted therapy ablates cancer stem cells and prevents recurrence of head and neck squamous cell carcinoma.Clin. Cancer Res.201723102516252710.1158/1078‑0432.CCR‑16‑183427780858
    [Google Scholar]
  37. MarlesH. BiddleA. Cancer stem cell plasticity and its implications in the development of new clinical approaches for oral squamous cell carcinoma.Biochem. Pharmacol.202220411521210.1016/j.bcp.2022.11521235985402
    [Google Scholar]
  38. QuanH. FangL. PanH. DengZ. GaoS. LiuO. WangY. HuY. FangX. YaoZ. GuoF. LuR. XiaK. TangZ. An adaptive immune response driven by mature, antigen-experienced T and B cells within the microenvironment of oral squamous cell carcinoma.Int. J. Cancer2016138122952296210.1002/ijc.3001926815146
    [Google Scholar]
  39. PengF. LiaoM. QinR. ZhuS. PengC. FuL. ChenY. HanB. Regulated cell death (RCD) in cancer: key pathways and targeted therapies.Signal Transduct. Target. Ther.20227128610.1038/s41392‑022‑01110‑y35963853
    [Google Scholar]
  40. WinterJ.M. YadavT. RutterJ. Stressed to death: Mitochondrial stress responses connect respiration and apoptosis in cancer.Mol. Cell202282183321333210.1016/j.molcel.2022.07.01235961309
    [Google Scholar]
  41. BennettR. ThompsonE. TamC. SOHO state of the art updates and next questions | Mechanisms of resistance to BCL2 inhibitor therapy in chronic lymphocytic leukemia and potential future therapeutic directions.Clin. Lymphoma Myeloma Leuk.2022221179580410.1016/j.clml.2022.07.01335970756
    [Google Scholar]
  42. LiuM. LiuS. ChenF. WWC1, a target of miR-138-5p, facilitates the progression of prostate cancer.Am. J. Med. Sci.2022364677278110.1016/j.amjms.2022.08.00135970246
    [Google Scholar]
  43. LuoK.W. XiaJ. ChengB.H. GaoH.C. FuL.W. LuoX.L. Tea polyphenol EGCG inhibited colorectal- cancer-cell proliferation and migration via downregulation of STAT3.Gastroenterol. Rep. (Oxf.)202191597010.1093/gastro/goaa07233747527
    [Google Scholar]
  44. ZhangX. LiuC. HuF. ZhangY. WangJ. GaoY. JiangY. ZhangY. LanX. PET imaging of VCAM-1 expression and monitoring therapy response in tumor with a 68 Ga-labeled single chain variable fragment.Mol. Pharm.201815260961810.1021/acs.molpharmaceut.7b0096129308904
    [Google Scholar]
  45. El-MeseryM. AnanyM.A. HazemS.H. ShakerM.E. The NEDD8-activating enzyme inhibition with MLN4924 sensitizes human cancer cells of different origins to apoptosis and necroptosis.Arch. Biochem. Biophys.202069110851310.1016/j.abb.2020.10851332721435
    [Google Scholar]
  46. LinS. ShangZ. LiS. GaoP. ZhangY. HouS. QinP. DongZ. HuT. ChenP. Neddylation inhibitor MLN4924 induces G2 cell cycle arrest, DNA damage and sensitizes esophageal squamous cell carcinoma cells to cisplatin.Oncol. Lett.20181522583258929434977
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673309489240816063313
Loading
/content/journals/cmc/10.2174/0109298673309489240816063313
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): inhibitor; LY2409881; MLN4924; neddylation; NFκB; Oral squamous cell carcinoma (OSCC)
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test