Skip to content
2000
image of A Ubiquitination-Related Gene Prognostic Signature and the Oncogenic Role of RNF149 in Nasopharyngeal Carcinoma: scRNA- seq-Based Bioinformatics and Experimental Validation

Abstract

Introduction

Nasopharyngeal carcinoma (NPC) is an aggressive malignancy with a poor prognosis. Ubiquitination is a complex post translational modification involved in cancer progression. However, ubiquitination related genes (URGs) in immunotherapy of NPC remains largely unexplored.

Methods

Differentially expressed URGs were screened based on the single-cell RNA sequencing (scRNA-seq) dataset and a risk model of NPC was constructed and evaluated for prognostic significance. The oncogenic role of RNF149 in NPC was investigated through and experiments, including tumor cells, NPC-like organoids, and tumor-bearing mice.

Results

scRNA-seq data showed that URGs scores were higher in cancer cells than in normal epithelial cells. We identified 216 differentially expressed URGs between cancer and normal epithelial cells, but only 33 differentially expressed URGs associated with prognosis. Based on 33 URGs, TCGA-HNSC samples were classified into two distinct subtypes with significant differences in the tumor immune microenvironment, immunotherapy effect, and survival-prognostic genes. Using LASSO algorithm, 13 URGs were selected to construct a risk model, which demonstrated high predictive performance. The expression profiles of these 13 URGs were analyzed in TCGA-HNSC tumor and adjacent non-cancerous samples, and six URGs (BSPRY, OTUB1, PJA1, RNF149, RNF181, USP10) exhibited consistent expression trends. Moreover, quantitative real- time PCR revealed that RNF149 was up-regulated expression in NPC cells compared to the NP69 cells. RNF149 knockdown significantly impeded the proliferative, migratory, and invasive capabilities and exaggerated apoptosis of NPC cells. RNF149 knockdown cells exhibited a reduced capacity to form NPC organoids in a 3D culture system. shRNA-RNF149 diminished subcutaneous tumorigenic capacity of HK-1 cells compared to the control group.

Discussion

The URGs-based prognostic risk model offers a robust tool for predicting immunotherapy efficacy in NPC and RNF149 promotes NPC progression.

Conclusion

A URGs-related prognostic risk model capable of predicting clinical outcomes in NPC patients and RNF149 promotes NPC progression. Our findings are expected to provide new strategies to improve outcomes for NPC patients.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673378818250610053439
2025-06-25
2025-10-08
Loading full text...

Full text loading...

/deliver/fulltext/cmc/10.2174/0109298673378818250610053439/BMS-CMC-2024-1011.html?itemId=/content/journals/cmc/10.2174/0109298673378818250610053439&mimeType=html&fmt=ahah

References

  1. Juarez-Vignon Whaley J.J. Afkhami M. Onyshchenko M. Massarelli E. Sampath S. Amini A. Bell D. Villaflor V.M. Recurrent/Metastatic nasopharyngeal carcinoma treatment from present to future: Where are we and where are we heading? Curr. Treat. Options Oncol. 2023 24 9 1138 1166 10.1007/s11864‑023‑01101‑3 37318724
    [Google Scholar]
  2. Su Z.Y. Siak P.Y. Lwin Y.Y. Cheah S.C. Epidemiology of nasopharyngeal carcinoma: Current insights and future outlook. Cancer Metastasis Rev. 2024 43 3 919 939 10.1007/s10555‑024‑10176‑9 38430391
    [Google Scholar]
  3. Luo W. Nasopharyngeal carcinoma ecology theory: Cancer as multidimensional spatiotemporal “unity of ecology and evolution” pathological ecosystem. Theranostics 2023 13 5 1607 1631 10.7150/thno.82690 37056571
    [Google Scholar]
  4. Chen Y.P. Chan A.T.C. Le Q.T. Blanchard P. Sun Y. Ma J. Nasopharyngeal carcinoma. Lancet 2019 394 10192 64 80 10.1016/S0140‑6736(19)30956‑0 31178151
    [Google Scholar]
  5. Di M. Miao J. Pan Q. Wu Z. Chen B. Wang M. Zhao J. Huang H. Bai J. Wang Q. Tang Y. Li Y. He J. Xiang T. Weng D. Wang L. Xia J. Zhao C. OTUD4-mediated GSDME deubiquitination enhances radiosensitivity in nasopharyngeal carcinoma by inducing pyroptosis. J. Exp. Clin. Cancer Res. 2022 41 1 328 10.1186/s13046‑022‑02533‑9 36411454
    [Google Scholar]
  6. Liu X. Shen H. Zhang L. Huang W. Zhang S. Zhang B. Immunotherapy for recurrent or metastatic nasopharyngeal carcinoma. NPJ Precis. Oncol. 2024 8 1 101 10.1038/s41698‑024‑00601‑1 38755255
    [Google Scholar]
  7. Xu J.Y. Wei X.L. Wang Y.Q. Wang F.H. Current status and advances of immunotherapy in nasopharyngeal carcinoma. Ther. Adv. Med. Oncol. 2022 14 17588359221096214 10.1177/17588359221096214 35547095
    [Google Scholar]
  8. Kao W.C. Hsu S.H. Lin C.L. Lin C.Y. Chen S.W. Chen Y.X. Chen C.H. Lee S.W. Tsao C.J. Huang W.T. Chen S.H. Hsiao S.Y. Role of high ubiquitin-conjugating enzyme E2 expression as a prognostic factor in nasopharyngeal carcinoma. Oncol. Lett. 2022 23 6 194 10.3892/ol.2022.13314 35572494
    [Google Scholar]
  9. Mansour M.A. Ubiquitination: Friend and foe in cancer. Int. J. Biochem. Cell Biol. 2018 101 80 93 10.1016/j.biocel.2018.06.001 29864543
    [Google Scholar]
  10. Hoeller D. Dikic I. Targeting the ubiquitin system in cancer therapy. Nature 2009 458 7237 438 444 10.1038/nature07960 19325623
    [Google Scholar]
  11. Zhou Z. Zheng K. Zhou S. Yang Y. Chen J. Jin X. E3 ubiquitin ligases in nasopharyngeal carcinoma and implications for therapies. J. Mol. Med. (Berl.) 2023 101 12 1543 1565 10.1007/s00109‑023‑02376‑7 37796337
    [Google Scholar]
  12. Zhou S.Q. Feng P. Ye M.L. Huang S.Y. He S.W. Zhu X.H. Chen J. Zhang Q. Li Y.Q. The E3 ligase NEURL3 suppresses epithelial-mesenchymal transition and metastasis in nasopharyngeal carcinoma by promoting vimentin degradation. J. Exp. Clin. Cancer Res. 2024 43 1 14 10.1186/s13046‑024‑02945‑9 38191501
    [Google Scholar]
  13. Li J.Y. Zhao Y. Gong S. Wang M.M. Liu X. He Q.M. Li Y.Q. Huang S.Y. Qiao H. Tan X.R. Ye M.L. Zhu X.H. He S.W. Li Q. Liang Y.L. Chen K.L. Huang S.W. Li Q.J. Ma J. Liu N. TRIM21 inhibits irradiation-induced mitochondrial DNA release and impairs antitumour immunity in nasopharyngeal carcinoma tumour models. Nat. Commun. 2023 14 1 865 10.1038/s41467‑023‑36523‑y 36797289
    [Google Scholar]
  14. Zhang B. Li J. Wang Y. Liu X. Yang X. Liao Z. Deng S. Deng Y. Zhou Z. Tian Y. Wei W. Meng J. Hu Y. Wan C. Zhang Z. Huang F. Wen L. Wu B. Sun Y. Li Y. Yang K. Deubiquitinase USP7 stabilizes KDM5B and promotes tumor progression and cisplatin resistance in nasopharyngeal carcinoma through the ZBTB16/TOP2A axis. Cell Death Differ. 2024 31 3 309 321 10.1038/s41418‑024‑01257‑x 38287116
    [Google Scholar]
  15. Zhang J. Li Y.Q. Guo R. Wang Y.Q. Zhang P.P. Tang X.R. Wen X. Hong X.H. Lei Y. He Q.M. Yang X.J. Sun Y. Ma J. Liu N. Hypermethylation of SHISA3 promotes nasopharyngeal carcinoma metastasis by reducing SGSM1 stability. Cancer Res. 2019 79 4 747 759 10.1158/0008‑5472.CAN‑18‑1754 30573520
    [Google Scholar]
  16. Chen Y. Zhao Y. Yang X. Ren X. Huang S. Gong S. Tan X. Li J. He S. Li Y. Hong X. Li Q. Ding C. Fang X. Ma J. Liu N. USP44 regulates irradiation-induced DNA double-strand break repair and suppresses tumorigenesis in nasopharyngeal carcinoma. Nat. Commun. 2022 13 1 501 10.1038/s41467‑022‑28158‑2 35079021
    [Google Scholar]
  17. Guo Z. Jiang P. Dong Q. Zhang Y. Xu K. Zhai Y. He F. Tian C. Sun A. RNF149 promotes HCC progression through Its E3 Ubiquitin ligase activity. Cancers 2023 15 21 5203 10.3390/cancers15215203 37958377
    [Google Scholar]
  18. Zhu J. Tang J. Wu Y. Qiu X. Jin X. Zhang R. RNF149 confers cisplatin resistance in esophageal squamous cell carcinoma via destabilization of PHLPP2 and activating PI3K/AKT signalling. Med. Oncol. 2023 40 10 290 10.1007/s12032‑023‑02137‑z 37658961
    [Google Scholar]
  19. Mi K. Zeng L. Chen Y. Yang S. Integrative analysis of single-cell and bulk RNA sequencing reveals prognostic characteristics of macrophage polarization-related genes in lung adenocarcinoma. Int. J. Gen. Med. 2023 16 5031 5050 10.2147/IJGM.S430408 37942473
    [Google Scholar]
  20. Su X. Wang G. Liu S. Li J. Shao M. Yang Y. Song M. Han Y. Li W. Lv L. Autophagy defects at weaning impair complement-dependent synaptic pruning and induce behavior deficits. J. Neuroinflammation 2024 21 1 239 10.1186/s12974‑024‑03235‑z 39334475
    [Google Scholar]
  21. Han S. Wang R. Zhang Y. Li X. Gan Y. Gao F. Rong P. Wang W. Li W. The role of ubiquitination and deubiquitination in tumor invasion and metastasis. Int. J. Biol. Sci. 2022 18 6 2292 2303 10.7150/ijbs.69411 35414786
    [Google Scholar]
  22. Liu J.Z. Hu Y.L. Feng Y. Jiang Y. Guo Y.B. Liu Y.F. Chen X. Yang J.L. Chen Y. Mao Q.S. Xue W.J. BDH2 triggers ROS-induced cell death and autophagy by promoting Nrf2 ubiquitination in gastric cancer. J. Exp. Clin. Cancer Res. 2020 39 1 123 10.1186/s13046‑020‑01620‑z 32605589
    [Google Scholar]
  23. Zhang Y. Huang Z. Li K. Xie G. Feng Y. Wang Z. Li N. Liu R. Ding Y. Wang J. Yang J. Jia Z. TrkA promotes MDM2-mediated AGPS ubiquitination and degradation to trigger prostate cancer progression. J. Exp. Clin. Cancer Res. 2024 43 1 16 10.1186/s13046‑023‑02920‑w 38200609
    [Google Scholar]
  24. Yang H. Zou X. Yang S. Zhang A. Li N. Ma Z. Identification of lactylation related model to predict prognostic, tumor infiltrating immunocytes and response of immunotherapy in gastric cancer. Front. Immunol. 2023 14 1149989 10.3389/fimmu.2023.1149989 36936929
    [Google Scholar]
  25. Jiang P. Gu S. Pan D. Fu J. Sahu A. Hu X. Li Z. Traugh N. Bu X. Li B. Liu J. Freeman G.J. Brown M.A. Wucherpfennig K.W. Liu X.S. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 2018 24 10 1550 1558 10.1038/s41591‑018‑0136‑1 30127393
    [Google Scholar]
  26. Li X. Yang K.B. Chen W. Mai J. Wu X.Q. Sun T. Wu R.Y. Jiao L. Li D.D. Ji J. Zhang H.L. Yu Y. Chen Y.H. Feng G.K. Deng R. Li J.D. Zhu X.F. CUL3 (cullin 3)-mediated ubiquitination and degradation of BECN1 (beclin 1) inhibit autophagy and promote tumor progression. Autophagy 2021 17 12 4323 4340 10.1080/15548627.2021.1912270 33977871
    [Google Scholar]
  27. Zhou X. Sun S.C. Targeting ubiquitin signaling for cancer immunotherapy. Signal Transduct. Target. Ther. 2021 6 1 16 10.1038/s41392‑020‑00421‑2 33436547
    [Google Scholar]
  28. Cockram P.E. Kist M. Prakash S. Chen S.H. Wertz I.E. Vucic D. Ubiquitination in the regulation of inflammatory cell death and cancer. Cell Death Differ. 2021 28 2 591 605 10.1038/s41418‑020‑00708‑5 33432113
    [Google Scholar]
  29. Dang F. Nie L. Wei W. Ubiquitin signaling in cell cycle control and tumorigenesis. Cell Death Differ. 2021 28 2 427 438 10.1038/s41418‑020‑00648‑0 33130827
    [Google Scholar]
  30. Hu G. Yang J. Zhang H. Huang Z. Yang H. OTUB2 promotes proliferation and migration of hepatocellular carcinoma cells by PJA1 deubiquitylation. Cell. Mol. Bioeng. 2022 15 3 281 292 10.1007/s12195‑022‑00720‑4 35611163
    [Google Scholar]
  31. Luo Z. Ye X. Cheng Y. Li F. Shou F. Wang G. E3 ubiquitin ligase PJA1 regulates lung adenocarcinoma apoptosis and invasion through promoting FOXR2 degradation. Biochem. Biophys. Res. Commun. 2021 556 106 113 10.1016/j.bbrc.2021.03.137 33839405
    [Google Scholar]
  32. Lipkowitz S. Weissman A.M. RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis. Nat. Rev. Cancer 2011 11 9 629 643 10.1038/nrc3120 21863050
    [Google Scholar]
  33. Bunda S. Heir P. Metcalf J. Li A.S.C. Agnihotri S. Pusch S. Yasin M. Li M. Burrell K. Mansouri S. Singh O. Wilson M. Alamsahebpour A. Nejad R. Choi B. Kim D. von Deimling A. Zadeh G. Aldape K. CIC protein instability contributes to tumorigenesis in glioblastoma. Nat. Commun. 2019 10 1 661 10.1038/s41467‑018‑08087‑9 30737375
    [Google Scholar]
  34. Yang H. Qin G. Luo Z. Kong X. Gan C. Zhang R. Jiang W. MFSD4A inhibits the malignant progression of nasopharyngeal carcinoma by targeting EPHA2. Cell Death Dis. 2022 13 4 332 10.1038/s41419‑022‑04793‑x 35410462
    [Google Scholar]
  35. Song P. Li W. Guo L. Ying J. Gao S. He J. Identification and validation of a novel signature based on NK Cell marker genes to predict prognosis and immunotherapy response in lung adenocarcinoma by integrated analysis of single-cell and bulk RNA-sequencing. Front. Immunol. 2022 13 850745 10.3389/fimmu.2022.850745 35757748
    [Google Scholar]
  36. Zheng H. Liu H. Ge Y. Wang X. Integrated single-cell and bulk RNA sequencing analysis identifies a cancer associated fibroblast-related signature for predicting prognosis and therapeutic responses in colorectal cancer. Cancer Cell Int. 2021 21 1 552 10.1186/s12935‑021‑02252‑9 34670584
    [Google Scholar]
  37. Wei J. Meng X. Wei X. Zhu K. Du L. Wang H. Down-regulated lncRNA ROR in tumor-educated platelets as a liquid-biopsy biomarker for nasopharyngeal carcinoma. J. Cancer Res. Clin. Oncol. 2023 149 8 4403 4409 10.1007/s00432‑022‑04350‑1 36107245
    [Google Scholar]
  38. Zhou J. Zhang B. Zhang X. Wang C. Xu Y. Identification of a 3-miRNA signature associated with the prediction of prognosis in nasopharyngeal carcinoma. Front. Oncol. 2022 11 823603 10.3389/fonc.2021.823603 35155213
    [Google Scholar]
  39. Zuo Z. Ma J. Yan M. Ge W. Yao T. Zhou L. Zeng Y. Liu Y. Machine learning-derived prognostic signature for progression-free survival in non-metastatic nasopharyngeal carcinoma. Head Neck 2025 47 1 112 128 10.1002/hed.27895 39077955
    [Google Scholar]
  40. Ma Y. Zhou H. Luo F. Zhang Y. Zhu C. Li W. Huang Z. Zhao J. Xue J. Zhao Y. Fang W. Yang Y. Huang Y. Zhang L. Zhao H. Remodeling the tumor-immune microenvironment by anti-CTLA4 blockade enhanced subsequent anti-PD-1 efficacy in advanced nasopharyngeal carcinoma. NPJ Precis. Oncol. 2024 8 1 65 10.1038/s41698‑024‑00558‑1 38448521
    [Google Scholar]
  41. Gong L. Luo J. Zhang Y. Yang Y. Li S. Fang X. Zhang B. Huang J. Chow L.K.Y. Chung D. Huang J. Huang C. Liu Q. Bai L. Tiu Y.C. Wu P. Wang Y. Tsao G.S.W. Kwong D.L. Lee A.W.M. Dai W. Guan X.Y. Nasopharyngeal carcinoma cells promote regulatory T cell development and suppressive activity via CD70-CD27 interaction. Nat. Commun. 2023 14 1 1912 10.1038/s41467‑023‑37614‑6 37024479
    [Google Scholar]
  42. Zhang X. Qian S. Wu P. Yu B. Yin D. Peng X. Li S. Xiao Z. Xie Z. Tumor-associated macrophage-derived itaconic acid contributes to nasopharyngeal carcinoma progression by promoting immune escape via TET2. Cell Commun. Signal. 2024 22 1 413 10.1186/s12964‑024‑01799‑0 39192276
    [Google Scholar]
  43. Hopkins R. Xiang W. Marlier D. Au V.B. Ching Q. Wu L.X. Guan R. Lee B. Chia W.K. Wang W.W. Wee J. Ng J. Cheong R. Han S. Chu A. Chee C.L. Shuen T. Podinger M. Lezhava A. Toh H.C. Connolly J.E. Monocytic myeloid-derived suppressor cells underpin resistance to adoptive T cell therapy in nasopharyngeal carcinoma. Molecular therapy. J. American. Societ. Gene. Therapy 2021 29 2 734 10.1016/j.ymthe.2020.09.040.
    [Google Scholar]
  44. Huang H. Yao Y. Deng X. Huang Z. Chen Y. Wang Z. Hong H. Huang H. Lin T. Immunotherapy for nasopharyngeal carcinoma: Current status and prospects (Review). Int. J. Oncol. 2023 63 2 97 10.3892/ijo.2023.5545 37417358
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673378818250610053439
Loading
/content/journals/cmc/10.2174/0109298673378818250610053439
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test