Skip to content
2000
image of Quinoline Heterocyclic Clubbed Hydrazone Derivatives as Potential Inhibitors of Mutant S. aureus DNA Gyrase A; An In-silico Drug Discovery Approach -Molecular Docking, MD Simulation, DFT Analysis and ADMET Predictions

Abstract

Background

infections have become a significant public health issue due to increasing the resistance against known antibiotics, especially by Methicillin-Resistant (MRSA). Fluoroquinolones are broad-spectrum class of antibiotics mostly utilized in treating various bacterial infections and those caused by . Reported data indicated that mutations of Ser84 to Leu, Ser85 to Pro and Glu88 to Lys in DNA gyrase A enzyme are the major cause of fluoroquinolone resistance against . Therefore, the development of a novel targeted molecule with potential activity against mutant is essential. The antibacterial activity of quinoline-clubbed hydrazone derivatives against is noteworthy. However, the mechanism of action of quinoline hydrazone derivatives has not been reported by inhibiting these common mutations of DNA gyrase A.

Methods

In this concern, some quinoline hydrazone derivatives as antibacterial agents reported by several research groups have been further studied as mutated DNA gyrase A (Pdb id: 8bp2) inhibitors using techniques , molecular docking, MD simulation, DFT analysis, and ADMET predictions.

Results

Among the studied compounds, , , and were found to be the most active and showed the highest docking score (-7.71 to -9.29 kcalmol-1) by interaction with mutant (Leu84 and Pro85) DNA gyrase A. Further, MD simulation results indicated that these compounds exhibited good stability with the targeted macromolecule under dynamic conditions. The most active compound 0.159 eV attributed to its lower HOMO-LUMO gap, which was an indicator of a potential inhibitor of fluoroquinolone- resistant DNA gyrase A enzyme. ADMET prediction study emphasized that both compounds showed a significant safety profile.

Conclusion

The future perspective emphasized that compounds , , and could be developed as novel inhibitors against fluoroquinolone-resistant DNA gyrase A enzyme on the completion of drug discovery approaches.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673370267250607160438
2025-06-25
2025-09-11
Loading full text...

Full text loading...

References

  1. Walsh T.R. Gales A.C. Laxminarayan R. Dodd P.C. Antimicrobial resistance: Addressing a global threat to humanity. PLoS Med. 2023 20 7 e1004264 10.1371/journal.pmed.1004264 37399216
    [Google Scholar]
  2. Patel J. Harant A. Fernandes G. Mwamelo A.J. Hein W. Dekker D. Sridhar D. Measuring the global response to antimicrobial resistance, 2020–21: A systematic governance analysis of 114 countries. Lancet Infect. Dis. 2023 23 6 706 718 10.1016/S1473‑3099(22)00796‑4 36657475
    [Google Scholar]
  3. Lafaurie M. Porcher R. Donay J. Resistant Pseudomonas aeruginosa isolation rates: A 10 year study. J. Antimicrob. Chemother. 2012 67 1010 1015 10.1093/jac/dkr555 22240401
    [Google Scholar]
  4. Brdová D. Ruml T. Viktorová J. Mechanism of staphylococcal resistance to clinically relevant antibiotics. Drug Resist. Updat. 2024 77 101147 10.1016/j.drup.2024.101147 39236354
    [Google Scholar]
  5. Mlynarczyk-Bonikowska B. Kowalewski C. Krolak-Ulinska A. Marusza W. Molecular mechanisms of drug resistance in Staphylococcus aureus. Int. J. Mol. Sci. 2022 23 15 8088 10.3390/ijms23158088 35897667
    [Google Scholar]
  6. Nandhini P. Kumar P. Mickymaray S. Alothaim A.S. Somasundaram J. Rajan M. Recent developments in methicillin-resistant Staphylococcus aureus (MRSA) treatment: A review. Antibiotics 2022 11 5 606 10.3390/antibiotics11050606 35625250
    [Google Scholar]
  7. Rai A. Khairnar K. Overview of the risks of Staphylococcus aureus infections and their control by bacteriophages and bacteriophage-encoded products. Braz. J. Microbiol. 2021 52 4 2031 2042 10.1007/s42770‑021‑00566‑4 34251609
    [Google Scholar]
  8. Pham T.D.M. Ziora Z.M. Blaskovich M.A.T. Quinolone antibiotics. MedChemComm 2019 10 10 1719 1739 10.1039/C9MD00120D 31803393
    [Google Scholar]
  9. Du G.F. Zheng Y.D. Chen J. He Q.Y. Sun X. Novel mechanistic insights into bacterial fluoroquinolone resistance. J. Proteome Res. 2019 18 11 3955 3966 10.1021/acs.jproteome.9b00410 31599150
    [Google Scholar]
  10. Yang X. Xing B. Liang C. Ye Z. Zhang Y. Prevalence and fluoroquinolone resistance of Pseudomonas aeruginosa in a hospital of South China. Int. J. Clin. Exp. Med. 2015 8 1 1386 1390 25785142
    [Google Scholar]
  11. Sreedharan S. Oram M. Jensen B. Peterson L.R. Fisher L.M. DNA gyrase gyrA mutations in ciprofloxacin-resistant strains of Staphylococcus aureus: Close similarity with quinolone resistance mutations in Escherichia coli. J. Bacteriol. 1990 172 12 7260 7262 10.1128/jb.172.12.7260‑7262.1990 2174869
    [Google Scholar]
  12. Spencer A.C. Panda S.S. DNA gyrase as a target for quinolones. Biomedicines 2023 11 2 371 10.3390/biomedicines11020371 36830908
    [Google Scholar]
  13. Ito H. Yoshida H. Bogaki-Shonai M. Niga T. Hattori H. Nakamura S. Quinolone resistance mutations in the DNA gyrase gyrA and gyrB genes of Staphylococcus aureus. Antimicrob. Agents Chemother. 1994 38 9 2014 2023 10.1128/AAC.38.9.2014 7811012
    [Google Scholar]
  14. Erazua E.A. Oyebamiji A.K. Akintelu S.A. Adewole P.D. Adelakun A. Adeleke B.B. Quantitative structure-activity relationship, molecular docking and ADMET screening of tetrahydroquinoline derivatives as anti-small cell lung cancer agents. Eclét. Quím. 2023 48 1 55 71 10.26850/1678‑4618eqj.v48.1.2023.p55‑71
    [Google Scholar]
  15. Afzal M. Vijay A.K. Stapleton F. Willcox M. The relationship between ciprofloxacin resistance and genotypic changes in S. aureus ocular isolates. Pathogens 2022 11 11 1354 10.3390/pathogens11111354 36422605
    [Google Scholar]
  16. de la Rosa J.M.O. Fernández M.A. Rodríguez-Villodres Á. Casimiro-Soriguer C.S. Cisneros J.M. Lepe J.A. Ortiz-de-la Rosa High-level delafloxacin resistance through the combination of two different mechanisms in Staphylococcus aureus. Int. J. Antimicrob. Agents 2023 61 6 106795 10.1016/j.ijantimicag.2023.106795
    [Google Scholar]
  17. Saha S. Tiwari H. Ghosh M. Molecular dynamics simulation guided analysis of the interaction between delafloxacin and Staphylococcus aureus gyrase mutants. Mol. Simul. 2024 50 10 601 612 10.1080/08927022.2024.2332453
    [Google Scholar]
  18. Sharma S. Kumar D. Singh G. Monga V. Kumar B. Recent advancements in the development of heterocyclic anti-inflammatory agents. Eur. J. Med. Chem. 2020 200 112438 10.1016/j.ejmech.2020.112438 32485533
    [Google Scholar]
  19. Dofe V.S. Sarkate A.P. Azad R. Gill C.H. Green synthesis and inhibitory effect of novel quinoline based thiazolidinones on the growth of MCF-7 human breast cancer cell line by G2/M cell cycle arrest. Res. Chem. Intermed. 2018 44 2 1149 1160 10.1007/s11164‑017‑3157‑3
    [Google Scholar]
  20. Elrayess R. Darwish K.M. Nafie M.S. El-Sayyed G.S. Said M.M. Yassen A.S.A. Quinoline–hydrazone hybrids as dual mutant EGFR inhibitors with promising metallic nanoparticle loading: Rationalized design, synthesis, biological investigation and computational studies. New J. Chem. 2022 46 38 18207 18232 10.1039/D2NJ02962F
    [Google Scholar]
  21. Mistry S. Singh A.K. Synthesis and in vitro antimicrobial activity of new steroidal hydrazone derivatives. Future J. Pharm. Sci. 2022 8 1 7 10.1186/s43094‑021‑00391‑4
    [Google Scholar]
  22. Puskullu M.O. Shirinzadeh H. Nenni M. Gurer-Orhan H. Suzen S. Synthesis and evaluation of antioxidant activity of new quinoline-2-carbaldehyde hydrazone derivatives: Bioisosteric melatonin analogues. J. Enzyme Inhib. Med. Chem. 2016 31 1 121 125 10.3109/14756366.2015.1005012 25942363
    [Google Scholar]
  23. Abdullah A.H. Alarareh A.K. Al-Sha’er M.A. Habashneh A.Y. Awwadi F.F. Bardaweel S.K. Docking, synthesis, and anticancer assessment of novel quinoline-amidrazone hybrids. Pharmacia 2024 71 1 12 10.3897/pharmacia.71.e117192
    [Google Scholar]
  24. Ćurčić V. Olszewski M. Maciejewska N. Višnjevac A. Srdić-Rajić T. Dobričić V. García-Sosa A.T. Kokanov S.B. Araškov J.B. Silvestri R. Schüle R. Jung M. Nikolić M. Filipović N.R. Quinoline-based thiazolyl-hydrazones target cancer cells through autophagy inhibition. Arch. Pharm. 2024 357 2 2300426 10.1002/ardp.202300426 37991233
    [Google Scholar]
  25. Mandewale M.C. Thorat B. Shelke D. Yamgar R. Synthesis and biological evaluation of new hydrazone derivatives of quinoline and their Cu(II) and Zn(II) complexes against Mycobacterium tuberculosis. Bioinorg. Chem. Appl. 2015 2015 1 14 10.1155/2015/153015 26759537
    [Google Scholar]
  26. Marra R.K.F. Kümmerle A.E. Guedes G.P. Barros C.S. Gomes R.S.P. Cirne-Santos C.C. Paixão I.C.N.P. Neves A.P. Quinolone-N-acylhydrazone hybrids as potent Zika and Chikungunya virus inhibitors. Bioorg. Med. Chem. Lett. 2020 30 2 126881 10.1016/j.bmcl.2019.126881 31843348
    [Google Scholar]
  27. Debnath U. Mukherjee S. Joardar N. Sinha Babu S.P. Jana K. Misra A.K. Aryl quinolinyl hydrazone derivatives as anti-inflammatory agents that inhibit TLR4 activation in the macrophages. Eur. J. Pharm. Sci. 2019 134 102 115 10.1016/j.ejps.2019.04.016 31002986
    [Google Scholar]
  28. Shayegan N. Haghipour S. Tanideh N. Moazzam A. Mojtabavi S. Faramarzi M.A. Irajie C. Parizad S. Ansari S. Larijani B. Hosseini S. Iraji A. Mahdavi M. Synthesis, in vitro α-glucosidase inhibitory activities, and molecular dynamic simulations of novel 4-hydroxyquinolinone-hydrazones as potential antidiabetic agents. Sci. Rep. 2023 13 1 6304 10.1038/s41598‑023‑32889‑7 37072431
    [Google Scholar]
  29. Taha M. Sultan S. Imran S. Rahim F. Zaman K. Wadood A. Ur Rehman A. Uddin N. Mohammed Khan K. Synthesis of quinoline derivatives as diabetic II inhibitors and molecular docking studies. Bioorg. Med. Chem. 2019 27 18 4081 4088 10.1016/j.bmc.2019.07.035 31378594
    [Google Scholar]
  30. Magwaza R.N. Abubaker M. Hussain B. Haley M. Couper K. Freeman S. Nirmalan N.J. Evaluation of 4-Aminoquinoline hydrazone analogues as potential leads for drug-resistant malaria. Molecules 2023 28 18 6471 10.3390/molecules28186471 37764248
    [Google Scholar]
  31. Marinho J.A. Martins Guimarães D.S. Glanzmann N. de Almeida Pimentel G. Karine da Costa Nunes I. Gualberto Pereira H.M. Navarro M. de Pilla Varotti F. David da Silva A. Abramo C. In vitro and in vivo antiplasmodial activity of novel quinoline derivative compounds by molecular hybridization. Eur. J. Med. Chem. 2021 215 113271 10.1016/j.ejmech.2021.113271 33596489
    [Google Scholar]
  32. Sonawane S.J. Kalhapure R.S. Govender T. Hydrazone linkages in pH responsive drug delivery systems. Eur. J. Pharm. Sci. 2017 99 45 65 10.1016/j.ejps.2016.12.011 27979586
    [Google Scholar]
  33. Rizk O.H. Bekhit M.G. Hazzaa A.A.B. El-Khawass E.S.M. Abdelwahab I.A. Synthesis, antibacterial evaluation, and DNA gyrase inhibition profile of some new quinoline hybrids. Arch. Pharm. 2019 352 10 1900086 10.1002/ardp.201900086 31389630
    [Google Scholar]
  34. Elmongy E.I. Ahmed A.A.S. El Sayed I.E.T. Fathy G. Awad H.M. Salman A.U. Hamed M.A. Hamed M.A. Synthesis, biocidal and antibiofilm activities of new isatin–quinoline conjugates against multidrug-resistant bacterial pathogens along with their in silico screening. Antibiotics 2022 11 11 1507 10.3390/antibiotics11111507 36358162
    [Google Scholar]
  35. Verma S. Lal S. Narang R. Sudhakar K. Quinoline hydrazide/hydrazone derivatives: Recent insights on antibacterial activity and mechanism of action. ChemMedChem 2023 18 5 e202200571 10.1002/cmdc.202200571 36617503
    [Google Scholar]
  36. Agamah F.E. Mazandu G.K. Hassan R. Bope C.D. Thomford N.E. Ghansah A. Chimusa E.R. Computational/in silico methods in drug target and lead prediction. Brief. Bioinform. 2020 21 5 1663 1675 10.1093/bib/bbz103 31711157
    [Google Scholar]
  37. Kharkar P.S. Warrier S. Gaud R.S. Reverse docking: A powerful tool for drug repositioning and drug rescue. Future Med. Chem. 2014 6 3 333 342 10.4155/fmc.13.207 24575968
    [Google Scholar]
  38. Tiwari A. Singh S. Computational approaches in drug designing. Bioinforma. Methods Appl. 2021 13 207 217
    [Google Scholar]
  39. Mohan A. Kirubakaran R. Parray J.A. Sivakumar R. Murugesh E. Govarthanan M. Ligand-based pharmacophore filtering, atom based 3D-QSAR, virtual screening and ADME studies for the discovery of potential ck2 inhibitors. J. Mol. Struct. 2020 1205 127670 10.1016/j.molstruc.2019.127670
    [Google Scholar]
  40. Fidan O. Mujwar S. Kciuk M. Discovery of adapalene and dihydrotachysterol as antiviral agents for the Omicron variant of SARS-CoV-2 through computational drug repurposing. Mol. Divers. 2023 27 1 463 475 10.1007/s11030‑022‑10440‑6 35507211
    [Google Scholar]
  41. Mujwar S. Tripathi A. Repurposing benzbromarone as antifolate to develop novel antifungal therapy for Candida albicans. J. Mol. Model. 2022 28 7 193 10.1007/s00894‑022‑05185‑w 35716240
    [Google Scholar]
  42. Forli S. Huey R. Pique M.E. Sanner M.F. Goodsell D.S. Olson A.J. Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc. 2016 11 5 905 919 10.1038/nprot.2016.051 27077332
    [Google Scholar]
  43. Bowers K.J. Chow E. Xu H. Dror R.O. Eastwood M.P. Gregersen B.A. Klepeis J.L. Kolossvary I. Moraes M.A. Sacerdoti F.D. Salmon J.K. Shan Y. Shaw D.E. Scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the 2006 ACM/IEEE Conference on Supercomputing Tampa, FL, USA, 11-17 November 2006, pp. 43. 10.1109/SC.2006.54
    [Google Scholar]
  44. Shinu P. Sharma M. Gupta G.L. Mujwar S. Kandeel M. Kumar M. Nair A.B. Goyal M. Singh P. Attimarad M. Venugopala K.N. Nagaraja S. Telsang M. Aldhubiab B.E. Morsy M.A. Computational design, synthesis, and pharmacological evaluation of naproxen-guaiacol chimera for gastro-sparing anti-inflammatory response by selective COX2 inhibition. Molecules 2022 27 20 6905 10.3390/molecules27206905 36296501
    [Google Scholar]
  45. Bursch M. Mewes J.M. Hansen A. Grimme S. Best-practice DFT protocols for basic molecular computational chemistry. Angew. Chem. Int. Ed. 2022 61 42 e202205735 10.1002/anie.202205735 36103607
    [Google Scholar]
  46. Lafifi I. Khatmi D. Theoretical investigation of the intramolecular H-bonding on tautomerism. Adv. Quantum Chem. 2014 68 257 268 10.1016/B978‑0‑12‑800536‑1.00013‑7
    [Google Scholar]
  47. Thakur A. Verma M. Setia P. Bharti R. Sharma R. Sharma A. Negi N.P. Anand V. Bansal R. DFT analysis and in vitro studies of isoxazole derivatives as potent antioxidant and antibacterial agents synthesized via one-pot methodology. Res. Chem. Intermed. 2023 49 3 859 883 10.1007/s11164‑022‑04910‑7
    [Google Scholar]
  48. Gul S. Jan F. Alam A. Shakoor A. Khan A. AlAsmari A.F. Alasmari F. Khan M. Bo L. Synthesis, molecular docking and DFT analysis of novel bis-Schiff base derivatives with thiobarbituric acid for α-glucosidase inhibition assessment. Sci. Rep. 2024 14 1 3419 10.1038/s41598‑024‑54021‑z 38341468
    [Google Scholar]
  49. Kar S. Leszczynski J. Open access in silico tools to predict the ADMET profiling of drug candidates. Expert Opin. Drug Discov. 2020 15 12 1473 1487 10.1080/17460441.2020.1798926 32735147
    [Google Scholar]
  50. Jia C.Y. Li J.Y. Hao G.F. Yang G.F. A drug-likeness toolbox facilitates ADMET study in drug discovery. Drug Discov. Today 2020 25 1 248 258 10.1016/j.drudis.2019.10.014 31705979
    [Google Scholar]
  51. Poongattil S. Thomas J. Joy C. In silico analysis and molecular docking studies of potential compounds from Crateva Magna (Lour.) DC. using POAP. Rev. Electrón. Vet. 2024 25 298 313 10.69980/redvet.v25i1S.648
    [Google Scholar]
  52. Bharwani H. Kapur L.S. Palani S.G. Milk adulteration testing and analysis (MATA) kit for rapid detection of cow milk adulterated with urea and glucose at low cost. Res. Squar 2024 1 27
    [Google Scholar]
  53. Sharma M. Goyal R. Ahuja D. Sharma A. Soni S.L. Antimicrobial and antifungal activity of newly synthesized 4-hydroxy quinoline derivatives. Eur. J. Mol. Clin. Med. 2020 7 2082 2094
    [Google Scholar]
  54. Pradhan A. Vishwakarma S.K. Synthesis, characterisation and antimicrobial activity of schiff base of 7-Hydroxy-3-Methyl-2- Quinolone. Int. J. Recent Trends Sci. Technol. 2018 10 1 40 43
    [Google Scholar]
  55. Celik I. Erol M. Puskullu M.O. Uzunhisarcikli E. Ince U. Kuyucuklu G. Suzen S. In vitro and in silico studies of Quinoline-2-Carbaldehyde Hydrazone derivatives as potent antimicrobial agents. Polycycl. Aromat. Compd. 2022 42 4 1942 1958 10.1080/10406638.2020.1821230
    [Google Scholar]
  56. Dawood R.S. Synthesis, characterization and biological activity study of some new schiff bases derived from Phenyl Quinoline-2 (1H) -one. Al-Anbar. J. Vet. Sci. 2012 2 114 122
    [Google Scholar]
  57. Kumar M. Kumar V. Gupta G.K. Synthesis, antibacterial evaluation, and SAR study of some novel 3-aryl/heteroaryl-9-methyl-1,2,4-triazolo-[4,3-a]-quinoline derivatives. Med. Chem. Res. 2015 24 5 1857 1868 10.1007/s00044‑014‑1254‑z
    [Google Scholar]
  58. Puskullu M.O. Celik I. Erol M. Fatullayev H. Uzunhisarcikli E. Kuyucuklu G. Antimicrobial and antiproliferative activity studies of some new quinoline-3-carbaldehyde hydrazone derivatives. Bioorg. Chem. 2020 101 104014 10.1016/j.bioorg.2020.104014 32599364
    [Google Scholar]
  59. Abdelrahman M.A. Salama I. Gomaa M.S. Elaasser M.M. Abdel-Aziz M.M. Soliman D.H. Design, synthesis and 2D QSAR study of novel pyridine and quinolone hydrazone derivatives as potential antimicrobial and antitubercular agents. Eur. J. Med. Chem. 2017 138 698 714 10.1016/j.ejmech.2017.07.004 28715707
    [Google Scholar]
  60. Makawana J.A. Sangani C.B. Teraiya S.B. Zhu H-L. Schiff’s base derivatives bearing 2-thiophenoxyquinoline nucleus as new antibacterial agents. Med. Chem. Res. 2014 23 1 471 479 10.1007/s00044‑013‑0655‑8
    [Google Scholar]
  61. Shaikh S.S. Synthesis and antimicrobial activities of substituted benzohydrazide. Chem. Sci. Trans. 2013 2 950 954
    [Google Scholar]
  62. Lamani D.S. Venugopala Reddy K.R. Bhojya Naik H.S. Savyasachi A. Naik H.R. Synthesis and DNA binding studies of novel heterocyclic substituted quinoline schiff bases: A potent antimicrobial agent. Nucleosides Nucleotides Nucleic Acids 2008 27 10-11 1197 1210 10.1080/15257770802400081 18788049
    [Google Scholar]
  63. Shabeeb I. Al-Essa L. Shtaiwi M. Al-Shalabi E. Younes E. Okasha R. Abu Sini M. New hydrazide-hydrazone derivatives of quinoline 3-carboxylic acid hydrazide: Synthesis, theoretical modeling and antibacterial evaluation. Lett. Org. Chem. 2019 16 5 430 436 10.2174/1570178616666181227122326
    [Google Scholar]
  64. Hamama W.S. Ibrahim M.E. Gooda A.A. Zoorob H.H. Efficient synthesis, antimicrobial, antioxidant assessments and geometric optimization calculations of azoles- incorporating quinoline moiety. J. Heterocycl. Chem. 2018 55 11 2623 2634 10.1002/jhet.3322
    [Google Scholar]
  65. Mallandur B.K. Rangaiah G. Harohally N.V. Synthesis and antimicrobial activity of Schiff bases derived from 2-chloro quinoline-3-carbaldehyde and its derivatives incorporating 7-methyl-2-propyl-3 H -benzoimidazole-5-carboxylic acid hydrazide. Synth. Commun. 2017 47 11 1065 1070 10.1080/00397911.2017.1309668
    [Google Scholar]
  66. El-gamal K.M.A. Sherbiny F.F. El-morsi A.M. Design, synthesis and antimicrobial evaluation of some novel quinoline derivatives. Pharm. Pharmacol. Int. J. 2015 2 165 177
    [Google Scholar]
  67. Sharma A. Kumar V. Khare R. Gupta G.K. Beniwal V. Synthesis, docking study, and DNA photocleavage activity of some pyrimidinyl hydrazones and 3-(quinolin-3-yl)-5,7-dimethyl-1,2,4-triazolo[4,3-a]pyrimidine derivatives. Med. Chem. Res. 2015 24 5 1830 1841 10.1007/s00044‑014‑1265‑9
    [Google Scholar]
  68. Garudachari B. Isloor A.M. Satyanaraya M.N. Ananda K. Fun H. RSC advances studies of some new trifluoromethyl Quinoline-3-. RSC Advances 2014 4 30864 30875 10.1039/C4RA04456H
    [Google Scholar]
  69. Maddela S. Makula A. Maddela R. Synthesis of isatin–quinoline conjugates as possible biologically active agents. Toxicol. Environ. Chem. 2014 96 1 1 11 10.1080/02772248.2014.918464
    [Google Scholar]
  70. Kidwai M. Sapra P. Bhushan K.R. Saxena R.K. Gupta R. Singh M. Microwave assisted stereoselective synthesis and antibacterial activity of new Fluoroquinolinyl-β-lactam derivatives. Monatsh. Chem. 2000 131 1 85 90 10.1007/PL00010299
    [Google Scholar]
  71. T G S. Subramanian S. Eswaran S. Design, synthesis and study of antibacterial and antitubercular activity of quinoline hydrazone hybrids. Heterocycl. Commun. 2020 26 1 137 147 10.1515/hc‑2020‑0109
    [Google Scholar]
  72. Katariya K.D. Shah S.R. Reddy D. Antimicrobial based hydrazone analogues: Synthesis, characterization and molecular docking. Bioorg. Chem. 2020 94 103406 10.1016/j.bioorg.2019.103406 31718889
    [Google Scholar]
  73. Patel D.B. Vekariya R.H. Patel K.D. Vasava M.S. Rajani D.P. Rajani S.D. Patel H.D. Synthesis, docking, ADME-Tox Study of 2-(2-(2-Chlorophenyl)quinoline-4- carbonyl)- N -substituted hydrazinecarbothioamide derivatives and their biological evaluation. J. Heterocycl. Chem. 2018 55 3 632 644 10.1002/jhet.3080
    [Google Scholar]
  74. Bodke Y.D. Shankerrao S. Kenchappa R. Telkar S. Synthesis, antibacterial and antitubercular activity of novel Schiff bases of 2-(1-benzofuran-2-yl)quinoline-4-carboxylic acid derivatives. Russ. J. Gen. Chem. 2017 87 8 1843 1849 10.1134/S1070363217080321
    [Google Scholar]
  75. Bharadwaj S.S. Poojary B. Madan Kumar S. Byrappa K. Nagananda G.S. Chaitanya A.K. Zaveri K. Yarla N.S. Shiralgi Y. Kudva A.K. Dhananjaya B.L. Design, synthesis and pharmacological studies of some new quinoline Schiff bases and 2,5-(disubstituted-[1,3,4])-oxadiazoles. New J. Chem. 2017 41 16 8568 8585 10.1039/C6NJ03913H
    [Google Scholar]
  76. Metwally K.A. Abdel-Aziz L.M. Lashine E.S.M. Husseiny M.I. Badawy R.H. Hydrazones of 2-aryl-quinoline-4-carboxylic acid hydrazides: Synthesis and preliminary evaluation as antimicrobial agents. Bioorg. Med. Chem. 2006 14 24 8675 8682 10.1016/j.bmc.2006.08.022 16949294
    [Google Scholar]
  77. Ajani O.O. Iyaye K.T. Aderohunmu D.V. Olanrewaju I.O. Germann M.W. Olorunshola S.J. Bello B.L. Microwave-assisted synthesis and antibacterial propensity of N′-s-benzylidene-2-propylquinoline-4-carbohydrazide and N′-((s-1H-pyrrol-2-yl)methylene)-2-propylquinoline-4-carbohydrazide motifs. Arab. J. Chem. 2020 13 1 1809 1820 10.1016/j.arabjc.2018.01.015
    [Google Scholar]
  78. Le T.D. Pham N.N. Nguyen T.C. Preparation and antibacterial activity of some new 4-(2-Heterylidenehydrazinyl)-7-chloroquinoline derivatives. J. Chem. 2018 2018 1 7 10.1155/2018/4301847
    [Google Scholar]
  79. Prateek P. Thakur A. Shukla P.K. Derivatives: Design, synthesis, characterization and antibacterial evaluation. Int. J. Chemtech Res. 2016 9 261 269
    [Google Scholar]
  80. Sreedhar P. Srinivas G. Raju R.M. Synthesis and antibacterial activity of N-substituted-1-benzyl- 1H -1, 2, 3- triazole-carbohydrazide derivatives. Der Pharma Chem. 2016 8 173 178
    [Google Scholar]
  81. Thakur A. Gupta P.R.S. Pathak P. Kumar A. Design, synthesis, SAR, docking and antibacterial evaluation: Aliphatic amide bridged 4-aminoquinoline clubbed 1, 2, 4- triazole derivatives. Int. J. Chemtech Res. 2016 9 575 588
    [Google Scholar]
  82. Hafez A.A.A. Awad I.M.A. Hassan K.M. Synthesis and biological activity of some new 8-hydroxyquinoline sulphonamide derivatives. Phosphorus Sulfur Relat. Elem. 1988 40 3-4 219 225 10.1080/03086648808072917
    [Google Scholar]
  83. Douadi K. Chafaa S. Douadi T. Al-Noaimi M. Kaabi I. Azoimine quinoline derivatives: Synthesis, classical and electrochemical evaluation of antioxidant, anti-inflammatory, antimicrobial activities and the DNA / BSA binding. J. Mol. Struct. 2020 1217 128305 10.1016/j.molstruc.2020.128305
    [Google Scholar]
  84. Abdelmajeid A. Aly A.A. Amine M.S. Ghith A.A. Synthesis and investigation of mass spectra and antimicrobial activity of some azoles and azines based on (QUINOLINE-8-YLOXY) ACETOHYDRAZIDE. Int. J. Nanomater. Chem. 2016 2 2 37 45 10.18576/ijnc/020202
    [Google Scholar]
  85. Sridhar P. Alagumuthu M. Arumugam S. Reddy S.R. Synthesis of quinoline acetohydrazide-hydrazone derivatives evaluated as DNA gyrase inhibitors and potent antimicrobial agents. RSC Advances 2016 6 69 64460 64468 10.1039/C6RA09891F
    [Google Scholar]
  86. Revanasiddappa B.C. Subrahmanyam E.V.S. Satyanarayana D. Thomas J. Sythesis and biological studies of some novel schiff bases and hydrazone derived from 8-hydroxy quinoline moiety. Int. J. Chemtech Res. 2009 1 1100 1104
    [Google Scholar]
  87. Sangu S. Middha A. Synthesis, antimicrobial and anticancer evaluation and molecular docking studies of some quinolyl heterocycles. Int. J. Curr. Res. 2018 10 74092 74095
    [Google Scholar]
  88. Nipate A.S. Jadhav C.K. Chate A.V. Dixit P.P. Sharma P. Gill C.H. Synthesis and antimicrobial activity of new carbohydrazide bearing quinoline scaffolds in silico ADMET and molecular docking studies. Polycycl. Aromat. Compd. 2024 44 2 1348 1365 10.1080/10406638.2023.2194653
    [Google Scholar]
  89. Vegal N.K. Bhatt T.D. Kachhot K. Joshi H.S. Effective microwave-assisted synthesis of 2-Chloro-5,6-dimethyl-3-(((substituted-benzylidene)hydrazono)methyl)- quinoline and its biological assessment. Russ. J. Bioorganic Chem. 2024 50 1 239 250 10.1134/S1068162024010254
    [Google Scholar]
  90. Özcan E. Vagolu S.K. Gündüz M.G. Stevanovic M. Kökbudak Z. Tønjum T. Nikodinovic-Runic J. Çetinkaya Y. Doğan Ş.D. Novel quinoline-based thiosemicarbazide derivatives: Synthesis, DFT calculations, and investigation of antitubercular, antibacterial, and antifungal activities. ACS Omega 2023 8 43 40140 40152 10.1021/acsomega.3c03018 37929089
    [Google Scholar]
  91. Abd El-Lateef H.M. Elmaaty A.A. Abdel Ghany L.M.A. Abdel-Aziz M.S. Zaki I. Ryad N. Design and synthesis of 2-(4-Bromophenyl)Quinoline-4-Carbohydrazide derivatives via molecular hybridization as novel microbial DNA-gyrase inhibitors. ACS Omega 2023 8 20 17948 17965 10.1021/acsomega.3c01156 37251193
    [Google Scholar]
  92. Al-wahaibi L.H. Amer A.A. Marzouk A.A. Gomaa H.A.M. Youssif B.G.M. Abdelhamid A.A. Design, synthesis, and antibacterial screening of some novel heteroaryl-based ciprofloxacin derivatives as DNA gyrase and topoisomerase IV inhibitors. Pharmaceutics 2021 14 5 399 10.3390/ph14050399
    [Google Scholar]
  93. Alagumuthu M. Arumugam S. Molecular docking, discovery, synthesis, and pharmacological properties of new 6-substituted-2-(3-phenoxyphenyl)-4-phenyl quinoline derivatives; an approach to developing potent DNA gyrase inhibitors/antibacterial agents. Bioorg. Med. Chem. 2017 25 4 1448 1455 10.1016/j.bmc.2017.01.007 28094220
    [Google Scholar]
  94. Upadhyay R. Kumar R. Jangra M. Rana R. Nayal O.S. Nandanwar H. Maurya S.K. Synthesis of bioactive complex small molecule–ciprofloxacin conjugates and evaluation of their antibacterial activity. ACS Comb. Sci. 2020 22 9 440 445 10.1021/acscombsci.0c00060 32691584
    [Google Scholar]
  95. Szczupak Ł. Kowalczyk A. Trzybiński D. Woźniak K. Mendoza G. Arruebo M. Steverding D. Stączek P. Kowalski K. Organometallic ciprofloxacin conjugates with dual action: Synthesis, characterization, and antimicrobial and cytotoxicity studies. Dalton Trans. 2020 49 5 1403 1415 10.1039/C9DT03948A 31851200
    [Google Scholar]
  96. Miller A.A. Traczewski M.M. Huband M.D. Bradford P.A. Mueller P. Determination of MIC quality control ranges for the novel gyrase inhibitor zoliflodacin. J. Clin. Microbiol. 2019 57 9 e00567-19 10.1128/JCM.00567‑19
    [Google Scholar]
  97. Er-rajy M. Fadili M.E. Mujwar S. Lenda F.Z. Zarougui S. Elhallaoui M. QSAR, molecular docking, and molecular dynamics simulation–based design of novel anti-cancer drugs targeting thioredoxin reductase enzyme. Struct. Chem. 2023 34 4 1527 1543 10.1007/s11224‑022‑02111‑x
    [Google Scholar]
  98. Ahmed Juvale I.I. Abdul Hamid A.A. Abd Halim K.B. Che Has A.T. P-glycoprotein: New insights into structure, physiological function, regulation and alterations in disease. Heliyon 2022 8 6 e09777 10.1016/j.heliyon.2022.e09777 35789865
    [Google Scholar]
  99. Mi J. Zhao M. Yang S. Jia Y. Wang Y. Wang B. Jin J. Wang X. Xiao Q. Hu J. Li Y. Identification of cytochrome P450 isoforms involved in the metabolism of Syl930, a selective S1PR 1 agonist acting as a potential therapeutic agent for autoimmune encephalitis. Drug Metab. Pharmacokinet. 2017 32 1 53 60 10.1016/j.dmpk.2016.07.002 28126315
    [Google Scholar]
  100. Krishnaveni K. Sabitha M. Murugan M. Kandeepan C. Ramya S. Loganathan T. Jayakumararaj R. vNN model cross validation towards accuracy, sensitivity, specificity and kappa performance measures of β-caryophyllene using a restricted-unrestricted applicability domain on artificial intelligence & machine learning approach based in-silico prediction. J. Drug Deliv. Ther. 2022 12 1-S 123 131 10.22270/jddt.v12i1‑S.5222
    [Google Scholar]
  101. Chew D.J. DiBartola S.P. Schenck P.A. Clinical evaluation of the urinary tract. Canine and Feline Nephrology and Urology 2nd ed Elsevier St. Louis, Mo. 2011 32 62 10.1016/B978‑0‑7216‑8178‑8.10002‑8
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673370267250607160438
Loading
/content/journals/cmc/10.2174/0109298673370267250607160438
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test