Skip to content
2000
image of Identify Key Genes and Construct the lncRNA-miRNA-mRNA Regulatory Networks Associated with Glioblastoma by Bioinformatics Analysis

Abstract

Introduction

Glioblastoma is the most common and aggressive brain tumor, with low survival rates and high recurrence rates. Therefore, it is crucial to understand the precise molecular mechanisms involved in the oncogenesis of glioblastoma.

Materials and Methods

To investigate the regulatory mechanisms of long non-coding RNA (lncRNA)-microRNA (miRNA)-messenger RNA (miRNA) network related to glioblastoma, in the present study, a comprehensive analysis of the genomic landscape between glioblastoma and normal brain tissues from the Gene Expression Omnibus (GEO) dataset was first conducted to identify differentially expressed genes (DEGs) in glioblastoma. Following a series of analyses, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, protein-protein interaction (PPI), and key model analyses. In addition, we used the L1000CDS2 database bioinformatic tool to identify candidates for therapy based on glioblastoma specific genetic profile.

Results

In our results, 100 key genes, 50 upregulated and 50 downregulated, were ultimately identified. The results of KEGG pathway enrichment gene analysis showed that the five regulatory pathways. Furthermore, 3 small molecule signatures (trichostatin A, TG-101348, and vorinostat) were recommended as the top-ranked candidate therapeutic agents. Nevertheless, the constructed miRNA-mRNA network revealed a convergence on 40 miRNAs. We found that dysregulation of lncRNAs such as KCNQ1OT1 and RP11-13N13.5 could sequester several miRNAs such as hsa-miR-27a-3p, hsa-miR-27b-3p, hsa-miR-106a-5p, ., and promote the development and progression of glioblastoma.

Conclusion

Our study identified key genes and related lncRNA-miRNA-mRNA network that contribute to the oncogenesis of glioblastoma.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673372488250530173615
2025-06-20
2025-11-05
Loading full text...

Full text loading...

/deliver/fulltext/cmc/10.2174/0109298673372488250530173615/BMS-CMC-2024-HT146-6192-2.html?itemId=/content/journals/cmc/10.2174/0109298673372488250530173615&mimeType=html&fmt=ahah

References

  1. Lan Z. Li X. Zhang X. Glioblastoma: An update in pathology, molecular mechanisms and biomarkers. Int. J. Mol. Sci. 2024 25 5 3040 10.3390/ijms25053040 38474286
    [Google Scholar]
  2. Cui X. Zhao J. Li G. Yang C. Yang S. Zhan Q. Zhou J. Wang Y. Xiao M. Hong B. Yi K. Tong F. Tan Y. Wang H. Wang Q. Jiang T. Fang C. Kang C. Blockage of EGFR/AKT and mevalonate pathways synergize the antitumor effect of temozolomide by reprogramming energy metabolism in glioblastoma. Cancer Commun. (Lond.) 2023 43 12 1326 1353 10.1002/cac2.12502 37920878
    [Google Scholar]
  3. Mongiardi M.P. Pallini R. D’Alessandris Q.G. Levi A. Falchetti M.L. Regorafenib and glioblastoma: A literature review of preclinical studies, molecular mechanisms and clinical effectiveness. Expert Rev. Mol. Med. 2024 26 e5 10.1017/erm.2024.8 38563164
    [Google Scholar]
  4. Sadowski K. Jażdżewska A. Kozłowski J. Zacny A. Lorenc T. Olejarz W. Revolutionizing glioblastoma treatment: A comprehensive overview of modern therapeutic approaches. Int. J. Mol. Sci. 2024 25 11 5774 10.3390/ijms25115774 38891962
    [Google Scholar]
  5. Gareev I. Ramirez M.J.E. Nurmukhametov R. Ivliev D. Shumadalova A. Ilyasova T. Beilerli A. Wang C. The role and clinical relevance of long non-coding RNAs in glioma. Noncoding RNA Res. 2023 8 4 562 570 10.1016/j.ncrna.2023.08.005 37602320
    [Google Scholar]
  6. Beylerli O. Gareev I. Sufianov A. Ilyasova T. Zhang F. The role of microRNA in the pathogenesis of glial brain tumors. Noncoding RNA Res. 2022 7 2 71 76 10.1016/j.ncrna.2022.02.005 35330864
    [Google Scholar]
  7. Soccio P. Moriondo G. Scioscia G. Tondo P. Bruno G. Giordano G. Sabato R. Barbaro M.P.F. Landriscina M. Lacedonia D. MiRNA expression affects survival in patients with obstructive sleep apnea and metastatic colorectal cancer. Noncoding RNA Res. 2025 10 91 97 10.1016/j.ncrna.2024.09.008 39315340
    [Google Scholar]
  8. Zhang J. Zhu H. Li L. Gao Y. Yu B. Ma G. Jin X. Sun Y. New mechanism of LncRNA: In addition to act as a ceRNA. Noncoding RNA Res. 2024 9 4 1050 1060 10.1016/j.ncrna.2024.06.002 39022688
    [Google Scholar]
  9. Gareev I. Beylerli O. Liang Y. Xiang H. Liu C. Xu X. Yuan C. Ahmad A. Yang G. The role of microRNAs in therapeutic resistance of malignant primary brain tumors. Front. Cell Dev. Biol. 2021 9 740303 10.3389/fcell.2021.740303 34692698
    [Google Scholar]
  10. Huang H. Shah H. Hao J. Lin J. Prayson R.A. Xie L. Bao S. Chakraborty A.A. Jankowsky E. Zhao J. Yu J.S. Long non-coding RNA lung cancer-associated transcript-1 promotes glioblastoma progression by enhancing Hypoxia-inducible factor 1 alpha activity. Neuro-oncol. 2024 26 8 1388 1401 10.1093/neuonc/noae036 38456228
    [Google Scholar]
  11. de Mooij T. Peterson T.E. Evans J. McCutcheon B. Parney I.F. Short non-coding RNA sequencing of glioblastoma extracellular vesicles. J. Neurooncol. 2020 146 2 253 263 10.1007/s11060‑019‑03384‑9 31912278
    [Google Scholar]
  12. Isachesku E. Braicu C. Pirlog R. Kocijancic A. Busuioc C. Pruteanu L.L. Pandey D.P. Berindan-Neagoe I. The role of non-coding RNAs in epigenetic dysregulation in glioblastoma development. Int. J. Mol. Sci. 2023 24 22 16320 10.3390/ijms242216320 38003512
    [Google Scholar]
  13. Dweep H. Gretz N. Sticht C. miRWalk database for miRNA–target interactions. Methods Mol. Biol. 2014 1182 289 305 10.1007/978‑1‑4939‑1062‑5_25 25055920
    [Google Scholar]
  14. Wong N. Wang X. miRDB: An online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 2015 43 D1 D146 D152 10.1093/nar/gku1104 25378301
    [Google Scholar]
  15. Ye Z. Fang J. Wang Z. Wang L. Li B. Liu T. Wang Y. Hua J. Wang F. Fu Z. Bioinformatics-based analysis of the lncRNA–miRNA–mRNA and TF regulatory networks reveals functional genes in esophageal squamous cell carcinoma. Biosci. Rep. 2020 40 8 BSR20201727 10.1042/BSR20201727 32662828
    [Google Scholar]
  16. Doncheva N.T. Morris J.H. Gorodkin J. Jensen L.J. Cytoscape StringApp: Network Analysis and Visualization of Proteomics Data. J. Proteome Res. 2019 18 2 623 632 10.1021/acs.jproteome.8b00702 30450911
    [Google Scholar]
  17. Duan Q. Reid S.P. Clark N.R. Wang Z. Fernandez N.F. Rouillard A.D. Readhead B. Tritsch S.R. Hodos R. Hafner M. Niepel M. Sorger P.K. Dudley J.T. Bavari S. Panchal R.G. Ma'ayan A. L1000CDS2: LINCS L1000 characteristic direction signatures search engine. NPJ Syst Biol Appl 2016 2 16015 10.1038/npjsba.2016.15
    [Google Scholar]
  18. Walker C. Mojares E. Del Río Hernández A. Role of extracellular matrix in development and cancer progression. Int. J. Mol. Sci. 2018 19 10 3028 10.3390/ijms19103028 30287763
    [Google Scholar]
  19. Multhaupt H.A.B. Leitinger B. Gullberg D. Couchman J.R. Extracellular matrix component signaling in cancer. Adv. Drug Deliv. Rev. 2016 97 28 40 10.1016/j.addr.2015.10.013 26519775
    [Google Scholar]
  20. Forgac M. Stransky L. Cotter K. Forgac M. Regulation of V-ATPase activity. Front. Biosci. 2017 22 4 609 622 10.2741/4506 27814636
    [Google Scholar]
  21. Mohiuddin E. Wakimoto H. Extracellular matrix in glioblastoma: Opportunities for emerging therapeutic approaches. Am. J. Cancer Res. 2021 11 8 3742 3754 34522446
    [Google Scholar]
  22. Collado J. Boland L. Ahrendsen J.T. Miska J. Lee-Chang C. Understanding the glioblastoma tumor microenvironment: leveraging the extracellular matrix to increase immunotherapy efficacy. Front. Immunol. 2024 15 1336476 10.3389/fimmu.2024.1336476 38380331
    [Google Scholar]
  23. Chang C.W. Bale A. Bhargava R. Harley B.A.C. Glioblastoma drives protease-independent extracellular matrix invasion of microglia. Mater. Today Bio 2025 31 101475 10.1016/j.mtbio.2025.101475 39896278
    [Google Scholar]
  24. Mala U. Baral T.K. Somasundaram K. Integrative analysis of cell adhesion molecules in glioblastoma identified prostaglandin F2 receptor inhibitor (PTGFRN) as an essential gene. BMC Cancer 2022 22 1 642 10.1186/s12885‑022‑09682‑2 35690717
    [Google Scholar]
  25. Qin Z. Huang Y. Li Z. Pan G. Zheng L. Xiao X. Wang F. Chen J. Chen X. Lin X. Li K. Yan G. Zhang H. Xing F. Glioblastoma vascular plasticity limits effector T-cell infiltration and is blocked by cAMP activation. Cancer Immunol. Res. 2023 11 10 1351 1366 10.1158/2326‑6066.CIR‑22‑0872 37540804
    [Google Scholar]
  26. Guo Z. Huang T. Liu Y. Liu C. Parathyroid hormone-related protein promotes the proliferation of patient-derived glioblastoma stem cells via activating cAMP/PKA signaling pathway. Int. J. Stem Cells 2023 16 3 315 325 10.15283/ijsc22097 37385633
    [Google Scholar]
  27. Fermi V. Warta R. Wöllner A. Lotsch C. Jassowicz L. Rapp C. Knoll M. Jungwirth G. Jungk C. Dao Trong P. von Deimling A. Abdollahi A. Unterberg A. Herold-Mende C. Effective reprogramming of patient-derived M2-polarized glioblastoma-associated microglia/macrophages by treatment with GW2580. Clin. Cancer Res. 2023 29 22 4685 4697 10.1158/1078‑0432.CCR‑23‑0576 37682326
    [Google Scholar]
  28. Prateeksha P. Howlader S.I.M. Hansda S. Naidu P. Das M. Abo-Aziza F. Das H. Secretome of dental pulp-derived stem cells reduces inflammation and proliferation of glioblastoma cells by deactivating mapk-Akt pathway. Diseases and Research 2023 3 2 74 86 10.54457/DR.202302006 38213319
    [Google Scholar]
  29. Popescu A.M. Purcaru S.O. Alexandru O. Dricu A. New perspectives in glioblastoma antiangiogenic therapy. Contemp. Oncol. (Pozn.) 2016 2 2 109 118 10.5114/wo.2015.56122 27358588
    [Google Scholar]
  30. dos Santos D.C. Rafique J. Saba S. Grinevicius V.M.A.S. Filho D.W. Zamoner A. Braga A.L. Pedrosa R.C. Ourique F. IP-Se-06, a selenylated imidazo[1,2-a]pyridine, modulates intracellular redox state and causes Akt/mTOR/HIF-1α and MAPK signaling inhibition, promoting antiproliferative effect and apoptosis in glioblastoma Cells. Oxid. Med. Cell. Longev. 2022 2022 1 18 10.1155/2022/3710449 35360199
    [Google Scholar]
  31. Daniel P.M. Filiz G. Tymms M.J. Ramsay R.G. Kaye A.H. Stylli S.S. Mantamadiotis T. Intratumor MAPK and PI3K signaling pathway heterogeneity in glioblastoma tissue correlates with CREB signaling and distinct target gene signatures. Exp. Mol. Pathol. 2018 105 1 23 31 10.1016/j.yexmp.2018.05.009 29852183
    [Google Scholar]
  32. Khabibov M. Garifullin A. Boumber Y. Khaddour K. Fernandez M. Khamitov F. Khalikova L. Kuznetsova N. Kit O. Kharin L. Signaling pathways and therapeutic approaches in glioblastoma multiforme (Review). Int. J. Oncol. 2022 60 6 69 10.3892/ijo.2022.5359 35445737
    [Google Scholar]
  33. Langhans J. Schneele L. Trenkler N. von Bandemer H. Nonnenmacher L. Karpel-Massler G. Siegelin M.D. Zhou S. Halatsch M.E. Debatin K.M. Westhoff M.A. The effects of PI3K-mediated signalling on glioblastoma cell behaviour. Oncogenesis 2017 6 11 398 10.1038/s41389‑017‑0004‑8 29184057
    [Google Scholar]
  34. Wee P. Wang Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel) 2017 9 5 52 10.3390/cancers9050052 28513565
    [Google Scholar]
  35. Bouyahya A. El Omari N. Bakha M. Aanniz T. El Menyiy N. El Hachlafi N. El Baaboua A. El-Shazly M. Alshahrani M.M. Al Awadh A.A. Lee L.H. Benali T. Mubarak M.S. Pharmacological properties of trichostatin A, focusing on the anticancer Potential: A comprehensive review. Pharmaceuticals (Basel) 2022 15 10 1235 10.3390/ph15101235 36297347
    [Google Scholar]
  36. Nagata R. Nishiyama M. Kuzuyama T. Substrate recognition mechanism of a trichostatin a-forming hydroxyamidotransferase. Biochemistry 2023 62 12 1833 1837 10.1021/acs.biochem.3c00025 37167424
    [Google Scholar]
  37. Lian B. Chen X. Shen K. Inhibition of histone deacetylases attenuates tumor progression and improves immunotherapy in breast cancer. Front. Immunol. 2023 14 1164514 10.3389/fimmu.2023.1164514 36969235
    [Google Scholar]
  38. Güven M. Taşpınar F. Denizler-Ebiri F.N. Castresana J.S. Taşpınar M. The antagonistic effects of temozolomide and trichostatin a combination on MGMT and DNA mismatch repair pathways in Glioblastoma. Med. Oncol. 2023 40 8 223 10.1007/s12032‑023‑02079‑6 37403006
    [Google Scholar]
  39. Tang D. Yao R. Zhao D. Zhou L. Wu Y. Yang Y. Sun Y. Lu L. Gao W. Trichostatin A reverses the chemoresistance of lung cancer with high IGFBP2 expression through enhancing autophagy. Sci. Rep. 2018 8 1 3917 10.1038/s41598‑018‑22257‑1 29500455
    [Google Scholar]
  40. Tan L. Kwok R.P. Shukla A. Kshirsagar M. Zhao L. Opipari A.W. Jr Liu J.R. Trichostatin A restores Apaf-1 function in chemoresistant ovarian cancer cells. Cancer 2011 117 4 784 794 10.1002/cncr.25649 20925046
    [Google Scholar]
  41. Bezecny P. Histone deacetylase inhibitors in glioblastoma: Pre-clinical and clinical experience. Med. Oncol. 2014 31 6 985 10.1007/s12032‑014‑0985‑5 24838514
    [Google Scholar]
  42. Chen Y.P. Hou X.Y. Yang C.S. Jiang X.X. Yang M. Xu X.F. Feng S.X. Liu Y.Q. Jiang G. DNA methylation and histone acetylation regulate the expression of MGMT and chemosensitivity to temozolomide in malignant melanoma cell lines. Tumour Biol. 2016 37 8 11209 11218 10.1007/s13277‑016‑4994‑1 26943799
    [Google Scholar]
  43. Krell A. Wolter M. Stojcheva N. Hertler C. Liesenberg F. Zapatka M. Weller M. Malzkorn B. Reifenberger G. MiR-16-5p is frequently down-regulated in astrocytic gliomas and modulates glioma cell proliferation, apoptosis and response to cytotoxic therapy. Neuropathol. Appl. Neurobiol. 2019 45 5 441 458 10.1111/nan.12532 30548945
    [Google Scholar]
  44. Mullally A. Hood J. Harrison C. Mesa R. Fedratinib in myelofibrosis. Blood Adv. 2020 4 8 1792 1800 10.1182/bloodadvances.2019000954 32343799
    [Google Scholar]
  45. Talpaz M. Kiladjian J.J. Fedratinib, a newly approved treatment for patients with myeloproliferative neoplasm-associated myelofibrosis. Leukemia 2021 35 1 1 17 10.1038/s41375‑020‑0954‑2 32647323
    [Google Scholar]
  46. Pardanani A. Harrison C. Cortes J.E. Cervantes F. Mesa R.A. Milligan D. Masszi T. Mishchenko E. Jourdan E. Vannucchi A.M. Drummond M.W. Jurgutis M. Kuliczkowski K. Gheorghita E. Passamonti F. Neumann F. Patki A. Gao G. Tefferi A. Safety and efficacy of fedratinib in patients with primary or secondary myelofibrosis. JAMA Oncol. 2015 1 5 643 651 10.1001/jamaoncol.2015.1590 26181658
    [Google Scholar]
  47. Szuber N. Orazi A. Tefferi A. Chronic neutrophilic leukemia and atypical chronic myeloid leukemia: 2024 update on diagnosis, genetics, risk stratification, and management. Am. J. Hematol. 2024 99 7 1360 1387 10.1002/ajh.27321 38644693
    [Google Scholar]
  48. Yu H. Gong M. Qi J. Zhao C. Niu W. Sun S. Li S. Hong B. Qian J. Wang H. Chen X. Fang Z. Systematic transcriptome profiling of pyroptosis related signature for predicting prognosis and immune landscape in lower grade glioma. BMC Cancer 2022 22 1 885 10.1186/s12885‑022‑09982‑7 35964070
    [Google Scholar]
  49. McClure J.J. Li X. Chou C.J. Advances and Challenges of HDAC Inhibitors in Cancer Therapeutics. Adv. Cancer Res. 2018 138 183 211 10.1016/bs.acr.2018.02.006 29551127
    [Google Scholar]
  50. Xu J. Sampath D. Lang F.F. Prabhu S. Rao G. Fuller G.N. Liu Y. Puduvalli V.K. Vorinostat modulates cell cycle regulatory proteins in glioma cells and human glioma slice cultures. J. Neurooncol. 2011 105 2 241 251 10.1007/s11060‑011‑0604‑7 21598070
    [Google Scholar]
  51. Wei L. Hong S. Yoon Y. Hwang S.N. Park J.C. Zhang Z. Olson J.J. Hu X.P. Shim H. Early prediction of response to vorinostat in an orthotopic rat glioma model. NMR Biomed. 2012 25 9 1104 1111 10.1002/nbm.2776 22302519
    [Google Scholar]
  52. Ghiaseddin A. Reardon D. Massey W. Mannerino A. Lipp E.S. Herndon J.E. II McSherry F. Desjardins A. Randazzo D. Friedman H.S. Peters K.B. Phase I.I. Phase II study of bevacizumab and vorinostat for patients with recurrent world health organization grade 4 malignant glioma. Oncologist 2018 23 2 157 e21 10.1634/theoncologist.2017‑0501 29133513
    [Google Scholar]
  53. Su J.M. Kilburn L.B. Mansur D.B. Krailo M. Buxton A. Adekunle A. Gajjar A. Adamson P.C. Weigel B. Fox E. Blaney S.M. Fouladi M. Phase I/II trial of vorinostat and radiation and maintenance vorinostat in children with diffuse intrinsic pontine glioma: A Children’s Oncology Group report. Neuro-oncol. 2022 24 4 655 664 10.1093/neuonc/noab188 34347089
    [Google Scholar]
  54. Jiang J. Gareev I. Ilyasova T. Shumadalova A. Du W. Yang B. The role of lncRNA-mediated ceRNA regulatory networks in liver fibrosis. Noncoding RNA Res. 2024 9 2 463 470 10.1016/j.ncrna.2024.01.001 38511056
    [Google Scholar]
  55. Huang A. Jin S. Han W. Wang Y. Ma S. Wang Z. Lin K. Zou Q. Zhou J. Li Z. Chen L. Long noncoding RNA KCNQ1OT1 contributes to tumor growth and activates Wnt/β-catenin signaling in osteosarcoma by targeting the miR-3666/KLF7 axis. Int. J. Mol. Med. 2020 47 1 387 396 10.3892/ijmm.2020.4768 33416089
    [Google Scholar]
  56. Cagle P. Qi Q. Niture S. Kumar D. KCNQ1OT1: An oncogenic long noncoding RNA. Biomolecules 2021 11 11 1602 10.3390/biom11111602 34827600
    [Google Scholar]
  57. Zhan K. Pan H. Zhou Z. Tang W. Ye Z. Huang S. Luo L. Biological role of long non-coding RNA KCNQ1OT1 in cancer progression. Biomed. Pharmacother. 2023 169 115876 10.1016/j.biopha.2023.115876 37976888
    [Google Scholar]
  58. Guo B. Zhang Q. Wang H. Chang P. Tao K. KCNQ1OT1 promotes melanoma growth and metastasis. Aging (Albany NY) 2018 10 4 632 644 10.18632/aging.101418 29667930
    [Google Scholar]
  59. Dong Z. Yang P. Qiu X. Liang S. Guan B. Yang H. Li F. Sun L. Liu H. Zou G. Zhao K. KCNQ1OT1 facilitates progression of non-small-cell lung carcinoma via modulating miRNA-27b-3p/HSP90AA1 axis. J. Cell. Physiol. 2019 234 7 11304 11314 30471108
    [Google Scholar]
  60. Xu G. Zhu Y. Liu H. Liu Y. Zhang X. Long non- coding RNA KCNQ1OT1 promotes progression of hepatocellular carcinoma by miR-148a-3p/IGF1R axis. Technol. Cancer Res. Treat. 2020 19 1533033820980117 10.1177/1533033820980117 33349156
    [Google Scholar]
  61. Lin W. Chen Y. Wu B. Chen Y. Li Z. Identification of the pyroptosis-related prognostic gene signature and the associated regulation axis in lung adenocarcinoma. Cell Death Discov. 2021 7 1 161 10.1038/s41420‑021‑00557‑2 34226539
    [Google Scholar]
  62. Wang W. Han S. Gao W. Feng Y. Li K. Wu D. Long non-coding RNA KCNQ1OT1 confers gliomas resistance to temozolomide and enhances cell growth by retrieving PIM1 from miR-761. Cell. Mol. Neurobiol. 2022 42 3 695 708 10.1007/s10571‑020‑00958‑4 32897512
    [Google Scholar]
  63. Li X. Xu M. Ding L. Tang J. MiR-27a: A novel biomarker and potential therapeutic target in tumors. J. Cancer 2019 10 12 2836 2848 10.7150/jca.31361 31258791
    [Google Scholar]
  64. Chen D. Si W. Shen J. Du C. Lou W. Bao C. Zheng H. Pan J. Zhong G. Xu L. Fu P. Fan W. miR-27b-3p inhibits proliferation and potentially reverses multi-chemoresistance by targeting CBLB/GRB2 in breast cancer cells. Cell Death Dis. 2018 9 2 188 10.1038/s41419‑017‑0211‑4 29416005
    [Google Scholar]
  65. Choi J.Y. Seok H.J. Kim R.K. Choi M.Y. Lee S.J. Bae I.H. miR-519d-3p suppresses tumorigenicity and metastasis by inhibiting Bcl-w and HIF-1α in NSCLC. Mol. Ther. Oncolytics 2021 22 368 379 10.1016/j.omto.2021.06.015 34553025
    [Google Scholar]
  66. Daneshpour M. Ghadimi-Daresajini A. Overview of miR-106a regulatory roles: From cancer to aging. Bioengineering (Basel) 2023 10 8 892 10.3390/bioengineering10080892 37627777
    [Google Scholar]
  67. Chen X. Xu X. Pan B. Zeng K. Xu M. Liu X. He B. Pan Y. Sun H. Wang S. miR-150-5p suppresses tumor progression by targeting VEGFA in colorectal cancer. Aging (Albany NY) 2018 10 11 3421 3437 10.18632/aging.101656 30476901
    [Google Scholar]
  68. Wang J.X. Jia X.J. Liu Y. Dong J.H. Ren X.M. Xu O. Liu S.H. Shan C.G. Silencing of miR-17-5p suppresses cell proliferation and promotes cell apoptosis by directly targeting PIK3R1 in laryngeal squamous cell carcinoma. Cancer Cell Int. 2020 20 1 14 10.1186/s12935‑020‑1096‑3 31938022
    [Google Scholar]
  69. Lian Y. Jiang D. Sun J. Tumor suppressive role of miR-33a-5p in pancreatic ductal adenocarcinoma cells by directly targeting RAP2A. Cell. Mol. Biol. Lett. 2021 26 1 24 10.1186/s11658‑021‑00265‑w 34090323
    [Google Scholar]
  70. Tang W. Zhang X. Tan W. Gao J. Pan L. Ye X. Chen L. Zheng W. miR-145-5p suppresses breast cancer progression by inhibiting SOX2. J. Surg. Res. 2019 236 278 287 10.1016/j.jss.2018.11.030 30694767
    [Google Scholar]
  71. Wu H. Liu L. Zhu J.M. MiR-93-5p inhibited proliferation and metastasis of glioma cells by targeting MMP2. Eur. Rev. Med. Pharmacol. Sci. 2019 23 21 9517 9524 31773703
    [Google Scholar]
  72. Kim H.Y. Cho Y. Kang H. Yim Y.S. Kim S.J. Song J. Chun K.H. Targeting the WEE1 kinase as a molecular targeted therapy for gastric cancer. Oncotarget 2016 7 31 49902 49916 10.18632/oncotarget.10231 27363019
    [Google Scholar]
  73. Zarrabi K. Dufour A. Li J. Kuscu C. Pulkoski-Gross A. Zhi J. Hu Y. Sampson N.S. Zucker S. Cao J. Inhibition of matrix metalloproteinase 14 (MMP-14)-mediated cancer cell migration. J. Biol. Chem. 2011 286 38 33167 33177 10.1074/jbc.M111.256644 21795678
    [Google Scholar]
  74. Yang S. Zou X. Li J. Yang H. Zhang A. Zhu Y. Zhu L. Zhang L. Immunoregulation and clinical significance of neutrophils/NETs-ANGPT2 in tumor microenvironment of gastric cancer. Front. Immunol. 2022 13 1010434 10.3389/fimmu.2022.1010434 36172371
    [Google Scholar]
  75. Wu A. Mazurkiewicz E. Donizy P. Kotowski K. Pieniazek M. Mazur A.J. Czogalla A. Trombik T. ABCA1 transporter promotes the motility of human melanoma cells by modulating their plasma membrane organization. Biol. Res. 2023 56 1 32 10.1186/s40659‑023‑00443‑4 37312227
    [Google Scholar]
  76. Chen W. Zhou M. Guan B. Xie B. Liu Y. He J. Zhao J. Zhao Q. Yan D. Tumour-associated macrophage-derived DOCK7-enriched extracellular vesicles drive tumour metastasis in colorectal cancer via the RAC1/ABCA1 axis. Clin. Transl. Med. 2024 14 2 e1591 10.1002/ctm2.1591 38385857
    [Google Scholar]
  77. Kashiwagi K. Sato-Yazawa H. Ishii J. Kohno K. Tatsuta I. Miyazawa T. Takagi M. Chiba H. Yazawa T. LXRβ activation inhibits the proliferation of small-cell lung cancer cells by depleting cellular cholesterol. Anticancer Res. 2022 42 6 2923 2930 10.21873/anticanres.15774 35641269
    [Google Scholar]
  78. Wang Y. Zhou X. Lei Y. Chu Y. Yu X. Tong Q. Zhu T. Yu H. Fang S. Li G. Wang L. Wang G.Y. Xie X. Zhang J. NNMT contributes to high metastasis of triple negative breast cancer by enhancing PP2A/MEK/ERK/c-Jun/ABCA1 pathway mediated membrane fluidity. Cancer Lett. 2022 547 215884 10.1016/j.canlet.2022.215884 35988817
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673372488250530173615
Loading
/content/journals/cmc/10.2174/0109298673372488250530173615
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test