
Full text loading...
The pathogenesis of Delayed Encephalopathy After Acute Carbon Monoxide Poisoning (DEACMP) remains mysterious, and specific predictive markers are lacking. This study aimed to elucidate the molecular underpinnings and identify predictive biomarkers of DEACMP through multi-omics and single-nucleusRNA sequencing (snRNA-seq).
Clinical data and blood samples were collected from 105 participants. Untargeted metabolomics sequencing was employed to profile serum metabolites across these participants. Additionally, individuals from the Healthy Controls (HCs), Acute Carbon Monoxide Poisoning patients (ACOP), Non-Delayed Encephalopathy After ACOP (DEACMP-N), and DEACMP groups (n=3 each) were randomly selected for transcriptome sequencing to identify potential predictive targets and pivotal signaling pathways associated with DEACMP. Furthermore, Severe DEACMP and Control rat models were established. Three rats from the Control, DEACMP, and DEACMP + Dexamethasone + Selenomethionine groups were selected for snRNA-seq. Immunofluorescence multiplexing and qRT-PCR (quantitative Reverse Transcription Polymerase Chain Reaction) were then performed to validate the identified predictive targets.
Analysis of clinical data from 105 participants highlights the pivotal role of inflammation in influencing the prognosis of carbon monoxide poisoning. Metabolomics analysis identified 19 metabolites that significantly differed between the DEACMP-N and DEACMP groups. Transcriptomics analysis of 12 participants indicated that DEACMP is primarily associated with six signaling pathways, including lysosome and tuberculosis. Considering that microglia are central nervous system immune effectors, the snRNA-seq analysis revealed altered gene expression and signaling pathways in microglia during DEACMP, with KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis highlighting neutrophil extracellular trap formation, lysosome, and tuberculosis as the predominant pathways. Differential gene analysis from transcriptome and snRNA-seq identified 28 genes differentially expressed in DEACMP. The STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) database, immune multiplexing, and qRT-PCR confirmed the pivotal role of the Ifngr1/Stat1/Ctss axis in DEACMP.
This research identifies the Ifngr1/Stat1/Ctss axis as a key inflammatory mechanism in the pathogenesis of DEACMP, thereby clarifying previous uncertainties regarding the sequelae of carbon monoxide poisoning. The intersection of lysosomal and tuberculosis pathways, as revealed through metabolomic, transcriptomic, and single-nucleus RNA sequencing analyses—especially within microglia—offers novel mechanistic insights that could inform therapeutic interventions. While the integration of multiple omics methodologies enhances the robustness of these findings, their biological relevance to the pathogenesis of DEACMP requires rigorous validation through independent cohort verification approaches.
This study provides a comprehensive overview of serum metabolite expression, differential gene expression, and signaling pathways in DEACMP, offering a theoretical foundation for understanding the pathogenesis of DEACMP.
Article metrics loading...
Full text loading...
References
Data & Media loading...
Supplements