Skip to content
2000
Volume 33, Issue 1
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

The pathogenesis of Delayed Encephalopathy After Acute Carbon Monoxide Poisoning (DEACMP) remains mysterious, and specific predictive markers are lacking. This study aimed to elucidate the molecular underpinnings and identify predictive biomarkers of DEACMP through multi-omics and single-nucleusRNA sequencing (snRNA-seq).

Methods

Clinical data and blood samples were collected from 105 participants. Untargeted metabolomics sequencing was employed to profile serum metabolites across these participants. Additionally, individuals from the Healthy Controls (HCs), Acute Carbon Monoxide Poisoning patients (ACOP), Non-Delayed Encephalopathy After ACOP (DEACMP-N), and DEACMP groups (n=3 each) were randomly selected for transcriptome sequencing to identify potential predictive targets and pivotal signaling pathways associated with DEACMP. Furthermore, Severe DEACMP and Control rat models were established. Three rats from the Control, DEACMP, and DEACMP + Dexamethasone + Selenomethionine groups were selected for snRNA-seq. Immunofluorescence multiplexing and qRT-PCR (quantitative Reverse Transcription Polymerase Chain Reaction) were then performed to validate the identified predictive targets.

Results

Analysis of clinical data from 105 participants highlights the pivotal role of inflammation in influencing the prognosis of carbon monoxide poisoning. Metabolomics analysis identified 19 metabolites that significantly differed between the DEACMP-N and DEACMP groups. Transcriptomics analysis of 12 participants indicated that DEACMP is primarily associated with six signaling pathways, including lysosome and tuberculosis. Considering that microglia are central nervous system immune effectors, the snRNA-seq analysis revealed altered gene expression and signaling pathways in microglia during DEACMP, with KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis highlighting neutrophil extracellular trap formation, lysosome, and tuberculosis as the predominant pathways. Differential gene analysis from transcriptome and snRNA-seq identified 28 genes differentially expressed in DEACMP. The STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) database, immune multiplexing, and qRT-PCR confirmed the pivotal role of the Ifngr1/Stat1/Ctss axis in DEACMP.

Discussion

This research identifies the Ifngr1/Stat1/Ctss axis as a key inflammatory mechanism in the pathogenesis of DEACMP, thereby clarifying previous uncertainties regarding the sequelae of carbon monoxide poisoning. The intersection of lysosomal and tuberculosis pathways, as revealed through metabolomic, transcriptomic, and single-nucleus RNA sequencing analyses—especially within microglia—offers novel mechanistic insights that could inform therapeutic interventions. While the integration of multiple omics methodologies enhances the robustness of these findings, their biological relevance to the pathogenesis of DEACMP requires rigorous validation through independent cohort verification approaches.

Conclusion

This study provides a comprehensive overview of serum metabolite expression, differential gene expression, and signaling pathways in DEACMP, offering a theoretical foundation for understanding the pathogenesis of DEACMP.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673407372250623101809
2025-07-07
2026-02-20
Loading full text...

Full text loading...

References

  1. ChenowethJ.A. AlbertsonT.E. GreerM.R. Carbon monoxide poisoning.Crit. Care Clin.202137365767210.1016/j.ccc.2021.03.01034053712
    [Google Scholar]
  2. KinoshitaH. TürkanH. VucinicS. NaqviS. BedairR. RezaeeR. TsatsakisA. Carbon monoxide poisoning.Toxicol. Rep.2020716917310.1016/j.toxrep.2020.01.00532015960
    [Google Scholar]
  3. WangR. LiK. WangZ. WangY. ZhangH. Changes of nuclear factor Kappa-B pathway activity in hippocampus after acute carbon monoxide poisoning and its role in nerve cell injury.Mol. Neurobiol.20246185206521510.1007/s12035‑023‑03889‑538172287
    [Google Scholar]
  4. LiaoS.C. ShaoS.C. YangK.J. YangC.C. Real-world effectiveness of hyperbaric oxygen therapy for delayed neuropsychiatric sequelae after carbon monoxide poisoning.Sci. Rep.20211111921210.1038/s41598‑021‑98539‑y34584153
    [Google Scholar]
  5. WangY. ZhouZ. ZhangD. JiangY. Predictors of delayed encephalopathy after acute carbon monoxide poisoning: A literature review.Front. Med. (Lausanne)202512155926410.3389/fmed.2025.155926440206479
    [Google Scholar]
  6. ThomS.R. BhopaleV.M. FisherD. Hyperbaric oxygen reduces delayed immune-mediated neuropathology in experimental carbon monoxide toxicity.Toxicol. Appl. Pharmacol.2006213215215910.1016/j.taap.2005.10.00616325878
    [Google Scholar]
  7. ZhangJ. GuoY. LiW. LiG. ChenY. The efficacy of N-butylphthalide and dexamethasone combined with hyperbaric oxygen on delayed encephalopathy after acute carbon monoxide poisoning.Drug Des. Devel. Ther.2020141333133910.2147/DDDT.S21701032308366
    [Google Scholar]
  8. AryaA. K. SethuramanK. WaddellJ. ChaY. S. LiangY. BhopaleV. M. BhatA. R. ImtiyazZ. DakessianA. LeeY. Inflammatory responses to acute carbon monoxide poisoning and the role of plasma gelsolin.Sci Adv2025116ead975110.1126/sciadv.ado9751
    [Google Scholar]
  9. PengZ-R. HuangY-Q. HuangF.L. YangA.L. Mechanism of delayed encephalopathy after acute carbon monoxide poisoning.Neural Regen. Res.202015122286229510.4103/1673‑5374.28499532594050
    [Google Scholar]
  10. PangL. ZhangN. DongN. WangD.W. XuD.H. ZhangP. MengX.W. Erythropoietin protects rat brain injury from carbon monoxide poisoning by inhibiting toll- like receptor 4/NF-kappa B-dependent inflammatory responses.Inflammation201639256156810.1007/s10753‑015‑0280‑426521252
    [Google Scholar]
  11. LenzK.M. NelsonL.H. Microglia and beyond: Innate immune cells as regulators of brain development and behavioral function.Front Immunol2018969810.3389/fimmu.2018.0069829740446
    [Google Scholar]
  12. LengF. EdisonP. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here?Nat. Rev. Neurol.202117315717210.1038/s41582‑020‑00435‑y33318676
    [Google Scholar]
  13. HuY. LiZ. ZhuY. XingM. XieX. ZhaoP. ChengX. XiaoC. XiaY. WuJ. LuoY. KoH. TangY. YeX. LinW.J. Microglial repopulation reverses radiation-induced cognitive dysfunction by restoring medial prefrontal cortex activity and modulating leukotriene-C4 synthesis.Acta Neuropathol. Commun.202513110510.1186/s40478‑025‑02026‑840390112
    [Google Scholar]
  14. WolfS.A. BoddekeH.W.G.M. KettenmannH. Microglia in physiology and disease.Annu. Rev. Physiol.201779161964310.1146/annurev‑physiol‑022516‑03440627959620
    [Google Scholar]
  15. SekiyaK. NishiharaT. AbeN. KonishiA. NandateH. HamadaT. IkemuneK. TakasakiY. TanakaJ. AsanoM. YorozuyaT. Carbon monoxide poisoning–induced delayed encephalopathy accompanies decreased microglial cell numbers: Distinctive pathophysiological features from hypoxemia–induced brain damage.Brain Res.20191710223210.1016/j.brainres.2018.12.02730578768
    [Google Scholar]
  16. OmayeS.T. Metabolic modulation of carbon monoxide toxicity.Toxicology2002180213915010.1016/S0300‑483X(02)00387‑6
    [Google Scholar]
  17. LiuZ. WangL. LianJ. LiS. ZhaoL. LiH.L. Analysis of factors associated with the development of delayed encephalopathy following acute carbon monoxide poisoning.Sci. Rep.20241411463010.1038/s41598‑024‑64424‑738918432
    [Google Scholar]
  18. WangS. HanW. SunT. WangH. ZhangZ. LiH. Development of a nomogram based on diffusion-weighted imaging and clinical information to predict delayed encephalopathy after acute carbon monoxide poisoning.J. Integr. Neurosci.202322616510.31083/j.jin2206165
    [Google Scholar]
  19. RunmingS. WenyuanC. ZhanggeJ. WenwenB. LixiaW. QianW. ZhaodongL. Predictive values of serum biochemical markers and apparent diffusion coefficient on delayed encephalopathy after acute carbon monoxide poisoning.Turk Neurosurg.202031685185610.5137/1019‑5149.JTN.30830‑20.233759155
    [Google Scholar]
  20. YanH. YuanD. ZhangY. LuoH. JiangP. ZhangY. WuY. HouL. ChengY. YangF. DuY. ZhuH. ZhaoL. LiY. JiangY. GaoY. Integration of methylation and gene expression deciphered candidate biomarkers DAB2IP and SMYD3 in delayed encephalopathy after carbon monoxide poisoning.CNS Neurosci. Ther.2025312e7027010.1111/cns.7027039953812
    [Google Scholar]
  21. HuangY. YeZ. MaT. LiH. ZhaoY. ChenW. WangY. YanX. GaoY. LiZ. Carbon monoxide (CO) modulates hydrogen peroxide (H2O2)-mediated cellular dysfunction by targeting mitochondria in rabbit lens epithelial cells.Exp. Eye Res.2018169687810.1016/j.exer.2018.01.02329407220
    [Google Scholar]
  22. LiuX.L. GuanL. Research progress on head imaging features of carbon monoxide poisoning and delayed encephalopathy.Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi2023411576210.3760/cma.j.cn121094‑20220223‑0008836725298
    [Google Scholar]
  23. RoseJ.J. WangL. XuQ. McTiernanC.F. ShivaS. TejeroJ. GladwinM.T. Carbon monoxide poisoning: Pathogenesis, management, and future directions of therapy.Am. J. Respir. Crit. Care Med.2017195559660610.1164/rccm.201606‑1275CI27753502
    [Google Scholar]
  24. PaganiniM. ThomS.R. Editorial: Carbon monoxide poisoning: Updates on prevention, diagnosis, and treatment.Front. Med. (Lausanne)202411141154710.3389/fmed.2024.141154738690173
    [Google Scholar]
  25. JiL. ChenS. GuG. WangW. RenJ. XuF. LiF. WuJ. YangD. ZhengY. Discovery of potential biomarkers for human atherosclerotic abdominal aortic aneurysm through untargeted metabolomics and transcriptomics.J. Zhejiang. Univ. Sci202122973310.1631/jzus.B2000713
    [Google Scholar]
  26. FuY. WangC. WuZ. ZhangX. LiuY. WangX. LiuF. ChenY. ZhangY. ZhaoH. WangQ. Discovery of the potential biomarkers for early diagnosis of endometrial cancer via integrating metabolomics and transcriptomics.Comput. Biol. Med.202417310832710.1016/j.compbiomed.2024.10832738552279
    [Google Scholar]
  27. WolfS.J. MaloneyG.E. ShihR.D. ShyB.D. BrownM.D. BrownM.D. ByynyR. DiercksD.B. GemmeS.R. GerardoC.J. GodwinS.A. HahnS.A. HattenB.W. HaukoosJ.S. IngalsbeG.S. KajiA. KwokH. LoB.M. MaceS.E. NazarianD.J. ProehlJ.A. PromesS.B. ShahK.H. ShihR.D. SilversS.M. SmithM.D. ThiessenM.E.W. TomaszewskiC.A. ValenteJ.H. WallS.P. WolfS.J. CantrillS.V. O’ConnorR.E. MitchellM.A. WhitsonR.R. Clinical policy: Critical issues in the evaluation and management of adult patients presenting to the emergency department with acute carbon monoxide poisoning.Ann. Emerg. Med.201769198107.e610.1016/j.annemergmed.2016.11.00327993310
    [Google Scholar]
  28. QinP. HoF.K. Celis-MoralesC.A. PellJ.P. Association between systemic inflammation biomarkers and incident cardiovascular disease in 423,701 individuals: evidence from the UK biobank cohort.Cardiovasc. Diabetol.202524116210.1186/s12933‑025‑02721‑940234895
    [Google Scholar]
  29. YangC.H. WangX.Y. ZhangY.H. DingN. SIRI and SII as potential biomarkers of disease activity and lupus nephritis in systemic lupus erythematosus.Front. Immunol.202516153053410.3389/fimmu.2025.153053439958362
    [Google Scholar]
  30. KarnovskyA. LiS. Pathway analysis for targeted and untargeted metabolomics.Methods Mol. Biol.2020210438740010.1007/978‑1‑0716‑0239‑3_1931953827
    [Google Scholar]
  31. ShenM. FanD. ZangY. ChenY. ZhuK. CaiZ. LiuY. SunX. LiuJ. GongJ. Neuroprotective effects of methane-rich saline on experimental acute carbon monoxide toxicity.J. Neurol. Sci.201636936136710.1016/j.jns.2016.08.05527653924
    [Google Scholar]
  32. AtalayH. AybekH. KoseogluM. DemirS. ErbayH. BolamanA.Z. AvciA. The effects of amifostine and dexamethasone on brain tissue lipid peroxidation during oxygen treatment of carbon monoxide-poisoned rats.Adv. Ther.200623233234110.1007/BF0285013816751165
    [Google Scholar]
  33. HuangC. GuoY. LiT. SunG. YangJ. WangY. XiangY. WangL. JinM. LiJ. ZhouY. HanB. HuangR. QiuJ. TanY. HuJ. WeiY. WuB. MaoY. LeiL. SongX. LiS. WangY. ZhangT. Pharmacological activation of GPX4 ameliorates doxorubicin-induced cardiomyopathy.Redox Biol.20247010302410.1016/j.redox.2023.10302438232458
    [Google Scholar]
  34. LiJ. JiaM. ChenG. NieS. ZhengC. ZengW. XuY. WangC. CaoX. LiuQ. Involvement of p38 mitogen-activated protein kinase in altered expressions of AQP1 and AQP4 after carbon monoxide poisoning in rat astrocytes.Basic Clin. Pharmacol. Toxicol.2019125439440410.1111/bcpt.1324731063681
    [Google Scholar]
  35. GaraschukO. VerkhratskyA. Physiology of microglia.Methods Mol. Biol.20192034274010.1007/978‑1‑4939‑9658‑2_331392675
    [Google Scholar]
  36. CassianoL.M.G. OliveiraM.S. PiolineJ. SalimA.C.M. CoimbraR.S. Neuroinflammation regulates the balance between hippocampal neuron death and neurogenesis in an ex vivo model of thiamine deficiency.J. Neuroinflammation202219127210.1186/s12974‑022‑02624‑636376954
    [Google Scholar]
  37. HampsonN.B. Cost of accidental carbon monoxide poisoning: A preventable expense.Prev. Med. Rep.20163212410.1016/j.pmedr.2015.11.01026844181
    [Google Scholar]
  38. ThomS.R. BhopaleV.M. HanS.T. ClarkJ.M. HardyK.R. Intravascular neutrophil activation due to carbon monoxide poisoning.Am. J. Respir. Crit. Care Med.2006174111239124810.1164/rccm.200604‑557OC16931637
    [Google Scholar]
  39. BağcıZ. ArslanA. ArslanD. The value of neutrophil: Lymphocyte ratio and platelet: Lymphocyte ratio in predicting clinical severity in children with carbon monoxide poisoning.Indian J. Pediatr.202188111121112610.1007/s12098‑021‑03704‑w33725287
    [Google Scholar]
  40. YalçınG. TuncaH. SayinbaturB. AnilM. Predictive value of complete blood count, venous blood gas measurements, and glucose/potassium ratio for delayed neuropsychiatric syndrome in children with acute carbon monoxide poisoning due to Coal-Burning stove.Turk. Arch. Pediatr.202358332833510.5152/TurkArchPediatr.2023.2228237144268
    [Google Scholar]
  41. MoonJ.M. ChunB.J. ChoY.S. The predictive value of scores based on peripheral complete blood cell count for long-term neurological outcome in acute carbon monoxide intoxication.Basic Clin. Pharmacol. Toxicol.2019124450051010.1111/bcpt.1315730372579
    [Google Scholar]
  42. QiQ. ZhuangL. ShenY. GengY. YuS. ChenH. LiuL. MengZ. WangP. ChenZ. A novel systemic inflammation response index (SIRI) for predicting the survival of patients with pancreatic cancer after chemotherapy.Cancer2016122142158216710.1002/cncr.3005727152949
    [Google Scholar]
  43. JohnsonC.H. IvanisevicJ. SiuzdakG. Metabolomics: Beyond biomarkers and towards mechanisms.Nat. Rev. Mol. Cell Biol.201617745145910.1038/nrm.2016.2526979502
    [Google Scholar]
  44. HannunY.A. ObeidL.M. Principles of bioactive lipid signalling: Lessons from sphingolipids.Nat. Rev. Mol. Cell Biol.20089213915010.1038/nrm232918216770
    [Google Scholar]
  45. MaceykaM. SpiegelS. Sphingolipid metabolites in inflammatory disease.Nature20145107503586710.1038/nature1347524899305
    [Google Scholar]
  46. TesterinkN. van der SandenM.H.M. HouwelingM. HelmsJ.B. VaandragerA.B. Depletion of phosphatidylcholine affects endoplasmic reticulum morphology and protein traffic at the Golgi complex.J. Lipid Res.200950112182219210.1194/jlr.M800660‑JLR20019458387
    [Google Scholar]
  47. SlijkhuisN. RazziF. KortelandS.A. HeijsB. van GaalenK. DunckerD.J. van der SteenA.F.W. van SteijnV. van BeusekomH.M.M. van SoestG. Spatial lipidomics of coronary atherosclerotic plaque development in a familial hypercholesterolemia swine model.J. Lipid Res.202465210050410.1016/j.jlr.2024.10050438246237
    [Google Scholar]
  48. GrantG.E. GravelS. GuayJ. PatelP. MazerB.D. RokachJ. PowellW.S. 5-Oxo-ETE is a major oxidative stress-induced arachidonate metabolite in B lymphocytes.Free Radic. Biol. Med.201150101297130410.1016/j.freeradbiomed.2011.02.01021334434
    [Google Scholar]
  49. ChoqueB. CathelineD. RiouxV. LegrandP. Linoleic acid: Between doubts and certainties.Biochimie201496142110.1016/j.biochi.2013.07.01223900039
    [Google Scholar]
  50. KangC. KimJ. JuS. ChoH. KimH.Y. YoonI.S. YooJ.W. JungY. Colon-targeted trans-cinnamic acid ameliorates rat colitis by activating GPR109A.Pharmaceutics20221514110.3390/pharmaceutics1501004136678670
    [Google Scholar]
  51. YangH.T. ChenJ.W. RathodJ. JiangY.Z. TsaiP.J. HungY.P. KoW.C. Paredes-SabjaD. HuangI.H. Lauric acid is an inhibitor of Clostridium difficile Growth in Vitro and reduces inflammation in a mouse infection model.Front. Microbiol.20188263510.3389/fmicb.2017.0263529387044
    [Google Scholar]
  52. PandaS.P. KesharwaniA. SinghM. KumarS. Mayank MallickS.P. GuruA. Limonin (LM) and its derivatives: Unveiling the neuroprotective and anti-inflammatory potential of LM and V-A-4 in the management of Alzheimer’s disease and Parkinson’s disease.Fitoterapia202417810617310.1016/j.fitote.2024.10617339117089
    [Google Scholar]
  53. JavedM. AhmadM.I. JavedH. NaseemS. d-ribose and pathogenesis of Alzheimer’s disease.Mol. Biol. Rep.20204732289229910.1007/s11033‑020‑05243‑731933261
    [Google Scholar]
  54. MathysH. Davila-VelderrainJ. PengZ. GaoF. MohammadiS. YoungJ.Z. MenonM. HeL. AbdurrobF. JiangX. MartorellA.J. RansohoffR.M. HaflerB.P. BennettD.A. KellisM. TsaiL.H. Single-cell transcriptomic analysis of Alzheimer’s disease.Nature2019570776133233710.1038/s41586‑019‑1195‑231042697
    [Google Scholar]
  55. WangC. ZouQ. PuY. CaiZ. TangY. Berberine rescues D-Ribose-induced Alzheimer’s pathology via promoting mitophagy.Int. J. Mol. Sci.2023246589610.3390/ijms2406589636982968
    [Google Scholar]
  56. WuB. WeiY. WangY. SuT. ZhouL. LiuY. HeR. Gavage of D-Ribose induces Aβ-like deposits, Tau hyperphosphorylation as well as memory loss and anxiety- like behavior in mice.Oncotarget2015633341283414210.18632/oncotarget.602126452037
    [Google Scholar]
  57. PotterC.B. DavisM.T. AlbadarinA.B. WalkerG.M. Investigation of the dependence of the flory-huggins interaction parameter on temperature and composition in a drug–polymer system.Mol. Pharm.201815115327533510.1021/acs.molpharmaceut.8b0079730259745
    [Google Scholar]
  58. RanaD. MandalB.M. BhattacharyyaS.N. Analogue calorimetric studies of blends of poly(vinyl ester)s and Polyacrylates.Macromolecules19962951579158310.1021/ma950954n
    [Google Scholar]
  59. RanaD. MandalB.M. BhattacharyyaS.N. Analogue calorimetry of polymer blends: poly(styrene-co-acrylonitrile) and poly(phenyl acrylate) or poly(vinyl benzoate).Polymer (Guildf.)199637122439244310.1016/0032‑3861(96)85356‑0
    [Google Scholar]
  60. RanaD. MandalB.M. BhattacharyyaS.N. Miscibility and phase diagrams of poly(phenyl acrylate) and poly(styrene-co-acrylonitrile) blends.Polymer (Guildf.)19933471454145910.1016/0032‑3861(93)90861‑4
    [Google Scholar]
  61. TianY. BoothJ. MeehanE. JonesD.S. LiS. AndrewsG.P. Construction of drug-polymer thermodynamic phase diagrams using Flory-Huggins interaction theory: identifying the relevance of temperature and drug weight fraction to phase separation within solid dispersions.Mol. Pharm.201310123624810.1021/mp300386v23110477
    [Google Scholar]
  62. LeungS.S.W. BustoJ.V. KeyvanlooA. GoñiF.M. ThewaltJ. Insights into sphingolipid miscibility: separate observation of sphingomyelin and ceramide N-acyl chain melting.Biophys. J.2012103122465247410.1016/j.bpj.2012.10.04123260048
    [Google Scholar]
  63. VirkR. CookK. CavazosA. WassallS.R. GowdyK.M. ShaikhS.R. How membrane phospholipids containing long-chain polyunsaturated fatty acids and their oxidation products orchestrate lipid raft dynamics to control inflammation.J. Nutr.202415492862287010.1016/j.tjnut.2024.07.01539025329
    [Google Scholar]
  64. DrückerP. GerkeV. GallaH.J. Importance of phospholipid bilayer integrity in the analysis of protein–lipid interactions.Biochem. Biophys. Res. Commun.2014453114314710.1016/j.bbrc.2014.09.07925264195
    [Google Scholar]
  65. San BiagioP.L. PalmaM.U. MU Spinodal lines and Flory-Huggins free-energies for solutions of human hemoglobins HbS and HbA.Biophys. J.199160250851210.1016/S0006‑3495(91)82078‑11912284
    [Google Scholar]
  66. HannesschlaegerC. HornerA. PohlP. Intrinsic membrane permeability to small molecules.Chem. Rev.201911995922595310.1021/acs.chemrev.8b0056030951292
    [Google Scholar]
  67. LingwoodD. SimonsK. Lipid rafts as a membrane-organizing principle.Science20103275961465010.1126/science.117462120044567
    [Google Scholar]
  68. ReigadaR. SaguésF. Chloroform alters interleaflet coupling in lipid bilayers: An entropic mechanism.J. R. Soc. Interface2015121062015019710.1098/rsif.2015.019725833246
    [Google Scholar]
  69. NerenbergP.S. JoB. SoC. TripathyA. Head-GordonT. Optimizing solute-water van der Waals interactions to reproduce solvation free energies.J. Phys. Chem. B2012116154524453410.1021/jp211837322443635
    [Google Scholar]
  70. SobueA. KomineO. YamanakaK. Neuroinflammation in Alzheimer’s disease: Microglial signature and their relevance to disease.Inflamm. Regen.20234312610.1186/s41232‑023‑00277‑337165437
    [Google Scholar]
  71. LiuC.L. GuoJ. ZhangX. SukhovaG.K. LibbyP. ShiG.P. Cysteine protease cathepsins in cardiovascular disease: From basic research to clinical trials.Nat. Rev. Cardiol.201815635137010.1038/s41569‑018‑0002‑329679024
    [Google Scholar]
  72. NakanishiH. Cathepsin regulation on microglial function.Biochim. Biophys. Acta. Proteins Proteomics20201868914046510.1016/j.bbapap.2020.14046532526473
    [Google Scholar]
  73. WilkinsonR.D.A. WilliamsR. ScottC.J. BurdenR.E. Cathepsin S: Therapeutic, diagnostic, and prognostic potential.Biol. Chem.2015396886788210.1515/hsz‑2015‑011425872877
    [Google Scholar]
  74. RamanaC.V. GilM.P. SchreiberR.D. StarkG.R. Stat1-dependent and -independent pathways in IFN-γ-dependent signaling.Trends Immunol.20022329610110.1016/S1471‑4906(01)02118‑411929133
    [Google Scholar]
  75. SmythP. SasiwachirangkulJ. WilliamsR. ScottC.J. Cathepsin S (CTSS) activity in health and disease: A treasure trove of untapped clinical potential.Mol Aspects Med.20228810110610.1016/j.mam.2022.101106
    [Google Scholar]
  76. GrosF. MullerS. The role of lysosomes in metabolic and autoimmune diseases.Nat. Rev. Nephrol.202319636638310.1038/s41581‑023‑00692‑236894628
    [Google Scholar]
  77. TiwariD. MartineauA.R. Inflammation-mediated tissue damage in pulmonary tuberculosis and host-directed therapeutic strategies.Semin. Immunol.20236510167210.1016/j.smim.2022.101672
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673407372250623101809
Loading
/content/journals/cmc/10.2174/0109298673407372250623101809
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): carbon monoxide poisoning; DEACMP; microglia; multi-omics; neuroinflammation; snRNA-seq
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test