Skip to content
2000
image of Core Neuroinflammatory Pathways Contributing to Delayed Encephalopathy After Acute Carbon Monoxide Poisoning Revealed by Multi-omics and Single Nucleus RNA-Seq

Abstract

Introduction

The pathogenesis of Delayed Encephalopathy After Acute Carbon Monoxide Poisoning (DEACMP) remains mysterious, and specific predictive markers are lacking. This study aimed to elucidate the molecular underpinnings and identify predictive biomarkers of DEACMP through multi-omics and single-nucleusRNA sequencing (snRNA-seq).

Methods

Clinical data and blood samples were collected from 105 participants. Untargeted metabolomics sequencing was employed to profile serum metabolites across these participants. Additionally, individuals from the Healthy Controls (HCs), Acute Carbon Monoxide Poisoning patients (ACOP), Non-Delayed Encephalopathy After ACOP (DEACMP-N), and DEACMP groups (n=3 each) were randomly selected for transcriptome sequencing to identify potential predictive targets and pivotal signaling pathways associated with DEACMP. Furthermore, Severe DEACMP and Control rat models were established. Three rats from the Control, DEACMP, and DEACMP + Dexamethasone + Selenomethionine groups were selected for snRNA-seq. Immunofluorescence multiplexing and qRT-PCR (quantitative Reverse Transcription Polymerase Chain Reaction) were then performed to validate the identified predictive targets.

Results

Analysis of clinical data from 105 participants highlights the pivotal role of inflammation in influencing the prognosis of carbon monoxide poisoning. Metabolomics analysis identified 19 metabolites that significantly differed between the DEACMP-N and DEACMP groups. Transcriptomics analysis of 12 participants indicated that DEACMP is primarily associated with six signaling pathways, including lysosome and tuberculosis. Considering that microglia are central nervous system immune effectors, the snRNA-seq analysis revealed altered gene expression and signaling pathways in microglia during DEACMP, with KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis highlighting neutrophil extracellular trap formation, lysosome, and tuberculosis as the predominant pathways. Differential gene analysis from transcriptome and snRNA-seq identified 28 genes differentially expressed in DEACMP. The STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) database, immune multiplexing, and qRT-PCR confirmed the pivotal role of the Ifngr1/Stat1/Ctss axis in DEACMP.

Discussion

This research identifies the Ifngr1/Stat1/Ctss axis as a key inflammatory mechanism in the pathogenesis of DEACMP, thereby clarifying previous uncertainties regarding the sequelae of carbon monoxide poisoning. The intersection of lysosomal and tuberculosis pathways, as revealed through metabolomic, transcriptomic, and single-nucleus RNA sequencing analyses—especially within microglia—offers novel mechanistic insights that could inform therapeutic interventions. While the integration of multiple omics methodologies enhances the robustness of these findings, their biological relevance to the pathogenesis of DEACMP requires rigorous validation through independent cohort verification approaches.

Conclusion

This study provides a comprehensive overview of serum metabolite expression, differential gene expression, and signaling pathways in DEACMP, offering a theoretical foundation for understanding the pathogenesis of DEACMP.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673407372250623101809
2025-07-07
2025-09-11
Loading full text...

Full text loading...

References

  1. Chenoweth J.A. Albertson T.E. Greer M.R. Carbon monoxide poisoning. Crit. Care Clin. 2021 37 3 657 672 10.1016/j.ccc.2021.03.010 34053712
    [Google Scholar]
  2. Kinoshita H. Türkan H. Vucinic S. Naqvi S. Bedair R. Rezaee R. Tsatsakis A. Carbon monoxide poisoning. Toxicol. Rep. 2020 7 169 173 10.1016/j.toxrep.2020.01.005 32015960
    [Google Scholar]
  3. Wang R. Li K. Wang Z. Wang Y. Zhang H. Changes of nuclear factor Kappa-B pathway activity in hippocampus after acute carbon monoxide poisoning and its role in nerve cell injury. Mol. Neurobiol. 2024 61 8 5206 5215 10.1007/s12035‑023‑03889‑5 38172287
    [Google Scholar]
  4. Liao S.C. Shao S.C. Yang K.J. Yang C.C. Real-world effectiveness of hyperbaric oxygen therapy for delayed neuropsychiatric sequelae after carbon monoxide poisoning. Sci. Rep. 2021 11 1 19212 10.1038/s41598‑021‑98539‑y 34584153
    [Google Scholar]
  5. Wang Y. Zhou Z. Zhang D. Jiang Y. Predictors of delayed encephalopathy after acute carbon monoxide poisoning: A literature review. Front. Med. (Lausanne) 2025 12 1559264 10.3389/fmed.2025.1559264 40206479
    [Google Scholar]
  6. Thom S.R. Bhopale V.M. Fisher D. Hyperbaric oxygen reduces delayed immune-mediated neuropathology in experimental carbon monoxide toxicity. Toxicol. Appl. Pharmacol. 2006 213 2 152 159 10.1016/j.taap.2005.10.006 16325878
    [Google Scholar]
  7. Zhang J. Guo Y. Li W. Li G. Chen Y. The efficacy of N-butylphthalide and dexamethasone combined with hyperbaric oxygen on delayed encephalopathy after acute carbon monoxide poisoning. Drug Des. Devel. Ther. 2020 14 1333 1339 10.2147/DDDT.S217010 32308366
    [Google Scholar]
  8. Arya A. K. Sethuraman K. Waddell J. Cha Y. S. Liang Y. Bhopale V. M. Bhat A. R. Imtiyaz Z. Dakessian A. Lee Y. Inflammatory responses to acute carbon monoxide poisoning and the role of plasma gelsolin. Sci Adv 2025 11 6 ead9751 10.1126/sciadv.ado9751
    [Google Scholar]
  9. Peng Z-R. Huang Y-Q. Huang F.L. Yang A.L. Mechanism of delayed encephalopathy after acute carbon monoxide poisoning. Neural Regen. Res. 2020 15 12 2286 2295 10.4103/1673‑5374.284995 32594050
    [Google Scholar]
  10. Pang L. Zhang N. Dong N. Wang D.W. Xu D.H. Zhang P. Meng X.W. Erythropoietin protects rat brain injury from carbon monoxide poisoning by inhibiting toll- like receptor 4/NF-kappa B-dependent inflammatory responses. Inflammation 2016 39 2 561 568 10.1007/s10753‑015‑0280‑4 26521252
    [Google Scholar]
  11. Lenz K.M. Nelson L.H. Microglia and beyond: Innate immune cells as regulators of brain development and behavioral function. Front Immunol 2018 9 698 10.3389/fimmu.2018.00698 29740446
    [Google Scholar]
  12. Leng F. Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat. Rev. Neurol. 2021 17 3 157 172 10.1038/s41582‑020‑00435‑y 33318676
    [Google Scholar]
  13. Hu Y. Li Z. Zhu Y. Xing M. Xie X. Zhao P. Cheng X. Xiao C. Xia Y. Wu J. Luo Y. Ko H. Tang Y. Ye X. Lin W.J. Microglial repopulation reverses radiation-induced cognitive dysfunction by restoring medial prefrontal cortex activity and modulating leukotriene-C4 synthesis. Acta Neuropathol. Commun. 2025 13 1 105 10.1186/s40478‑025‑02026‑8 40390112
    [Google Scholar]
  14. Wolf S.A. Boddeke H.W.G.M. Kettenmann H. Microglia in physiology and disease. Annu. Rev. Physiol. 2017 79 1 619 643 10.1146/annurev‑physiol‑022516‑034406 27959620
    [Google Scholar]
  15. Sekiya K. Nishihara T. Abe N. Konishi A. Nandate H. Hamada T. Ikemune K. Takasaki Y. Tanaka J. Asano M. Yorozuya T. Carbon monoxide poisoning–induced delayed encephalopathy accompanies decreased microglial cell numbers: Distinctive pathophysiological features from hypoxemia–induced brain damage. Brain Res. 2019 1710 22 32 10.1016/j.brainres.2018.12.027 30578768
    [Google Scholar]
  16. Omaye S.T. Metabolic modulation of carbon monoxide toxicity. Toxicology 2002 180 2 139 150 10.1016/S0300‑483X(02)00387‑6
    [Google Scholar]
  17. Liu Z. Wang L. Lian J. Li S. Zhao L. Li H.L. Analysis of factors associated with the development of delayed encephalopathy following acute carbon monoxide poisoning. Sci. Rep. 2024 14 1 14630 10.1038/s41598‑024‑64424‑7 38918432
    [Google Scholar]
  18. Wang S. Han W. Sun T. Wang H. Zhang Z. Li H. Development of a nomogram based on diffusion-weighted imaging and clinical information to predict delayed encephalopathy after acute carbon monoxide poisoning. J Integr Neurosci 2023 22 6 165 10.31083/j.jin2206165
    [Google Scholar]
  19. Runming S. Wenyuan C. Zhangge J. Wenwen B. Lixia W. Qian W. Zhaodong L. Predictive values of serum biochemical markers and apparent diffusion coefficient on delayed encephalopathy after acute carbon monoxide poisoning. Turk Neurosurg. 2020 31 6 851 856 10.5137/1019‑5149.JTN.30830‑20.2 33759155
    [Google Scholar]
  20. Yan H. Yuan D. Zhang Y. Luo H. Jiang P. Zhang Y. Wu Y. Hou L. Cheng Y. Yang F. Du Y. Zhu H. Zhao L. Li Y. Jiang Y. Gao Y. Integration of methylation and gene expression deciphered candidate biomarkers DAB2IP and SMYD3 in delayed encephalopathy after carbon monoxide poisoning. CNS Neurosci. Ther. 2025 31 2 e70270 10.1111/cns.70270 39953812
    [Google Scholar]
  21. Huang Y. Ye Z. Ma T. Li H. Zhao Y. Chen W. Wang Y. Yan X. Gao Y. Li Z. Carbon monoxide (CO) modulates hydrogen peroxide (H2O2)-mediated cellular dysfunction by targeting mitochondria in rabbit lens epithelial cells. Exp. Eye Res. 2018 169 68 78 10.1016/j.exer.2018.01.023 29407220
    [Google Scholar]
  22. Liu X.L. Guan L. Research progress on head imaging features of carbon monoxide poisoning and delayed encephalopathy. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 2023 41 1 57 62 10.3760/cma.j.cn121094‑20220223‑00088 36725298
    [Google Scholar]
  23. Rose J.J. Wang L. Xu Q. McTiernan C.F. Shiva S. Tejero J. Gladwin M.T. Carbon monoxide poisoning: Pathogenesis, management, and future directions of therapy. Am. J. Respir. Crit. Care Med. 2017 195 5 596 606 10.1164/rccm.201606‑1275CI 27753502
    [Google Scholar]
  24. Paganini M. Thom S.R. Editorial: Carbon monoxide poisoning: Updates on prevention, diagnosis, and treatment. Front. Med. (Lausanne) 2024 11 1411547 10.3389/fmed.2024.1411547 38690173
    [Google Scholar]
  25. Ji L. Chen S. Gu G. Wang W. Ren J. Xu F. Li F. Wu J. Yang D. Zheng Y. Discovery of potential biomarkers for human atherosclerotic abdominal aortic aneurysm through untargeted metabolomics and transcriptomics. J. Zhejiang. Univ. Sci 2021 22 9 733 10.1631/jzus.B2000713
    [Google Scholar]
  26. Fu Y. Wang C. Wu Z. Zhang X. Liu Y. Wang X. Liu F. Chen Y. Zhang Y. Zhao H. Wang Q. Discovery of the potential biomarkers for early diagnosis of endometrial cancer via integrating metabolomics and transcriptomics. Comput. Biol. Med. 2024 173 108327 10.1016/j.compbiomed.2024.108327 38552279
    [Google Scholar]
  27. Wolf S.J. Maloney G.E. Shih R.D. Shy B.D. Brown M.D. Brown M.D. Byyny R. Diercks D.B. Gemme S.R. Gerardo C.J. Godwin S.A. Hahn S.A. Hatten B.W. Haukoos J.S. Ingalsbe G.S. Kaji A. Kwok H. Lo B.M. Mace S.E. Nazarian D.J. Proehl J.A. Promes S.B. Shah K.H. Shih R.D. Silvers S.M. Smith M.D. Thiessen M.E.W. Tomaszewski C.A. Valente J.H. Wall S.P. Wolf S.J. Cantrill S.V. O’Connor R.E. Mitchell M.A. Whitson R.R. Clinical policy: Critical issues in the evaluation and management of adult patients presenting to the emergency department with acute carbon monoxide poisoning. Ann. Emerg. Med. 2017 69 1 98 107.e6 10.1016/j.annemergmed.2016.11.003 27993310
    [Google Scholar]
  28. Qin P. Ho F.K. Celis-Morales C.A. Pell J.P. Association between systemic inflammation biomarkers and incident cardiovascular disease in 423,701 individuals: evidence from the UK biobank cohort. Cardiovasc. Diabetol. 2025 24 1 162 10.1186/s12933‑025‑02721‑9 40234895
    [Google Scholar]
  29. Yang C.H. Wang X.Y. Zhang Y.H. Ding N. SIRI and SII as potential biomarkers of disease activity and lupus nephritis in systemic lupus erythematosus. Front. Immunol. 2025 16 1530534 10.3389/fimmu.2025.1530534 39958362
    [Google Scholar]
  30. Karnovsky A. Li S. Pathway analysis for targeted and untargeted metabolomics. Methods Mol. Biol. 2020 2104 387 400 10.1007/978‑1‑0716‑0239‑3_19 31953827
    [Google Scholar]
  31. Shen M. Fan D. Zang Y. Chen Y. Zhu K. Cai Z. Liu Y. Sun X. Liu J. Gong J. Neuroprotective effects of methane-rich saline on experimental acute carbon monoxide toxicity. J. Neurol. Sci. 2016 369 361 367 10.1016/j.jns.2016.08.055 27653924
    [Google Scholar]
  32. Atalay H. Aybek H. Koseoglu M. Demir S. Erbay H. Bolaman A.Z. Avci A. The effects of amifostine and dexamethasone on brain tissue lipid peroxidation during oxygen treatment of carbon monoxide-poisoned rats. Adv. Ther. 2006 23 2 332 341 10.1007/BF02850138 16751165
    [Google Scholar]
  33. Huang C. Guo Y. Li T. Sun G. Yang J. Wang Y. Xiang Y. Wang L. Jin M. Li J. Zhou Y. Han B. Huang R. Qiu J. Tan Y. Hu J. Wei Y. Wu B. Mao Y. Lei L. Song X. Li S. Wang Y. Zhang T. Pharmacological activation of GPX4 ameliorates doxorubicin-induced cardiomyopathy. Redox Biol. 2024 70 103024 10.1016/j.redox.2023.103024 38232458
    [Google Scholar]
  34. Li J. Jia M. Chen G. Nie S. Zheng C. Zeng W. Xu Y. Wang C. Cao X. Liu Q. Involvement of p38 mitogen-activated protein kinase in altered expressions of AQP1 and AQP4 after carbon monoxide poisoning in rat astrocytes. Basic Clin. Pharmacol. Toxicol. 2019 125 4 394 404 10.1111/bcpt.13247 31063681
    [Google Scholar]
  35. Garaschuk O. Verkhratsky A. Physiology of Microglia. Methods Mol. Biol. 2019 2034 27 40 10.1007/978‑1‑4939‑9658‑2_3 31392675
    [Google Scholar]
  36. Cassiano L.M.G. Oliveira M.S. Pioline J. Salim A.C.M. Coimbra R.S. Neuroinflammation regulates the balance between hippocampal neuron death and neurogenesis in an ex vivo model of thiamine deficiency. J. Neuroinflammation 2022 19 1 272 10.1186/s12974‑022‑02624‑6 36376954
    [Google Scholar]
  37. Hampson N.B. Cost of accidental carbon monoxide poisoning: A preventable expense. Prev. Med. Rep. 2016 3 21 24 10.1016/j.pmedr.2015.11.010 26844181
    [Google Scholar]
  38. Thom S.R. Bhopale V.M. Han S.T. Clark J.M. Hardy K.R. Intravascular neutrophil activation due to carbon monoxide poisoning. Am. J. Respir. Crit. Care Med. 2006 174 11 1239 1248 10.1164/rccm.200604‑557OC 16931637
    [Google Scholar]
  39. Bağcı Z. Arslan A. Arslan D. The value of neutrophil: Lymphocyte ratio and platelet: Lymphocyte ratio in predicting clinical severity in children with carbon monoxide poisoning. Indian J. Pediatr. 2021 88 11 1121 1126 10.1007/s12098‑021‑03704‑w 33725287
    [Google Scholar]
  40. Yalçın G. Tunca H. Sayinbatur B. Anil M. Predictive value of complete blood count, venous blood gas measurements, and glucose/potassium ratio for delayed neuropsychiatric syndrome in children with acute carbon monoxide poisoning due to Coal-Burning stove. Turk. Arch. Pediatr. 2023 58 3 328 335 10.5152/TurkArchPediatr.2023.22282 37144268
    [Google Scholar]
  41. Moon J.M. Chun B.J. Cho Y.S. The predictive value of scores based on peripheral complete blood cell count for long-term neurological outcome in acute carbon monoxide intoxication. Basic Clin. Pharmacol. Toxicol. 2019 124 4 500 510 10.1111/bcpt.13157 30372579
    [Google Scholar]
  42. Qi Q. Zhuang L. Shen Y. Geng Y. Yu S. Chen H. Liu L. Meng Z. Wang P. Chen Z. A novel systemic inflammation response index (SIRI) for predicting the survival of patients with pancreatic cancer after chemotherapy. Cancer 2016 122 14 2158 2167 10.1002/cncr.30057 27152949
    [Google Scholar]
  43. Johnson C.H. Ivanisevic J. Siuzdak G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 2016 17 7 451 459 10.1038/nrm.2016.25 26979502
    [Google Scholar]
  44. Hannun Y.A. Obeid L.M. Principles of bioactive lipid signalling: Lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 2008 9 2 139 150 10.1038/nrm2329 18216770
    [Google Scholar]
  45. Maceyka M. Spiegel S. Sphingolipid metabolites in inflammatory disease. Nature 2014 510 7503 58 67 10.1038/nature13475 24899305
    [Google Scholar]
  46. Testerink N. van der Sanden M.H.M. Houweling M. Helms J.B. Vaandrager A.B. Depletion of phosphatidylcholine affects endoplasmic reticulum morphology and protein traffic at the Golgi complex. J. Lipid Res. 2009 50 11 2182 2192 10.1194/jlr.M800660‑JLR200 19458387
    [Google Scholar]
  47. Slijkhuis N. Razzi F. Korteland S.A. Heijs B. van Gaalen K. Duncker D.J. van der Steen A.F.W. van Steijn V. van Beusekom H.M.M. van Soest G. Spatial lipidomics of coronary atherosclerotic plaque development in a familial hypercholesterolemia swine model. J. Lipid Res. 2024 65 2 100504 10.1016/j.jlr.2024.100504 38246237
    [Google Scholar]
  48. Grant G.E. Gravel S. Guay J. Patel P. Mazer B.D. Rokach J. Powell W.S. 5-Oxo-ETE is a major oxidative stress-induced arachidonate metabolite in B lymphocytes. Free Radic. Biol. Med. 2011 50 10 1297 1304 10.1016/j.freeradbiomed.2011.02.010 21334434
    [Google Scholar]
  49. Choque B. Catheline D. Rioux V. Legrand P. Linoleic acid: Between doubts and certainties. Biochimie 2014 96 14 21 10.1016/j.biochi.2013.07.012 23900039
    [Google Scholar]
  50. Kang C. Kim J. Ju S. Cho H. Kim H.Y. Yoon I.S. Yoo J.W. Jung Y. Colon-targeted trans-cinnamic acid ameliorates rat colitis by activating GPR109A. Pharmaceutics 2022 15 1 41 10.3390/pharmaceutics15010041 36678670
    [Google Scholar]
  51. Yang H.T. Chen J.W. Rathod J. Jiang Y.Z. Tsai P.J. Hung Y.P. Ko W.C. Paredes-Sabja D. Huang I.H. Lauric acid is an inhibitor of Clostridium difficile Growth in Vitro and reduces inflammation in a mouse infection model. Front. Microbiol. 2018 8 2635 10.3389/fmicb.2017.02635 29387044
    [Google Scholar]
  52. Panda S.P. Kesharwani A. Singh M. Kumar S. Mayank Mallick S.P. Guru A. Limonin (LM) and its derivatives: Unveiling the neuroprotective and anti-inflammatory potential of LM and V-A-4 in the management of Alzheimer’s disease and Parkinson’s disease. Fitoterapia 2024 178 106173 10.1016/j.fitote.2024.106173 39117089
    [Google Scholar]
  53. Javed M. Ahmad M.I. Javed H. Naseem S. d-ribose and pathogenesis of Alzheimer’s disease. Mol. Biol. Rep. 2020 47 3 2289 2299 10.1007/s11033‑020‑05243‑7 31933261
    [Google Scholar]
  54. Mathys H. Davila-Velderrain J. Peng Z. Gao F. Mohammadi S. Young J.Z. Menon M. He L. Abdurrob F. Jiang X. Martorell A.J. Ransohoff R.M. Hafler B.P. Bennett D.A. Kellis M. Tsai L.H. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 2019 570 7761 332 337 10.1038/s41586‑019‑1195‑2 31042697
    [Google Scholar]
  55. Wang C. Zou Q. Pu Y. Cai Z. Tang Y. Berberine rescues D-Ribose-induced alzheimer’s pathology via promoting mitophagy. Int. J. Mol. Sci. 2023 24 6 5896 10.3390/ijms24065896 36982968
    [Google Scholar]
  56. Wu B. Wei Y. Wang Y. Su T. Zhou L. Liu Y. He R. Gavage of D-Ribose induces Aβ-like deposits, Tau hyperphosphorylation as well as memory loss and anxiety- like behavior in mice. Oncotarget 2015 6 33 34128 34142 10.18632/oncotarget.6021 26452037
    [Google Scholar]
  57. Potter C.B. Davis M.T. Albadarin A.B. Walker G.M. Investigation of the dependence of the flory-huggins interaction parameter on temperature and composition in a drug–polymer system. Mol. Pharm. 2018 15 11 5327 5335 10.1021/acs.molpharmaceut.8b00797 30259745
    [Google Scholar]
  58. Rana D. Mandal B.M. Bhattacharyya S.N. Analogue calorimetric studies of blends of poly(vinyl ester)s and Polyacrylates. Macromolecules 1996 29 5 1579 1583 10.1021/ma950954n
    [Google Scholar]
  59. Rana D. Mandal B.M. Bhattacharyya S.N. Analogue calorimetry of polymer blends: poly(styrene-co-acrylonitrile) and poly(phenyl acrylate) or poly(vinyl benzoate). Polymer (Guildf.) 1996 37 12 2439 2443 10.1016/0032‑3861(96)85356‑0
    [Google Scholar]
  60. Rana D. Mandal B.M. Bhattacharyya S.N. Miscibility and phase diagrams of poly(phenyl acrylate) and poly(styrene-co-acrylonitrile) blends. Polymer (Guildf.) 1993 34 7 1454 1459 10.1016/0032‑3861(93)90861‑4
    [Google Scholar]
  61. Tian Y. Booth J. Meehan E. Jones D.S. Li S. Andrews G.P. Construction of drug-polymer thermodynamic phase diagrams using Flory-Huggins interaction theory: identifying the relevance of temperature and drug weight fraction to phase separation within solid dispersions. Mol. Pharm. 2013 10 1 236 248 10.1021/mp300386v 23110477
    [Google Scholar]
  62. Leung S.S.W. Busto J.V. Keyvanloo A. Goñi F.M. Thewalt J. Insights into sphingolipid miscibility: separate observation of sphingomyelin and ceramide N-acyl chain melting. Biophys. J. 2012 103 12 2465 2474 10.1016/j.bpj.2012.10.041 23260048
    [Google Scholar]
  63. Virk R. Cook K. Cavazos A. Wassall S.R. Gowdy K.M. Shaikh S.R. How membrane phospholipids containing long-chain polyunsaturated fatty acids and their oxidation products orchestrate lipid raft dynamics to control inflammation. J. Nutr. 2024 154 9 2862 2870 10.1016/j.tjnut.2024.07.015 39025329
    [Google Scholar]
  64. Drücker P. Gerke V. Galla H.J. Importance of phospholipid bilayer integrity in the analysis of protein–lipid interactions. Biochem. Biophys. Res. Commun. 2014 453 1 143 147 10.1016/j.bbrc.2014.09.079 25264195
    [Google Scholar]
  65. San Biagio P.L. Palma M.U. MU Spinodal lines and Flory-Huggins free-energies for solutions of human hemoglobins HbS and HbA. Biophys. J. 1991 60 2 508 512 10.1016/S0006‑3495(91)82078‑1 1912284
    [Google Scholar]
  66. Hannesschlaeger C. Horner A. Pohl P. Intrinsic membrane permeability to small molecules. Chem. Rev. 2019 119 9 5922 5953 10.1021/acs.chemrev.8b00560 30951292
    [Google Scholar]
  67. Lingwood D. Simons K. Lipid rafts as a membrane-organizing principle. Science 2010 327 5961 46 50 10.1126/science.1174621 20044567
    [Google Scholar]
  68. Reigada R. Sagués F. Chloroform alters interleaflet coupling in lipid bilayers: An entropic mechanism. J. R. Soc. Interface 2015 12 106 20150197 10.1098/rsif.2015.0197 25833246
    [Google Scholar]
  69. Nerenberg P.S. Jo B. So C. Tripathy A. Head-Gordon T. Optimizing solute-water van der Waals interactions to reproduce solvation free energies. J. Phys. Chem. B 2012 116 15 4524 4534 10.1021/jp2118373 22443635
    [Google Scholar]
  70. Sobue A. Komine O. Yamanaka K. Neuroinflammation in Alzheimer’s disease: Microglial signature and their relevance to disease. Inflamm. Regen. 2023 43 1 26 10.1186/s41232‑023‑00277‑3 37165437
    [Google Scholar]
  71. Liu C.L. Guo J. Zhang X. Sukhova G.K. Libby P. Shi G.P. Cysteine protease cathepsins in cardiovascular disease: From basic research to clinical trials. Nat. Rev. Cardiol. 2018 15 6 351 370 10.1038/s41569‑018‑0002‑3 29679024
    [Google Scholar]
  72. Nakanishi H. Cathepsin regulation on microglial function. Biochim. Biophys. Acta. Proteins Proteomics 2020 1868 9 140465 10.1016/j.bbapap.2020.140465 32526473
    [Google Scholar]
  73. Wilkinson R.D.A. Williams R. Scott C.J. Burden R.E. Cathepsin S: Therapeutic, diagnostic, and prognostic potential. Biol. Chem. 2015 396 8 867 882 10.1515/hsz‑2015‑0114 25872877
    [Google Scholar]
  74. Ramana C.V. Gil M.P. Schreiber R.D. Stark G.R. Stat1-dependent and -independent pathways in IFN-γ-dependent signaling. Trends Immunol. 2002 23 2 96 101 10.1016/S1471‑4906(01)02118‑4 11929133
    [Google Scholar]
  75. Smyth P. Sasiwachirangkul J. Williams R. Scott C.J. Cathepsin S (CTSS) activity in health and disease: A treasure trove of untapped clinical potential. Mol Aspects Med. 2022 88 101106 10.1016/j.mam.2022.101106
    [Google Scholar]
  76. Gros F. Muller S. The role of lysosomes in metabolic and autoimmune diseases. Nat. Rev. Nephrol. 2023 19 6 366 383 10.1038/s41581‑023‑00692‑2 36894628
    [Google Scholar]
  77. Tiwari D. Martineau A.R. Inflammation-mediated tissue damage in pulmonary tuberculosis and host-directed therapeutic strategies. Semin Immunol. 2023 65 101672 10.1016/j.smim.2022.101672
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673407372250623101809
Loading
/content/journals/cmc/10.2174/0109298673407372250623101809
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: carbon monoxide poisoning ; microglia ; DEACMP ; multi-omics ; neuroinflammation ; snRNA-seq
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test