Skip to content
2000
image of Exploring the Role of tRNA-Derived Fragments in Pterygium: Molecular Insights into tsRNA-Mediated Fibroblast Regulation and Disease Progression

Abstract

Background

Pterygium is a common ocular surface disorder characterized by fibrovascular overgrowth, with recurrence remaining a major clinical challenge. While non-coding RNAs have been implicated in pterygium pathogenesis, the role of tRNA-derived small RNAs (tsRNAs) remains unexplored.

Methods

We performed small RNA sequencing on pterygium and adjacent normal conjunctiva tissues to profile tsRNA expression. Differentially expressed tsRNAs were validated using qRT-PCR, and their biological functions were investigated cell proliferation and wound healing assays in human pterygium fibroblasts (HPF). Potential target genes and enriched pathways were analyzed using bioinformatics approaches, including KEGG and GO enrichment analysis.

Results

We identified significantly dysregulated tsRNAs in pterygium, with tRF-1_30-His- GTG-1, tRF-1_31-Val-CAC-2, tRF-1_31-Gly-GCC-1, and tRF-1_30-Gly-CCC-1-M4 exhibiting notable upregulation. Functional assays demonstrated that tRF-1_30-His- GTG-1 promotes fibroblast proliferation and migration, while the other three tsRNAs enhance fibroblast migration. Pathway enrichment analysis revealed their involvement in cellular proliferation, extracellular matrix remodeling, and angiogenesis.

Conclusion

This study provides the first evidence of tsRNA involvement in pterygium pathogenesis, highlighting their potential as biomarkers and therapeutic targets. Future studies should focus on deciphering their precise regulatory mechanisms and developing RNA-based therapeutic strategies to mitigate disease progression.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673361701250321082610
2025-06-26
2025-09-10
Loading full text...

Full text loading...

References

  1. Baheran S.S. Alany R.G. Schwikkard S. Muen W. Salman L.N. Freestone N. Al-Kinani A.A. Pharmacological treatment strategies of pterygium: Drugs, biologics, and novel natural products. Drug Discov. Today 2023 28 1 103416 10.1016/j.drudis.2022.103416 36280041
    [Google Scholar]
  2. de Guimarães J.A. Hounpke B.W. Duarte B. Boso A.L.M. Viturino M.G.M. de Carvalho Baptista L. de Melo M.B. Alves M. Transcriptomics and network analysis highlight potential pathways in the pathogenesis of pterygium. Sci. Rep. 2022 12 1 286 10.1038/s41598‑021‑04248‑x 34997134
    [Google Scholar]
  3. Li J. Tao T. Yu Y. Xu N. Du W. Zhao M. Jiang Z. Huang L. Expression profiling suggests the involvement of hormone-related, metabolic, and Wnt signaling pathways in pterygium progression. Front. Endocrinol. 2022 13 943275 10.3389/fendo.2022.943275 36187094
    [Google Scholar]
  4. He S. Sun H. Huang Y. Dong S. Qiao C. Zhang S. Wang C. Zheng F. Yan M. Yang G. Identification and interaction analysis of significant genes and MicroRNAs in pterygium. BioMed Res. Int. 2019 2019 1 12 10.1155/2019/2767512 31341891
    [Google Scholar]
  5. He S. Huang Y. Dong S. Qiao C. Yang G. Zhang S. Wang C. Xu Y. Zheng F. Yan M. MiR-199a-3p/5p participated in TGF-β and EGF induced EMT by targeting DUSP5/MAP3K11 in pterygium. J. Transl. Med. 2020 18 1 332 10.1186/s12967‑020‑02499‑2 32867783
    [Google Scholar]
  6. Tao E.W. Wang H.L. Cheng W.Y. Liu Q.Q. Chen Y.X. Gao Q.Y. A specific tRNA half, 5’tiRNA-His-GTG, responds to hypoxia via the HIF1α/ANG axis and promotes colorectal cancer progression by regulating LATS2. J. Exp. Clin. Cancer Res. 2021 40 1 67 10.1186/s13046‑021‑01836‑7 33588913
    [Google Scholar]
  7. Zhang M. Li F. Wang J. He W. Li Y. Li H. Wei Z. Cao Y. tRNA-derived fragment tRF-03357 promotes cell proliferation, migration and invasion in high-grade serous ovarian cancer. OncoTargets Ther. 2019 12 6371 6383 10.2147/OTT.S206861 31496739
    [Google Scholar]
  8. Falconi M. Giangrossi M. Zabaleta M.E. Wang J. Gambini V. Tilio M. Bencardino D. Occhipinti S. Belletti B. Laudadio E. Galeazzi R. Marchini C. Amici A. A novel 3′-tRNA Glu -derived fragment acts as a tumor suppressor in breast cancer by targeting nucleolin. FASEB J. 2019 33 12 13228 13240 10.1096/fj.201900382RR 31560576
    [Google Scholar]
  9. Han L. Lai H. Yang Y. Hu J. Li Z. Ma B. Xu W. Liu W. Wei W. Li D. Wang Y. Zhai Q. Ji Q. Liao T. A 5′-tRNA halve, tiRNA-Gly promotes cell proliferation and migration via binding to RBM17 and inducing alternative splicing in papillary thyroid cancer. J. Exp. Clin. Cancer Res. 2021 40 1 222 10.1186/s13046‑021‑02024‑3 34225773
    [Google Scholar]
  10. Cui H. Li H. Wu H. Du F. Xie X. Zeng S. Zhang Z. Dong K. Shang L. Jing C. Li L. A novel 3’tRNA-derived fragment tRF-Val promotes proliferation and inhibits apoptosis by targeting EEF1A1 in gastric cancer. Cell Death Dis. 2022 13 5 471 10.1038/s41419‑022‑04930‑6 35585048
    [Google Scholar]
  11. Li Q. Hu B. Hu G. Chen C. Niu X. Liu J. Zhou S. Zhang C. Wang Y. Deng Z.F. tRNA-derived small non- coding RNAs in response to ischemia inhibit angiogenesis. Sci. Rep. 2016 6 1 20850 10.1038/srep20850 26865164
    [Google Scholar]
  12. Li P. Tang T. Liu T. Zhou J. Cui H. He Z. Zhong Y. Hu E. Yang A. Wei G. Luo J. Wang Y. Systematic analysis of tRNA-derived small RNAs reveals novel potential therapeutic targets of traditional chinese medicine (buyang-huanwu-decoction) on intracerebral hemorrhage. Int. J. Biol. Sci. 2019 15 4 895 908 10.7150/ijbs.29744 30906219
    [Google Scholar]
  13. Muthukumar S. Li C.T. Liu R.J. Bellodi C. Roles and regulation of tRNA-derived small RNAs in animals. Nat. Rev. Mol. Cell Biol. 2024 25 5 359 378 10.1038/s41580‑023‑00690‑z 38182846
    [Google Scholar]
  14. Kumar P. Anaya J. Mudunuri S.B. Dutta A. Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets. BMC Biol. 2014 12 1 78 10.1186/s12915‑014‑0078‑0 25270025
    [Google Scholar]
  15. Kuscu C. Kumar P. Kiran M. Su Z. Malik A. Dutta A. tRNA fragments (tRFs) guide ago to regulate gene expression post-transcriptionally in a dicer-independent manner. RNA 2018 24 8 1093 1105 10.1261/rna.066126.118 29844106
    [Google Scholar]
  16. Zhou M. He X. Zhang J. Mei C. Zhong B. Ou C. tRNA-derived small RNAs in human cancers: Roles, mechanisms, and clinical application. Mol. Cancer 2024 23 1 76 10.1186/s12943‑024‑01992‑2 38622694
    [Google Scholar]
  17. Kim K.W. Park S.H. Wee S.W. Kim J.C. Overexpression of angiogenin in pterygium body fibroblasts and its association with proliferative potency. Invest. Ophthalmol. Vis. Sci. 2013 54 9 6355 6362 10.1167/iovs.13‑12141 23989187
    [Google Scholar]
  18. Liang Y. Kong L. Zhang Y. Zhang Y. Shi M. Huang J. Kong H. Qi S. Yang Y. Hong J. Zhu M. Zhu X. Sun X. Zhang S. Wu L. Zhao C. Transfer RNA derived fragment, tRF-Glu-CTC, aggravates the development of neovascular age-related macular degeneration. Theranostics 2024 14 4 1500 1516 10.7150/thno.92943 38389841
    [Google Scholar]
  19. Friedländer M.R. Mackowiak S.D. Li N. Chen W. Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012 40 1 37 52 10.1093/nar/gkr688 21911355
    [Google Scholar]
  20. Moallemi Rad L. Sadoughi M.M. Nicknam A. Colagar A.H. Hussen B.M. Taheri M. Ghafouri-Fard S. The impact of non-coding RNAs in the pathobiology of eye disorders. Int. J. Biol. Macromol. 2023 239 124245 10.1016/j.ijbiomac.2023.124245 37001772
    [Google Scholar]
  21. Zhang W. He Y. Zhang Y. CircRNA in ocular neovascular diseases: Fundamental mechanism and clinical potential. Pharmacol. Res. 2023 197 106946 10.1016/j.phrs.2023.106946 37797661
    [Google Scholar]
  22. Kim H.K. Fuchs G. Wang S. Wei W. Zhang Y. Park H. Roy-Chaudhuri B. Li P. Xu J. Chu K. Zhang F. Chua M.S. So S. Zhang Q.C. Sarnow P. Kay M.A. A transfer-RNA-derived small RNA regulates ribosome biogenesis. Nature 2017 552 7683 57 62 10.1038/nature25005 29186115
    [Google Scholar]
  23. Zaidi S.B.H. Ali Khan W. Is pterygium morphology related to loss of corneal endothelial cells? A cross-sectional study. Clin. Ophthalmol. 2021 15 1259 1266 10.2147/OPTH.S296531 33790533
    [Google Scholar]
  24. Zhao D. Zhao H. He Y. Yang Y. Du Y. Zhang M. The inhibitive effects of proteasome inhibitor MG-132 on pterygium fibroblasts in vitro and the potential key regulators involved. Life Sci. 2021 270 119088 10.1016/j.lfs.2021.119088 33482188
    [Google Scholar]
  25. Meshkani S.E. Kooshan N. Moghadam A.B. Falanji F. Adli A. Baghbani-Arani F. Arian A.G. Rad A. Signaling roadmap to epithelial–mesenchymal transition in pterygium, TWIST1 centralized. J. Cell. Physiol. 2019 234 10 18146 18155 10.1002/jcp.28447 30847945
    [Google Scholar]
  26. Liu J. Ding X. Yuan L. Zhang X. Identification of pterygium-related long non-coding RNAs and expression profiling by microarray analysis. Int. J. Mol. Med. 2016 38 2 529 536 10.3892/ijmm.2016.2641 27315394
    [Google Scholar]
  27. He S. Wu Z. Biomarkers in the occurrence and development of pterygium. Ophthalmic Res. 2022 65 5 481 492 10.1159/000523878 35405677
    [Google Scholar]
  28. Xu Y. Qiao C. He S. Lu C. Dong S. Wu X. Yan M. Zheng F. Identification of functional genes in pterygium based on bioinformatics analysis. BioMed Res. Int. 2020 2020 1 2383516 10.1155/2020/2383516 33299863
    [Google Scholar]
  29. Xu N. Cui Y. Dong J. Huang L. Exploring the molecular mechanisms of pterygium by constructing lncRNA–miRNA–mRNA regulatory network. Invest. Ophthalmol. Vis. Sci. 2020 61 8 12 10.1167/iovs.61.8.12 32645133
    [Google Scholar]
  30. Van Acker S.I. Van den Bogerd B. Haagdorens M. Siozopoulou V. Ní Dhubhghaill S. Pintelon I. Koppen C. Pterygium—the good, the bad, and the ugly. Cells 2021 10 7 1567 10.3390/cells10071567 34206333
    [Google Scholar]
  31. Gu X. Zhang Y. Qin X. Ma S. Huang Y. Ju S. Transfer RNA-derived small RNA: An emerging small non-coding RNA with key roles in cancer. Exp. Hematol. Oncol. 2022 11 1 35 10.1186/s40164‑022‑00290‑1 35658952
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673361701250321082610
Loading
/content/journals/cmc/10.2174/0109298673361701250321082610
Loading

Data & Media loading...

Supplements


  • Article Type:
    Research Article
Keywords: fibroblast proliferation ; migration ; pterygium ; non-coding RNAs ; tsRNAs ; RNA-based therapy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test