
Full text loading...
Pterygium is a common ocular surface disorder characterized by fibrovascular overgrowth, with recurrence remaining a major clinical challenge. While non-coding RNAs have been implicated in pterygium pathogenesis, the role of tRNA-derived small RNAs (tsRNAs) remains unexplored.
We performed small RNA sequencing on pterygium and adjacent normal conjunctiva tissues to profile tsRNA expression. Differentially expressed tsRNAs were validated using qRT-PCR, and their biological functions were investigated via cell proliferation and wound healing assays in human pterygium fibroblasts (HPF). Potential target genes and enriched pathways were analyzed using bioinformatics approaches, including KEGG and GO enrichment analysis.
We identified significantly dysregulated tsRNAs in pterygium, with tRF-1_30-His- GTG-1, tRF-1_31-Val-CAC-2, tRF-1_31-Gly-GCC-1, and tRF-1_30-Gly-CCC-1-M4 exhibiting notable upregulation. Functional assays demonstrated that tRF-1_30-His- GTG-1 promotes fibroblast proliferation and migration, while the other three tsRNAs enhance fibroblast migration. Pathway enrichment analysis revealed their involvement in cellular proliferation, extracellular matrix remodeling, and angiogenesis.
This study provides the first evidence of tsRNA involvement in pterygium pathogenesis, highlighting their potential as biomarkers and therapeutic targets. Future studies should focus on deciphering their precise regulatory mechanisms and developing RNA-based therapeutic strategies to mitigate disease progression.