Skip to content
2000
image of Synthesis of (E)-3-(aryl)-1-phenylprop-2-en-1-one Chalcone Derivatives for Hyperglycemic Effect in Diabetes: In-vitro, In-vivo and In-silico Approach

Abstract

Background

Diabetes mellitus (DM) is a chronic metabolic disorder that seeks treatment instead of available mitigative therapy.

Methods

Six ()-3-(aryl)-1-phenylprop-2-en-1-one chalcones were synthesized and characterized through various spectroscopic techniques. Their anti-diabetic potential was examined through (α-glucosidase and α-amylase inhibition assays), (alloxan-induced hyperglycemia), and studies.

Results

All the chalcones derivatives significantly inhibited α-glucosidase and α-amylase. Compounds (IC = 1.10 ± 0.02) and (IC = 3.25 ± 0.10 µM) exhibited the most potent activity against α-glucosidase. The effect of compounds and was also significant against α-amylase with IC of 13.2 ± 0.50 and 10.2 ± 0.4 µM, respectively. In alloxan-induced hyperglycemic model, a significant (<0.001) reduction in blood glucose level (BGL) was observed by compounds , and with maximum percent inhibition of 47.48, 47.22 and 47.55, respectively. In the oral glucose tolerance test, a continuous reduction in BGL was noted at 60 minutes. No negative effect was seen on lipid profile, and in liver and renal function tests. However, a slight gain in body weight was noted. Moreover, docking result indicates good interaction of these molecules with the target enzymes, α-glucosidase and α-amylase.

Conclusion

These results demonstrate that all these molecules have significant anti-diabetic potential.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673343058250127103657
2025-06-24
2025-09-09
Loading full text...

Full text loading...

References

  1. Rachid A. Rabah D. Farid L. Zohra S.F. Houcine B. Nacéra B. Ethnopharmacological survey of medicinal plants used in the traditional treatment of diabetes mellitus in the North Western and South Western Algeria. J. Med. Plants Res. 2012 6 10 2041 2050
    [Google Scholar]
  2. Singab A.N. Youssef F.S. Ashour M.L. Medicinal plants with potential antidiabetic activity and their assessment. Med. Aromat. Plants 2014 3 151 2167 0412
    [Google Scholar]
  3. Tran N. Pham B. Le L. Bioactive compounds in anti-diabetic plants: From herbal medicine to modern drug discovery. Biology 2020 9 9 252 10.3390/biology9090252 32872226
    [Google Scholar]
  4. Güemes M. Rahman S.A. Hussain K. What is a normal blood glucose? Arch. Dis. Child. 2016 101 6 569 574 10.1136/archdischild‑2015‑308336 26369574
    [Google Scholar]
  5. Jarald E. Joshi S.B. Jain D. Diabetes and herbal medicines. J. Clin. Biochem. Nutr. 2008 40 3 163 173 10.3164/jcbn.40.163 18398493
    [Google Scholar]
  6. Ahmad J. Rafat D. HbA1c and iron deficiency: A review. Diabetes Metab. Syndr. 2013 7 2 118 122 10.1016/j.dsx.2013.02.004 23680254
    [Google Scholar]
  7. Wild S. Roglic G. Green A. Sicree R. King H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care 2004 27 5 1047 1053 10.2337/diacare.27.5.1047 15111519
    [Google Scholar]
  8. Patil C.B. Mahajan S. Katti S.A. A versatile molecule. J. Pharma. Sci. Res. 2009 1 3 11
    [Google Scholar]
  9. Zafar J. Nadeem D. Khan S.A. Jawad Abbasi M.M. Aziz F. Saeed S. Prevalence of diabetes and its correlates in urban population of Pakistan: A Cross-sectional survey. J. Pak. Med. Assoc. 2016 66 8 922 927 27524520
    [Google Scholar]
  10. Bagri P. Ali M. Aeri V. Bhowmik M. Isolation and antidiabetic activity of new lanostenoids from the leaves of Psidium guajava L. Int. J. Pharm. Pharm. Sci. 2016 8 9 14 18 10.22159//ijpps.2016.v8i9.10425
    [Google Scholar]
  11. Welday Kahssay S. Hailu G.S. Taye Desta K. Design, synthesis, characterization and in vivo antidiabetic activity evaluation of some chalcone derivatives. Drug Des. Devel. Ther. 2021 15 3119 3129 10.2147/DDDT.S316185 34305396
    [Google Scholar]
  12. Gomes M. Muratov E. Pereira M. Peixoto J. Rosseto L. Cravo P. Andrade C. Neves B. Chalcone derivatives: Promising starting points for drug design. Molecules 2017 22 8 1210 10.3390/molecules22081210 28757583
    [Google Scholar]
  13. Katsori A.M. Hadjipavlou-Litina D. Recent progress in therapeutic applications of chalcones. Expert Opin. Ther. Pat. 2011 21 10 1575 1596 10.1517/13543776.2011.596529 21711087
    [Google Scholar]
  14. Matos M.J. Vazquez-Rodriguez S. Uriarte E. Santana L. Potential pharmacological uses of chalcones: A patent review (from June 2011 – 2014). Expert Opin. Ther. Pat. 2015 25 3 351 366 10.1517/13543776.2014.995627 25598152
    [Google Scholar]
  15. De Freitas Silva M. Pruccoli L. Morroni F. Sita G. Seghetti F. Viegas C. Jr Tarozzi A. The Keap1/Nrf2-ARE pathway as a pharmacological target for chalcones. Molecules 2018 23 7 1803 10.3390/molecules23071803 30037040
    [Google Scholar]
  16. Tsukiyama R.I. Katsura H. Tokuriki N. Kobayashi M. Antibacterial activity of licochalcone A against spore-forming bacteria. Antimicrob. Agents Chemother. 2002 46 5 1226 1230 10.1128/AAC.46.5.1226‑1230.2002 11959549
    [Google Scholar]
  17. Kolbe L. Immeyer J. Batzer J. Wensorra U. Dieck K. Mundt C. Wolber R. Stäb F. Schönrock U. Ceilley R.I. Wenck H. Anti-inflammatory efficacy of Licochalcone A: Correlation of clinical potency and in vitro effects. Arch. Dermatol. Res. 2006 298 1 23 30 10.1007/s00403‑006‑0654‑4 16552540
    [Google Scholar]
  18. Girisa S. Saikia Q. Bordoloi D. Banik K. Monisha J. Daimary U.D. Verma E. Ahn K.S. Kunnumakkara A.B. Xanthohumol from Hop: Hope for cancer prevention and treatment. IUBMB Life 2021 73 8 1016 1044 10.1002/iub.2522 34170599
    [Google Scholar]
  19. Carmona-Gutierrez D. Zimmermann A. Kainz K. Pietrocola F. Chen G. Maglioni S. Schiavi A. Nah J. Mertel S. Beuschel C.B. Castoldi F. Sica V. Trausinger G. Raml R. Sommer C. Schroeder S. Hofer S.J. Bauer M.A. Pendl T. Tadic J. Dammbrueck C. Hu Z. Ruckenstuhl C. Eisenberg T. Durand S. Bossut N. Aprahamian F. Abdellatif M. Sedej S. Enot D.P. Wolinski H. Dengjel J. Kepp O. Magnes C. Sinner F. Pieber T.R. Sadoshima J. Ventura N. Sigrist S.J. Kroemer G. Madeo F. The flavonoid 4,4′-dimethoxychalcone promotes autophagy-dependent longevity across species. Nat. Commun. 2019 10 1 651 10.1038/s41467‑019‑08555‑w 30783116
    [Google Scholar]
  20. Sahu N.K. Balbhadra S.S. Choudhary J. Kohli D.V. Exploring pharmacological significance of chalcone scaffold: A review. Curr. Med. Chem. 2012 19 2 209 225 10.2174/092986712803414132 22320299
    [Google Scholar]
  21. Mahapatra D.K. Asati V. Bharti S.K. Chalcones and their therapeutic targets for the management of diabetes: Structural and pharmacological perspectives. Eur. J. Med. Chem. 2015 92 839 865 10.1016/j.ejmech.2015.01.051 25638569
    [Google Scholar]
  22. Kurşun-Aktar B.S. Adem Ş. Tatar-Yilmaz G. Hameed Z.A.H. Oruç-Emre E.E. Investigation of α-glucosidase and α-amylase inhibitory effects of phenoxy chalcones and molecular modeling studies. J. Mol. Recognit. 2023 36 11 e3061 10.1002/jmr.3061 37720970
    [Google Scholar]
  23. Lv S.Y. Cheng L.P. Design, synthesis and inhibition evaluation of novel chalcone amide α-glucosidase inhibitors. Future Med. Chem. 2024 16 13 1333 1345 10.1080/17568919.2024.2347092 39109435
    [Google Scholar]
  24. Al-ghulikah H.A. Mughal E.U. Elkaeed E.B. Naeem N. Nazir Y. Alzahrani A.Y.A. Sadiq A. Shah S.W.A. Discovery of chalcone derivatives as potential α-glucosidase and cholinesterase inhibitors: Effect of hyperglycemia in paving a path to dementia. J. Mol. Struct. 2023 1275 134658 10.1016/j.molstruc.2022.134658
    [Google Scholar]
  25. ur Rashid H. Xu Y. Ahmad N. Muhammad Y. Wang L. Promising anti-inflammatory effects of chalcones via inhibition of cyclooxygenase, prostaglandin E2, inducible NO synthase and nuclear factor κb activities. Bioorg. Chem. 2019 87 335 365 10.1016/j.bioorg.2019.03.033 30921740
    [Google Scholar]
  26. Ramalho S.D. Bernades A. Demetrius G. Noda-Perez C. Vieira P.C. dos Santos C.Y. da Silva J.A. de Moraes M.O. Mousinho K.C. Synthetic chalcone derivatives as inhibitors of cathepsins K and B, and their cytotoxic evaluation. Chem. Biodivers. 2013 10 11 1999 2006 10.1002/cbdv.201200344 24243608
    [Google Scholar]
  27. Mousa M.N. Muhasin R.J. Alrubaie L.A.R. Synthesis and assessment of anti-inflammatory activity of a chlorosubstituted chalcone derivatives and using the semi-empirical methods to measure the linked physicochemical parameters. J. Pharm. Biomed. Sci. 2016 6 11
    [Google Scholar]
  28. Talniya N.C. Sood P. Synthesis and antimicrobial activity of chalcones. J. Chem. Pharm. Res. 2016 8 5 610 613 26867972
    [Google Scholar]
  29. Kumar V. Kumar S. Hassan M. Wu H. Thimmulappa R.K. Kumar A. Sharma S.K. Parmar V.S. Biswal S. Malhotra S.V. Novel chalcone derivatives as potent Nrf2 activators in mice and human lung epithelial cells. J. Med. Chem. 2011 54 12 4147 4159 10.1021/jm2002348 21539383
    [Google Scholar]
  30. Mameda N. Peraka S. Kodumuri S. Chevella D. Banothu R. Amrutham V. Nama N. Synthesis of α,β-unsaturated ketones from alkynes and aldehydes over Hβ zeolite under solvent-free conditions. RSC Advances 2016 6 63 58137 58141 10.1039/C6RA11593D
    [Google Scholar]
  31. Zhao Y. Song Q. Copper-catalyzed tandem A3-coupling–isomerization–hydrolysis reactions of aldehydes and terminal alkynes leading to chalcones. Org. Chem. Front. 2016 3 3 294 297 10.1039/C5QO00282F
    [Google Scholar]
  32. Duhan M. Kumar P. Sindhu J. Singh R. Devi M. Kumar A. Kumar R. Lal S. Exploring biological efficacy of novel benzothiazole linked 2,5-disubstituted-1,3,4-oxadiazole hybrids as efficient α-amylase inhibitors: Synthesis, characterization, inhibition, molecular docking, molecular dynamics and Monte Carlo based QSAR studies. Comput. Biol. Med. 2021 138 104876 10.1016/j.compbiomed.2021.104876 34598068
    [Google Scholar]
  33. Kumar P. Duhan M. Kadyan K. Sindhu J. Kumar S. Sharma H. Synthesis of novel inhibitors of α-amylase based on the thiazolidine-4-one skeleton containing a pyrazole moiety and their configurational studies. MedChemComm 2017 8 7 1468 1476 10.1039/C7MD00080D 30108858
    [Google Scholar]
  34. Kaya G. Noma S.A.A. Barut Celepci D. Bayıl İ. Taskin-Tok T. Gök Y. Ateş B. Aktaş A. Aygün M. Tezcan B. Design, synthesis, spectroscopic characterizations, single crystal X-ray analysis, in vitro xanthine oxidase and acetylcholinesterase inhibitory evaluation as well as in silico evaluation of selenium-based N -heterocyclic carbene compounds. J. Biomol. Struct. Dyn. 2023 41 21 11728 11747 10.1080/07391102.2022.2163696 36622368
    [Google Scholar]
  35. Ullah S. Waqas M. Halim S.A. Khan I. Khalid A. Abdalla A.N. Makeen H.A. Ibrar A. Khan A. Al-Harrasi A. Triazolothiadiazoles and triazolothiadiazines as potent α-glucosidase inhibitors: Mechanistic insights from kinetics studies, molecular docking and dynamics simulations. Int. J. Biol. Macromol. 2023 250 126227 10.1016/j.ijbiomac.2023.126227 37558024
    [Google Scholar]
  36. Khan H.A. Ghufran M. Shams S. Jamal A. Ayaz M. Ullah M. Khan A. Khan M.I. Awan Z.A. In-depth in-vitro and in-vivo anti-diabetic evaluations of Fagonia cretica mediated biosynthesized selenium nanoparticles. Biomed. Pharmacother. 2023 164 114872 10.1016/j.biopha.2023.114872 37245338
    [Google Scholar]
  37. Assad T. Khan R.A. Feroz Z. Evaluation of hypoglycemic and hypolipidemic activity of methanol extract of Brassica oleracea. Chin. J. Nat. Med. 2014 12 9 648 653 10.1016/S1875‑5364(14)60099‑6 25263975
    [Google Scholar]
  38. Ahmad W. Khan I. Khan M.A. Ahmad M. Subhan F. Karim N. Evaluation of antidiabetic and antihyperlipidemic activity of Artemisia indica linn (aeriel parts) in Streptozotocin induced diabetic rats. J. Ethnopharmacol. 2014 151 1 618 623 10.1016/j.jep.2013.11.012 24252495
    [Google Scholar]
  39. Qazi N. Khan R.A. Rizwani G.H. Feroz Z. Effect of Carthamus tinctorius (Safflower) on fasting blood glucose and insulin levels in alloxan induced diabetic rabbits. Pak. J. Pharm. Sci. 2014 27 2 377 380 24577929
    [Google Scholar]
  40. Okoli C. Ibiam A. Ezike A. Akah P. Okoye T. Evaluation of antidiabetic potentials of Phyllanthus niruri in alloxan diabetic rats. Afr. J. Biotechnol. 2010 9 2
    [Google Scholar]
  41. Akhtar M.S. Ahmed M. Gulzar K. Adnan H. Hypoglycemic activity of Dodonaea viscosa leaves in normal and alloxan-induced diabetic rabbits. Diabetol. Croat. 2011 40 3 71 79
    [Google Scholar]
  42. Aghajanyan A. Movsisyan Z. Trchounian A. Antihyperglycemic and antihyperlipidemic activity of hydroponic stevia rebaudiana aqueous extract in hyperglycemia induced by immobilization stress in rabbits. Biomed. Res. Int. 2017 2017 9251358 10.1155/2017/9251358
    [Google Scholar]
  43. Liu M. Zhang W. Wei J. Lin X. Synthesis and α-glucosidase inhibitory mechanisms of bis(2,3-dibromo-4,5-dihydroxybenzyl) ether, a potential marine bromophenol α-glucosidase inhibitor. Mar. Drugs 2011 9 9 1554 1565 10.3390/md9091554 22131958
    [Google Scholar]
  44. Sharma R. Chatterjee E. Mathew J. Sharma S. Rao N.V. Pan C.H. Lee S.B. Dhingra A. Grewal A.S. Liou J.P. Guru S.K. Nepali K. Accommodation of ring C expanded deoxyvasicinone in the HDAC inhibitory pharmacophore culminates into a tractable anti-lung cancer agent and pH-responsive nanocarrier. Eur. J. Med. Chem. 2022 240 114602 10.1016/j.ejmech.2022.114602 35858522
    [Google Scholar]
  45. Sharma R. Chiang Y.H. Chen H.C. Lin H.Y. Yang W.B. Nepali K. Lai M.J. Chen K.Y. Liou J.P. Hsu T.I. Dual inhibition of CYP17A1 and HDAC6 by abiraterone-installed hydroxamic acid overcomes temozolomide resistance in glioblastoma through inducing DNA damage and oxidative stress. Cancer Lett. 2024 586 216666 10.1016/j.canlet.2024.216666 38311053
    [Google Scholar]
  46. Kar Mahapatra D. Asati V. Bharti S.K. An updated patent review of therapeutic applications of chalcone derivatives (2014-present). Expert Opin. Ther. Pat. 2019 29 5 385 406 10.1080/13543776.2019.1613374 31030616
    [Google Scholar]
  47. Nair S.S. Kavrekar V. Mishra A. In vitro studies on alpha amylase and alpha glucosidase inhibitory activities of selected plant extracts. Eur. J. Exp. Biol. 2013 3 1 128 132
    [Google Scholar]
  48. Fröde T.S. Medeiros Y.S. Animal models to test drugs with potential antidiabetic activity. J. Ethnopharmacol. 2008 115 2 173 183 10.1016/j.jep.2007.10.038 18068921
    [Google Scholar]
  49. Chaimum-aom N. Chomko S. Talubmook C. Toxicology and oral glucose tolerance test (OGTT) of Thai medicinal plant used for diabetes controls, Phyllanthus acidus L.(Euphorbiaceae). Pharmacogn. J. 2016 9 1 58 61 10.5530/pj.2017.1.11
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673343058250127103657
Loading
/content/journals/cmc/10.2174/0109298673343058250127103657
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test