Skip to content
2000
image of Integration of Single-cell Sequencing Analysis Reveals Disulfidptosis Related Molecular Subtype and Novel Prognosis System for Osteosarcoma

Abstract

Background

Osteosarcoma (OS) is one of the most common primary malignancies in children and adolescents. Disulfidptosis, a newly identified form of metabolically induced programmed cell death triggered by disulfide stress, has not yet been explored in OS.

Methods

We integrated data from public databases and applied a series of bioinformatics approaches, including clustering analysis to classify OS subtypes, and Cox and LASSO regression analysis to identify prognostic disulfidptosis-related genes (DRGs). Enrichment analysis was performed to explore the biological pathways associated with DRG-related molecular subtypes. The immune infiltration landscape was assessed to understand the tumor microenvironment in different risk subgroups. Additionally, drug sensitivity analysis was conducted to evaluate the potential clinical therapeutic strategies of the identified DRG score subgroups. The distribution of DRG expression across OS cell subtypes was further analyzed using single-cell RNA sequencing. assays, including Western blotting, qRT-PCR, and cell migration and invasion assays, were conducted to validate POLR1D expression and function in OS cells.

Results

We established a DRG-based prognostic model that effectively stratifies OS patients into distinct risk groups with different survival outcomes. The model also revealed significant differences in immune cell infiltration between high and low DRG scores group, suggesting a link between disulfidptosis and the OS immune microenvironment. Drug sensitivity analysis indicated that the DRG signature could guide personalized therapeutic strategies. Single-cell RNA sequencing revealed heterogeneous expression of DRG signature across OS cell subtypes. Functional assays confirmed that POLR1D was aberrantly overexpressed in OS cells and promotes their migration and invasion, supporting its role as a potential oncogenic driver in OS.

Conclusion

Our study is the first to investigate the role of DRGs for risk stratification in OS, providing new insights and targets into OS pathogenesis.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673359541250527042918
2025-07-07
2025-09-09
Loading full text...

Full text loading...

References

  1. Harrison D.J. Geller D.S. Gill J.D. Lewis V.O. Gorlick R. Current and future therapeutic approaches for osteosarcoma. Expert Rev. Anticancer Ther. 2018 18 1 39 50 10.1080/14737140.2018.1413939 29210294
    [Google Scholar]
  2. Odri G.A. Tchicaya-Bouanga J. Yoon D.J.Y. Modrowski D. Metastatic progression of osteosarcomas: A review of current knowledge of environmental versus oncogenic drivers. Cancers 2022 14 2 360 10.3390/cancers14020360 35053522
    [Google Scholar]
  3. Blum R.H. Simplified vs complex adjuvant chemotherapy schedule for osteosarcoma. Lancet 1997 350 9082 900 901 10.1016/S0140‑6736(05)63262‑X 9314864
    [Google Scholar]
  4. Beird H.C. Bielack S.S. Flanagan A.M. Gill J. Heymann D. Janeway K.A. Livingston J.A. Roberts R.D. Strauss S.J. Gorlick R. Osteosarcoma. Nat. Rev. Dis. Primers 2022 8 1 77 10.1038/s41572‑022‑00409‑y 36481668
    [Google Scholar]
  5. Kager L. Tamamyan G. Bielack S. Novel insights and therapeutic interventions for pediatric osteosarcoma. Future Oncol. 2017 13 4 357 368 10.2217/fon‑2016‑0261 27651036
    [Google Scholar]
  6. Khadembaschi D. Jafri M. Praveen P. Parmar S. Breik O. Does neoadjuvant chemotherapy provide a survival benefit in maxillofacial osteosarcoma: A systematic review and pooled analysis. Oral Oncol. 2022 135 106133 10.1016/j.oraloncology.2022.106133 36228524
    [Google Scholar]
  7. Kim M.S. Bolia I.K. Iglesias B. Sharf T. Roberts S.I. Kang H. Christ A.B. Menendez L.R. Timing of treatment in osteosarcoma: Challenges and perspectives: A scoping review. BMC Cancer 2022 22 1 970 10.1186/s12885‑022‑10061‑0 36088295
    [Google Scholar]
  8. Smrke A. Anderson P.M. Gulia A. Gennatas S. Huang P.H. Jones R.L. Future directions in the treatment of osteosarcoma. Cells 2021 10 1 172 10.3390/cells10010172 33467756
    [Google Scholar]
  9. Tippett V.L. Tattersall L. Latif N.B.A. Shah K.M. Lawson M.A. Gartland A. The strategy and clinical relevance of in vitro models of MAP resistance in osteosarcoma: A systematic review. Oncogene 2023 42 4 259 277 10.1038/s41388‑022‑02529‑x 36434179
    [Google Scholar]
  10. Jafari F. Javdansirat S. Sanaie S. Naseri A. Shamekh A. Rostamzadeh D. Dolati S. Osteosarcoma: A comprehensive review of management and treatment strategies. Ann. Diagn. Pathol. 2020 49 151654 10.1016/j.anndiagpath.2020.151654 33130384
    [Google Scholar]
  11. Garcia-Ortega D.Y. Cabrera-Nieto S.A. Caro-Sánchez H.S. Cruz-Ramos M. An overview of resistance to chemotherapy in osteosarcoma and future perspectives. Cancer Drug Resist. 2022 5 2 762 793 10.20517/cdr.2022.18 36176756
    [Google Scholar]
  12. Meftahpour V. Aghebati-Maleki A. Fotouhi A. Safarzadeh E. Aghebati-Maleki L. Prognostic significance and therapeutic potentials of immune checkpoints in osteosarcoma. EXCLI J. 2022 21 250 268 35145371
    [Google Scholar]
  13. Rothzerg E. Pfaff A.L. Koks S. Innovative approaches for treatment of osteosarcoma. Exp. Biol. Med. (Maywood) 2022 247 4 310 316 10.1177/15353702211067718 35043695
    [Google Scholar]
  14. Peng F. Liao M. Qin R. Zhu S. Peng C. Fu L. Chen Y. Han B. Regulated cell death (RCD) in cancer: Key pathways and targeted therapies. Signal Transduct. Target. Ther. 2022 7 1 286 10.1038/s41392‑022‑01110‑y 35963853
    [Google Scholar]
  15. Liu X. Nie L. Zhang Y. Yan Y. Wang C. Colic M. Olszewski K. Horbath A. Chen X. Lei G. Mao C. Wu S. Zhuang L. Poyurovsky M.V. You M.J. Hart T. Billadeau D.D. Chen J. Gan B. Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis. Nat. Cell Biol. 2023 25 3 404 414 10.1038/s41556‑023‑01091‑2 36747082
    [Google Scholar]
  16. Li X. Xu J. Yan L. Tang S. Zhang Y. Shi M. Liu P. Targeting disulfidptosis with potentially bioactive natural products in metabolic cancer therapy. Metabolites 2024 14 11 604 10.3390/metabo14110604 39590840
    [Google Scholar]
  17. Li T. Song Y. Wei L. Song X. Duan R. Disulfidptosis: A novel cell death modality induced by actin cytoskeleton collapse and a promising target for cancer therapeutics. Cell Commun. Signal. 2024 22 1 491 10.1186/s12964‑024‑01871‑9 39394612
    [Google Scholar]
  18. Liu X. Zhuang L. Gan B. Disulfidptosis: Disulfide stress–induced cell death. Trends Cell Biol. 2024 34 4 327 337 10.1016/j.tcb.2023.07.009 37574347
    [Google Scholar]
  19. Wang X. Lin J. Li Z. Wang M. In what area of biology has a “new” type of cell death been discovered? Biochim. Biophys. Acta Rev. Cancer 2023 1878 5 188955 10.1016/j.bbcan.2023.188955 37451411
    [Google Scholar]
  20. Zheng P. Zhou C. Ding Y. Duan S. Disulfidptosis: A new target for metabolic cancer therapy. J. Exp. Clin. Cancer Res. 2023 42 1 103 10.1186/s13046‑023‑02675‑4 37101248
    [Google Scholar]
  21. Wei S. Han C. Mo S. Huang H. Luo X. Advancements in programmed cell death research in antitumor therapy: A comprehensive overview. Apoptosis 2025 30 1-2 401 421 10.1007/s10495‑024‑02038‑0 39487314
    [Google Scholar]
  22. Mi T. Kong X. Chen M. Guo P. He D. Inducing disulfidptosis in tumors: Potential pathways and significance. MedComm 2024 5 11 e791 10.1002/mco2.791
    [Google Scholar]
  23. Bell H.N. Stockwell B.R. Zou W. Ironing out the role of ferroptosis in immunity. Immunity 2024 57 5 941 956 10.1016/j.immuni.2024.03.019 38749397
    [Google Scholar]
  24. Khan A. Huo Y. Guo Y. Shi J. Hou Y. Ferroptosis is an effective strategy for cancer therapy. Med. Oncol. 2024 41 5 124 10.1007/s12032‑024‑02317‑5 38652406
    [Google Scholar]
  25. Shi Y. Gong M. Deng Z. Liu H. Chang Y. Yang Z. Cai L. Tirapazamine suppress osteosarcoma cells in part through SLC7A11 mediated ferroptosis. Biochem. Biophys. Res. Commun. 2021 567 118 124 10.1016/j.bbrc.2021.06.036 34147710
    [Google Scholar]
  26. He P. Liu F. Wang Z. Gong H. Zhang M. Jia Z. Zhai X. CircKIF4A enhances osteosarcoma proliferation and metastasis by sponging MiR-515-5p and upregulating SLC7A11. Mol. Biol. Rep. 2022 49 6 4525 4535 10.1007/s11033‑022‑07296‑2 35579738
    [Google Scholar]
  27. Nie J. Ling Y. Jin M. Chen Z. Liu W. Shen W. Fang T. Li J. He Y. Butyrate enhances erastin-induced ferroptosis of osteosarcoma cells via regulating ATF3/SLC7A11 pathway. Eur. J. Pharmacol. 2023 957 176009 10.1016/j.ejphar.2023.176009 37619784
    [Google Scholar]
  28. Cifuentes M. García M.A. Arrabal P.M. Martínez F. Yañez M.J. Jara N. Weil B. Domínguez D. Medina R.A. Nualart F. Insulin regulates GLUT1-mediated glucose transport in MG-63 human osteosarcoma cells. J. Cell. Physiol. 2011 226 6 1425 1432 10.1002/jcp.22668 21321933
    [Google Scholar]
  29. Kubo T. Shimose S. Fujimori J. Furuta T. Arihiro K. Ochi M. Does expression of glucose transporter protein-1 relate to prognosis and angiogenesis in osteosarcoma? Clin. Orthop. Relat. Res. 2015 473 1 305 310 10.1007/s11999‑014‑3910‑5 25193692
    [Google Scholar]
  30. Yue Z. Guan X. Chao R. Huang C. Li D. Yang P. Liu S. Hasegawa T. Guo J. Li M. Diallyl disulfide induces apoptosis and autophagy in human osteosarcoma MG-63 cells through the PI3K/Akt/mTOR pathway. Molecules 2019 24 14 2665 10.3390/molecules24142665 31340526
    [Google Scholar]
  31. Masuelli L. Marzocchella L. Focaccetti C. Tresoldi I. Palumbo C. Izzi V. Benvenuto M. Fantini M. Lista F. Tarantino U. Modesti A. Galvano F. Bei R. Resveratrol and diallyl disulfide enhance curcumin-induced sarcoma cell apoptosis. Front. Biosci. 2012 17 1 498 508 10.2741/3940 22201757
    [Google Scholar]
  32. Shu Q. Du Y. She H. Mo J. Zhu Z. Zhong L. He F. Fan J. Zhu J. Construction and validation of a mitochondria-associated genes prognostic signature and immune microenvironment characteristic of sepsis. Int. Immunopharmacol. 2024 126 111275 10.1016/j.intimp.2023.111275 37995567
    [Google Scholar]
  33. Leek J.T. Johnson W.E. Parker H.S. Jaffe A.E. Storey J.D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 2012 28 6 882 883 10.1093/bioinformatics/bts034 22257669
    [Google Scholar]
  34. Palorini R. Cammarata F.P. Balestrieri C. Monestiroli A. Vasso M. Gelfi C. Alberghina L. Chiaradonna F. Glucose starvation induces cell death in K-ras-transformed cells by interfering with the hexosamine biosynthesis pathway and activating the unfolded protein response. Cell Death Dis. 2013 4 7 e732 10.1038/cddis.2013.257 23868065
    [Google Scholar]
  35. Dong C. Zhao Y. Han Y. Li M. Wang G. Targeting glutamine metabolism crosstalk with tumor immune response. Biochim. Biophys. Acta Rev. Cancer 2025 1880 1 189257 10.1016/j.bbcan.2024.189257 39746457
    [Google Scholar]
  36. Cui Y. Sun Y. Li D. Zhang Y. Zhang Y. Cao D. Cao X. The crosstalk among the physical tumor microenvironment and the effects of glucose deprivation on tumors in the past decade. Front. Cell Dev. Biol. 2023 11 1275543 10.3389/fcell.2023.1275543 38020920
    [Google Scholar]
  37. Halma M. Tuszynski J. Marik P. Cancer metabolism as a therapeutic target and review of interventions. Nutrients 2023 15 19 4245 10.3390/nu15194245 37836529
    [Google Scholar]
  38. Zhao S.J. Shen Y.F. Li Q. He Y.J. Zhang Y.K. Hu L.P. Jiang Y.Q. Xu N.W. Wang Y.J. Li J. Wang Y.H. Liu F. Zhang R. Yin G.Y. Tang J.H. Zhou D. Zhang Z.G. SLIT2/ROBO1 axis contributes to the Warburg effect in osteosarcoma through activation of SRC/ERK/c-MYC/PFKFB2 pathway. Cell Death Dis. 2018 9 3 390 10.1038/s41419‑018‑0419‑y 29523788
    [Google Scholar]
  39. Guo W. Wang X. Lu B. Yu J. Xu M. Huang R. Cheng M. Yang M. Zhao W. Zou C. Super-enhancer- driven MLX mediates redox balance maintenance via SLC7A11 in osteosarcoma. Cell Death Dis. 2023 14 7 439 10.1038/s41419‑023‑05966‑y 37460542
    [Google Scholar]
  40. Li L. Zhang Y. Gao Y. Hu Y. Wang R. Wang S. Li Y. He Y. Yuan C. LncSNHG14 promotes nutlin3a resistance by inhibiting ferroptosis via the miR-206 /SLC7A11 axis in osteosarcoma cells. Cancer Gene Ther. 2023 30 5 704 715 10.1038/s41417‑022‑00581‑z 36599973
    [Google Scholar]
  41. Chen M. Jiang Y. Sun Y. KDM4A-mediated histone demethylation of SLC7A11 inhibits cell ferroptosis in osteosarcoma. Biochem. Biophys. Res. Commun. 2021 550 77 83 10.1016/j.bbrc.2021.02.137 33689883
    [Google Scholar]
  42. Misiaszek A.D. Girbig M. Grötsch H. Baudin F. Murciano B. Lafita A. Müller C.W. Cryo-EM structures of human RNA polymerase I. Nat. Struct. Mol. Biol. 2021 28 12 997 1008 10.1038/s41594‑021‑00693‑4 34887565
    [Google Scholar]
  43. Schaefer E. Collet C. Genevieve D. Vincent M. Lohmann D.R. Sanchez E. Bolender C. Eliot M.M. Nürnberg G. Passos-Bueno M.R. Wieczorek D. van Maldergem L. Doray B. Autosomal recessive POLR1D mutation with decrease of TCOF1 mRNA is responsible for Treacher Collins syndrome. Genet. Med. 2014 16 9 720 724 10.1038/gim.2014.12 24603435
    [Google Scholar]
  44. Tian Y. Sun F. Zhong Y. Huang W. Wang G. Liu C. Xiao Y. Wu J. Mu L. Expression and clinical significance of POLR1D in colorectal cancer. Oncology 2020 98 3 138 145 10.1159/000504174 31722331
    [Google Scholar]
  45. Liu Y. Huang N. Liao S. Rothzerg E. Yao F. Li Y. Wood D. Xu J. Current research progress in targeted anti-angiogenesis therapy for osteosarcoma. Cell Prolif. 2021 54 9 e13102 10.1111/cpr.13102 34309110
    [Google Scholar]
  46. Chen D.S. Hurwitz H. Combinations of bevacizumab with cancer immunotherapy. Cancer J. 2018 24 4 193 204 10.1097/PPO.0000000000000327 30119083
    [Google Scholar]
  47. Zhou Q. Perakis S.O. Ulz P. Mohan S. Riedl J.M. Talakic E. Lax S. Tötsch M. Hoefler G. Bauernhofer T. Pichler M. Gerger A. Geigl J.B. Heitzer E. Speicher M.R. Cell-free DNA analysis reveals POLR1D-mediated resistance to bevacizumab in colorectal cancer. Genome Med. 2020 12 1 20 10.1186/s13073‑020‑0719‑6 32087735
    [Google Scholar]
  48. Yang J. Zhang W. New molecular insights into osteosarcoma targeted therapy. Curr. Opin. Oncol. 2013 25 4 398 406 10.1097/CCO.0b013e3283622c1b 23666471
    [Google Scholar]
  49. Assi T. Watson S. Samra B. Rassy E. Le Cesne A. Italiano A. Mir O. Targeting the VEGF pathway in osteosarcoma. Cells 2021 10 5 1240 10.3390/cells10051240 34069999
    [Google Scholar]
  50. Zhou Q. Zhu Y. Deng Z. Long H. Zhang S. Chen X. VEGF and EMMPRIN expression correlates with survival of patients with osteosarcoma. Surg. Oncol. 2011 20 1 13 19 10.1016/j.suronc.2009.09.002 19836228
    [Google Scholar]
  51. Kumanishi S. Yamanegi K. Nishiura H. Fujihara Y. Kobayashi K. Nakasho K. Futani H. Yoshiya S. Epigenetic modulators hydralazine and sodium valproate act synergistically in VEGI-mediated anti-angiogenesis and VEGF interference in human osteosarcoma and vascular endothelial cells. Int. J. Oncol. 2019 55 1 167 178 10.3892/ijo.2019.4811 31180533
    [Google Scholar]
  52. Ren S. Pan R. Wang Z. Development and experimental verification of novel angiogenesis related prognostic model and immune infiltration characterization in osteosarcoma. Discover Oncology 2024 15 1 411 10.1007/s12672‑024‑01292‑7 39237807
    [Google Scholar]
  53. Ma Y. Liu Y. Luo D. Guo Z. Xiang H. Chen B. Wu X. Identification of biomarkers and immune infiltration characterization of lipid metabolism associated genes in osteoarthritis based on machine learning algorithms. Aging (Albany NY) 2024 16 8 7043 7059 10.18632/aging.205740 38637111
    [Google Scholar]
  54. Yang B. Su Z. Chen G. Zeng Z. Tan J. Wu G. Zhu S. Lin L. Identification of prognostic biomarkers associated with metastasis and immune infiltration in osteosarcoma. Oncol. Lett. 2021 21 3 180 10.3892/ol.2021.12441 33574919
    [Google Scholar]
  55. Yang M. Cao Y. Wang Z. Zhang T. Hua Y. Cai Z. Identification of two immune subtypes in osteosarcoma based on immune gene sets. Int. Immunopharmacol. 2021 96 107799 10.1016/j.intimp.2021.107799 34162161
    [Google Scholar]
  56. Hong W. Yuan H. Gu Y. Liu M. Ji Y. Huang Z. Yang J. Ma L. Immune-related prognosis biomarkers associated with osteosarcoma microenvironment. Cancer Cell Int. 2020 20 1 83 10.1186/s12935‑020‑1165‑7 32190007
    [Google Scholar]
  57. Zheng D. Yang K. Chen X. Li Y. Chen Y. Analysis of immune–stromal score-based gene signature and molecular subtypes in osteosarcoma: Implications for prognosis and tumor immune microenvironment. Front. Genet. 2021 12 699385 10.3389/fgene.2021.699385 34630511
    [Google Scholar]
  58. Tan J. Feng X. Wu H. Yang B. Shi M. Xie C. Su Z. Li L. Luo M. Zuo Z. Zhu S. Yang J. Lin L. Characterization of the tumor microenvironment in osteosarcoma identifies prognostic- and immunotherapy-relevant gene signatures. J. Immunol. Res. 2022 2022 1 25 10.1155/2022/6568278 36065454
    [Google Scholar]
  59. Liao S. Gao X. Zhou K. Kang Y. Ji L. Zhong X. Lv J. Exploration of metastasis-related signatures in osteosarcoma based on tumor microenvironment by integrated bioinformatic analysis. Heliyon 2025 11 1 e41358 10.1016/j.heliyon.2024.e41358 39844989
    [Google Scholar]
  60. Yun T. Hua J. Ye W. Chen L. Ni Z. Zhu Y. Zheng C. Zhang C. Single-cell transcriptional profiling reveals cell type-specific responses to duck reovirus infection in the Bursa of Fabricius of Cairna moschata. Int. J. Biol. Macromol. 2024 281 Pt 4 136391 10.1016/j.ijbiomac.2024.136391 39414202
    [Google Scholar]
  61. Zheng Q. Lin R. Zheng C. Transcriptomics in the study of antiviral innate immunity. Methods Mol. Biol. 2025 2854 83 91 10.1007/978‑1‑0716‑4108‑8_10 39192121
    [Google Scholar]
  62. Urlić I. Jovičić M.Š. Ostojić K. Ivković A. Cellular and genetic background of osteosarcoma. Curr. Issues Mol. Biol. 2023 45 5 4344 4358 10.3390/cimb45050276 37232745
    [Google Scholar]
  63. Yu S. Yao X. Advances on immunotherapy for osteosarcoma. Mol. Cancer 2024 23 1 192 10.1186/s12943‑024‑02105‑9 39245737
    [Google Scholar]
  64. Tatsuno R. Komohara Y. Pan C. Kawasaki T. Enomoto A. Jubashi T. Kono H. Wako M. Ashizawa T. Haro H. Ichikawa J. Surface markers and chemokines/cytokines of tumor-associated macrophages in osteosarcoma and other carcinoma microenviornments—contradictions and comparisons. Cancers 2024 16 16 2801 10.3390/cancers16162801 39199574
    [Google Scholar]
  65. Zając A.E. Czarnecka A.M. Rutkowski P. The role of macrophages in sarcoma tumor microenvironment and treatment. Cancers 2023 15 21 5294 10.3390/cancers15215294 37958467
    [Google Scholar]
  66. Martins-Neves S.R. Sampaio-Ribeiro G. Gomes C.M.F. Self-renewal and pluripotency in osteosarcoma stem cells’ chemoresistance: Notch, Hedgehog, and Wnt/β-catenin interplay with embryonic markers. Int. J. Mol. Sci. 2023 24 9 8401 10.3390/ijms24098401 37176108
    [Google Scholar]
  67. Chang X. Ma Z. Zhu G. Lu Y. Yang J. New perspective into mesenchymal stem cells: Molecular mechanisms regulating osteosarcoma. J. Bone Oncol. 2021 29 100372 10.1016/j.jbo.2021.100372 34258182
    [Google Scholar]
  68. Todosenko N. Khlusov I. Yurova K. Khaziakhmatova O. Litvinova L. Signal pathways and microRNAs in osteosarcoma growth and the dual role of mesenchymal stem cells in oncogenesis. Int. J. Mol. Sci. 2023 24 10 8993 10.3390/ijms24108993 37240338
    [Google Scholar]
  69. Baron M. Drohat P. Crawford B. Hornicek F.J. Best T.M. Kouroupis D. Mesenchymal stem/stromal cells: Immunomodulatory and bone regeneration potential after tumor excision in osteosarcoma patients. Bioengineering 2023 10 10 1187 10.3390/bioengineering10101187 37892917
    [Google Scholar]
  70. Ghaffari K. Moradi-Hasanabad A. Sobhani-Nasab A. Javaheri J. Ghasemi A. Application of cell-derived exosomes in the hematological malignancies therapy. Front. Pharmacol. 2023 14 1263834 10.3389/fphar.2023.1263834 37745073
    [Google Scholar]
  71. Guerrieri A.N. Hattinger C.M. Marchesini F. Melloni M. Serra M. Ibrahim T. Penzo M. The interplay between the MYC oncogene and ribosomal proteins in osteosarcoma onset and progression: Potential mechanisms and indication of candidate therapeutic targets. Int. J. Mol. Sci. 2024 25 22 12031 10.3390/ijms252212031 39596100
    [Google Scholar]
  72. Liang C. Zhou J. Wang Y. Sun Y. Zhou J. Shao L. Zhang Z. Yan W. Liu Z. Dong Y. Essential genes analysis reveals small ribosomal subunit protein eS28 may be a prognostic factor and potential vulnerability in osteosarcoma. J. Bone Oncol. 2024 44 100517 10.1016/j.jbo.2023.100517 38204480
    [Google Scholar]
  73. Zhong F. Jiang J. Yao F.Y. Liu J. Shuai X. Wang X.L. Huang B. Wang X. Development and validation of a disulfidptosis-related scoring system to predict clinical outcome and immunotherapy response in acute myeloid leukemia by integrated analysis of single-cell and bulk RNA-sequencing. Front. Pharmacol. 2023 14 1272701 10.3389/fphar.2023.1272701 38053840
    [Google Scholar]
  74. Xu K. Dai C. Yang J. Xu J. Xia C. Li J. Zhang C. Xu N. Wu T. Disulfidptosis-related lncRNA signatures assess immune microenvironment and drug sensitivity in hepatocellular carcinoma. Comput. Biol. Med. 2024 169 107930 10.1016/j.compbiomed.2024.107930 38199215
    [Google Scholar]
  75. Huang J. Xu Z. Chen D. Zhou C. Shen Y. Pancancer analysis reveals the role of disulfidptosis in predicting prognosis, immune infiltration and immunotherapy response in tumors. Medicine (Baltimore) 2023 102 52 e36830 10.1097/MD.0000000000036830 38206694
    [Google Scholar]
  76. He J. Wang X. Chen K. Zhang M. Wang J. The amino acid transporter SLC7A11-mediated crosstalk implicated in cancer therapy and the tumor microenvironment. Biochem. Pharmacol. 2022 205 115241 10.1016/j.bcp.2022.115241 36084707
    [Google Scholar]
  77. Zhao D. Meng Y. Dian Y. Zhou Q. Sun Y. Le J. Zeng F. Chen X. He Y. Deng G. Molecular landmarks of tumor disulfidptosis across cancer types to promote disulfidptosis-target therapy. Redox Biol. 2023 68 102966 10.1016/j.redox.2023.102966 38035663
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673359541250527042918
Loading
/content/journals/cmc/10.2174/0109298673359541250527042918
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test