Current Cancer Drug Targets - Online First
Description text for Online First listing goes here...
1 - 20 of 65 results
-
-
High Glucose and Glucose-derived Intermediates are Linked to Lung Cancer Aggressiveness
Authors: Himani Joshi, Raiyan Satti and M. Saeed SheikhAvailable online: 29 August 2025More Less
-
-
-
SOX9 Promotes Breast Cancer Progression via the EGFR/STAT3 Signaling Axis
Authors: Chunrui Zhang, Na Li, Fei Xue and Tipeng ZhangAvailable online: 22 August 2025More LessIntroductionSex-determining region Y-box 9 (SOX9) is a transcription factor frequently overexpressed in breast cancer, playing a critical role in tumor initiation, progression, and therapeutic resistance. While its oncogenic potential is recognized, the underlying molecular mechanisms remain incompletely elucidated. This study aimed to investigate the functional role of SOX9 in breast cancer, specifically focusing on its interaction with the EGFR/STAT3 signaling pathway.
MethodsThe study integrated bioinformatics analyses with functional assays in breast cancer cell lines to determine the effects of SOX9 modulation on cell proliferation, migration, and invasion, and to elucidate its connection with the EGFR/STAT3 signaling axis.
ResultsOur findings demonstrate that SOX9 promotes breast cancer cell proliferation, migration, and invasion. Mechanistically, this occurs through the activation of the EGFR/STAT3 signaling axis. Furthermore, targeting SOX9 effectively attenuated these oncogenic phenotypes in vitro.
DiscussionThe elucidation of SOX9’s role in activating the EGFR/STAT3 pathway significantly advances our understanding of its oncogenic mechanisms in breast cancer. These findings are consistent with existing literature on SOX9’s pro-tumorigenic impact and the established role of EGFR/STAT3 signaling in cancer progression, highlighting a crucial regulatory link. This newly identified SOX9-EGFR/STAT3 axis not only reinforces SOX9’s prognostic value but also strongly supports its exploration as a novel therapeutic target.
ConclusionThese findings identify SOX9 as a key regulator of the EGFR/STAT3 signaling pathway in breast cancer. This highlights the potential of SOX9 as both a prognostic biomarker and a promising target for drug therapy in breast cancer.
-
-
-
Single-Cell Transcriptomics: Technical Advances, Applications and Challenges in Cancer Drug Discovery
Authors: Yueying Yang, Lingyu Meng, Teng Zhang and Jianjun TanAvailable online: 30 July 2025More LessWith advancements in technology, single-cell RNA sequencing has emerged as a powerful tool in cancer drug discovery. This technique enables the construction of gene expression profiles at the individual cell level, offering detailed insights into cellular heterogeneity and molecular pathways involved in tumor development. It enables researchers to gain a deeper understanding of tumor heterogeneity. Researchers can study cell subpopulations and gene expression patterns. This understanding helps in identifying potential drug targets. Additionally, it aids in predicting therapeutic responses. This high-resolution gene expression analysis provides a new perspective and opportunity for cancer drug development, which is expected to accelerate the discovery and development process of new anti-cancer drugs. This article provides a comprehensive overview of the basic processes and developmental trajectory of single-cell RNA sequencing technology, with a particular emphasis on its applications in various aspects of cancer drug discovery. It also addresses the challenges faced by single-cell RNA sequencing and potential future directions. This review aims to enhance readers’ understanding of single-cell sequencing, inspire new ideas for oncology drug development, and support the translation of clinical research into practice, ultimately enabling physicians to design more precise and personalized treatment strategies.
-
-
-
To Combat Abnormal Cell Signaling Mediated Gastrointestinal Cancer by Therapeutic Modulation of Gut Microbiota Utilizing Prebiotics, Postbiotics, and Synbiotics
Authors: Devasmita Sen, Sristi Datta, Srija Biswas, Asmita Samadder and Sisir NandiAvailable online: 23 July 2025More LessBackgroundGastrointestinal (GI) cancer, a multifactorial disease, encompasses a group of malignancies that affect the gastrointestinal system. Being the second leading contributor to cancer-related deaths, GI cancer has become the burning issue of human health. Despite advances in treatment, the diverse nature of GI cancer indicates that a one-size-fits-all solution is not applicable.
IntroductionThe gut microbiome can be therapeutically modulated by utilizing prebiotics, postbiotics, and synbiotics. Fermentation of prebiotics produces postbiotic compounds. Together the prebiotics and probiotics combination can be used as synbiotics which will be more beneficial.
MethodsPubMed and Google scholar search engine tools have been utilized to access references about the idea of this review to demonstrate the therapeutic modulation of microbiota, residing in the gut, which utilizes postbiotics, prebiotics and synbiotics for combating GI cancer.
ResultsExploration of prebiotics, postbiotics, and synbiotic compounds has given us detailed information about their contribution to combating GI cancer.
ConclusionIntake of a combination of prebiotic, postbiotics and synbiotics can inhibit the growth of cancer cells, and activate protective and stress-resistant mechanisms in healthy cellswhich couldbe more beneficial than the administration of prebiotics or postbiotics or synbiotics alone in diminishing the risk of GI cancer.
-
-
-
Migrasomes: A Novel Target for Cancer Treatment
Authors: Neha Sharma and Anurag ChaudharyAvailable online: 22 July 2025More LessProtrusion and adhesion occur at the foremost point of cells during cell migration, while contraction and detachment occur at the rear of the cells. The combined action of cytoskeletal dynamics, vesicular trafficking, and signaling networks initiates this multi-step process. The development of a novel exosome-like organelle called migrasomes, which may play roles in intercellular signaling, and which originate from retraction fibers at the back of migrating cells. Migrasomes are a particular kind of extracellular vesicle that is placed by a special mechanism and left behind by migrating cells. The proteins called integrins, which connect cells to the extracellular matrix (ECM), regulate the mobilization of migrasome. The function of migrasomes is to preserve cellular homeostasis and communication between cells. By observing this literature, we attempted to ascertain the potential role that migrasomes will play in the future in illnesses involving migrating cells, like immune system problems, tumor metastasis, and other disorders.
-
-
-
The Role of Lactate in Cancer Immunotherapy: Mechanisms and Applications
Authors: Yunhui Fan, Haoyue Jia and Wanguang ZhangAvailable online: 17 July 2025More LessIn recent years, immunotherapy has demonstrated significant clinical effectiveness. However, challenges such as low response rates, severe treatment-related side effects, and acquired immune tolerance persist in tumor immunotherapy. Metabolic dysregulation is acknowledged as a principal factor in tumor growth, with aerobic glycolysis, or the Warburg effect, being a defining characteristic of numerous cancers. The enhanced uptake of glucose and glycolysis provides the necessary intermediates for anabolic reactions, which are essential for the proliferation of cancer cells, while simultaneously supplying sufficient energy. However, the concomitant increase in lactate production contributes to immunosuppression within the tumor microenvironment. Tumor cells exploit lactate anabolism, lactate shuttling, and lysine lactylation modifications, which significantly diminish the efficacy of immunotherapy. The treatment targeting lactate anabolism or lactate transport proteins may prove an effective strategy for enhancing the effectiveness of cancer immunotherapy. This review provides a comprehensive overview of the role of lactate in anti-tumor immunotherapy, with the objective of deepening the understanding of the importance of lactate monitoring in cancer treatment. By elucidating these mechanisms, we aim to suggest innovative avenues for clinical cancer management, potentially improving therapeutic outcomes and overcoming the existing limitations of immunotherapy.
-
-
-
CD133+-Derived Exosomes Carrying EIF3B Mediate Cell Metastasis and Stemness in Colorectal Cancer
Authors: Xiangwei Liao, Xiaodong Han, Yu Wang, Jun Yan and Zhenqian WuAvailable online: 11 July 2025More LessBackgroundColorectal cancer (CRC) is among the most widespread malignancies worldwide and is a leading cause for cancer mortality. The interstitial interaction between cancer and stem cells is important during cancer cell metastasis.
ObjectiveIn this study, we aimed to elucidate the regulatory role and the underlying mechanisms controlling the activity of exosomes derived from cancer stem cells (CSCs).
MethodsOur group isolated exosomes from CSCs and non-CSCs to examine their regulatory mechanisms using Transwell migration, Cell Counting Kit-8 (CCK-8), and 5-ethynyl-2′-deoxyuridine (EdU) assays.
ResultsThe role of Eukaryotic Translation Initiation Factor 3 Subunit B (EIF3B) in CRC was examined using an in vivo tumorigenesis mouse model. It was found that treatment with exosomes isolated from CD133+ cells (CD133+Exos) promoted the proliferation and migration of SW480 cells. The downregulation of EIF3B reduced the proliferation and migration-promoting effects of CD133+ Exos on SW480 cells. Furthermore, CD133+ Exos treatment promoted the tumorigenesis of SW480 cells.
ConclusionOur findings demonstrate that CSC-derived exosomes transport EIF3B into CRC cells to initiate epithelial-to-mesenchymal transition (EMT) and promote metastasis.
-
-
-
Cancer Vaccines: Mechanisms, Clinical Applications, Challenges, and Future Directions in Precision Medicine
Available online: 11 July 2025More LessCancer poses a major health burden worldwide, necessitating the development of novel therapeutic approaches. Personalized cancer vaccines represent a promising form of immunotherapy that enhances the ability of the immune system to recognize and destroy tumor cells through tumor-associated and cancer-specific antigens. This review categorizes cancer vaccines into preventive, therapeutic, and personalized vaccines, discussing their mechanisms, clinical applications, and current FDA-approved examples, such as Sipuleucel-T and HPV vaccines. We highlight the recent advances in RNA-based vaccines, viral vectors, and nanotechnology, along with the synergistic role of cancer vaccines and immune checkpoint inhibitors in improving therapeutic efficacy. Overcoming ethical, regulatory, and technological barriers through global collaboration is essential for maximizing vaccine efficacy and enhancing patient outcomes. This review highlights the pivotal role of personalized vaccines in advancing precision medicine and reshaping cancer treatment paradigms.
-
-
-
Identification of AR-targeted Active Compounds from Euphorbia humifusa Willd for the Treatment of Prostate Cancer
Available online: 10 July 2025More LessIntroductionEuphorbia humifusa Willd (EH) is a traditional medicinal herb in China. However, the anti-prostate cancer active compounds of EH and their molecular mechanisms have yet to be elucidated.
MethodsThe peaks of EH water extract in the fingerprinting were analysed using liquid chromatography coupled to quadrupole time of flight mass spectrometry. The cell viability of 22RV1 cells was determined via MTT. The active compounds and potential targets were screened in silico. The prostate cancer-associated targets were collected from the GeneCards database. The herb-compound-target-disease (H-C-T-D) and PPI networks were constructed to predict key targets. The molecular docking analysis of the active compounds with key targets was conducted using Autodock Vina 1.1.2. Western blot analysis was performed to evaluate the protein expression.
ResultsLC-MS results demonstrated that EH water extract is a rich source of phenolics and flavonoids. EH water extract inhibited the viability of 22RV1 cells in a time-and dose-dependent manner. Moreover, the in silico screening results identified 17 active compounds from EH with 518 prostate cancer-related key genes. Moreover, an H-C-T-D network analysis combined with the PPI network results effectively identified seven chemical compounds, oestrogen receptor 1, and androgen receptor (AR) to be highly related to prostate cancer. Furthermore, molecular docking results showed that 4′,5-dihydroxyflavone, ensaculin, luteolin, hypolaetin, quercetin, and kaempferol had a strong binding affinity with AR. Finally, Western blot results demonstrated that EH water extract, quercetin, kaempferol, and luteolin significantly down-regulated the AR protein expression in 22RV1 cells.
ConclusionThese results suggest that EH may provide a new promising therapeutic for prostate cancer treatment.
-
-
-
Analysis of Single-Cell RNA-Seq Data to Investigate Tumor Cell Heterogeneity in Uroepithelial Bladder Cancer and Predict Immunotherapy Response
Authors: Lu Zhang, Yu Wang and Jianjun TanAvailable online: 08 July 2025More LessBackgroundNumerous studies have suggested a close association between cancer stem cells (CSCs) and the tumor microenvironment (TME), suggesting that cancer stemness might also contribute to ICI resistance. However, the interplay between these physiological processes in urothelial bladder cancer (UBC) remains unclear.
MethodsA meta-analysis was performed using the UBC Single-cell RNA sequencing (scRNA-seq) dataset, and tumor stemness gene sets (Ste.genes) were obtained. The relationship between Ste.genes and ICI response, as well as response to drug therapy, was investigated using Tumour Immune Dysfunction and Exclusion (TIDE) and drug sensitivity analyses. Machine learning based on Ste.genes was also used to predict ICI response.
ResultsA hypoxia-related tumor subgroup associated with angiogenesis and tumor metastasis was identified, and prognostic models were constructed based on hypoxic tumor subgroups. It was also found that the Ste.genes score was associated with cellular immunity, tumor immunotherapy response, and drug sensitivity. Multiple machine learning models were used to predict ICI response based on Ste.genes, and the AUC was greater than 0.7, indicating that Ste.genes can predict ICI response effectively.
ConclusionIn this study, the analysis of UBC scRNA-seq data provided further insight into the role of hypoxic tumor subpopulations in tumor development in UBC, and a prognostic model was constructed. Additionally, an association was found between cell stemness and resistance to immunotherapy as well as drug sensitivity in UBC. Ste.genes were extracted and utilized to predict the ICI response.
-
-
-
Nucleolin as a Crucial Player in Head and Neck Cancer: Diagnostic and Therapeutic Perspectives
Available online: 02 July 2025More LessHead and Neck Cancer (HNC) encompasses a diverse group of malignancies arising in the oral cavity, pharynx, larynx, and related structures. It represents a significant global health bur- den due to its high incidence, aggressive progression, and strong associations with environmental and viral risk factors like tobacco use and HPV infection. HNC, particularly squamous cell carcinoma, ranks as the seventh most common cancer worldwide. Despite the established role of these risk factors, the molecular mechanisms driving disease progression remain underexplored, especially in the context of specific biomarkers like Nucleolin (NCL). Nucleolin, a multifunctional protein, is pivotal in cancer progression, regulating cell proliferation, angiogenesis, and apoptosis. Data from The Cancer Genome Atlas (TCGA) reveal significant overexpression of NCL in HNC, particularly in advanced stages, correlating with poor prognosis and reduced patient survival. These findings highlight its potential as a diagnostic and therapeutic target. This review provides a fresh perspective on the underexplored potential of NCL as a therapeutic target in HPV-induced HNC and oral cancer. Emerging approaches, such as the AS1411 aptamer and F3 peptide, offer promising avenues for targeting NCL, paving the way for more effective, personalized cancer therapies.
-
-
-
CircRNAs Regulate Senescence-Associated miRNAs in Gastric Cancer
Authors: Shiyu Chen, Xiaoyan Yang, Xiaoyong Lei and Huifang TangAvailable online: 01 July 2025More LessGastric cancer is closely associated with the aging process, with its incidence and mortality rates significantly increasing with age, peaking around 85 years. Despite advancements in treatment modalities, current diagnostic and therapeutic approaches remain insufficient, resulting in persistently low five-year survival rates among patients. The expanding global population and the intensifying aging process are anticipated to exacerbate the global burden of gastric cancer further, underscoring the urgency of exploring novel therapeutic strategies. A complex relationship exists between gastric cancer and cellular senescence, although the precise mechanisms remain incompletely understood. Cellular senescence is prevalent in gastric cancer treatment, typically serving as a natural anti-tumor barrier by inhibiting the uncontrolled proliferation and malignant transformation of cancer cells. However, prolonged cellular senescence may trigger the secretion of pro-inflammatory factors, thereby promoting tumorigenesis and progression. A systematic analysis of existing research data has revealed significant intersections between therapeutic targets for gastric cancer and senescence-associated signaling pathways, suggesting that modulating these critical nodes may constitute a pivotal mechanism for exploring novel therapeutic strategies bridging gastric cancer treatment and senescence. Circular RNAs (circRNAs) have garnered considerable attention with the advancement of bioinformatics and high-throughput sequencing technologies. As key regulatory factors, circRNAs can modulate microRNAs (miRNAs) through a “sponge adsorption” mechanism, thereby influencing the post-transcriptional modification of critical genes. Given their high structural stability and widespread distribution in vivo, circRNAs have emerged as ideal candidate molecules for biomarkers and therapeutic targets in gastric cancer. This review focuses on the mechanisms by which circRNAs, through sponging miRNAs, regulate key nodes in therapeutic targets and senescence signaling pathways in gastric cancer.
-
-
-
Pediatric Diffuse High-Grade Gliomas: A Comprehensive Review Of Advanced Methods Of Diagnosis And Treatment
Available online: 30 June 2025More LessGlioblastoma multiforme (GBM) is a complex and aggressive brain tumor that presents significant diagnostic and therapeutic challenges in both adults and children. Understanding the pathogenesis, molecular biology, symptom presentation, and imaging features of GBM is vital for effective therapy. This review summarizes current knowledge on pediatric GBM, specifically Pediatric Diffuse High-Grade Gliomas (pHGG), focusing on diagnosis and treatment. GBM typically arises from the cerebral hemispheres, with gross features marked by heterogeneous morphology and aggressive cell populations. Recent advances in genomic research have shed light on distinct molecular pathways associated with primary and secondary GBMs. Clinical symptoms vary widely but commonly include neurological deficits and increased intracranial pressure. Magnetic resonance imaging (MRI), with its excellent soft tissue contrast, is crucial for diagnosing and monitoring GBM. Emerging techniques, such as diffusion-weighted imaging (DWI) and perfusion-weighted imaging (PWI), provide insights into the tumor's microstructure and vascularity, assisting in the development of therapeutic strategies and response assessment. Despite advances in imaging, challenges remain in accurately diagnosing and managing pediatric GBM due to its molecular heterogeneity and unique biological behavior. New therapeutic approaches, including targeted therapies and immunotherapy, offer hope for improving outcomes in children with GBM. Clinical trials are ongoing to evaluate these treatments alongside standard options, such as surgery, radiotherapy, and chemotherapy, to meet the unmet needs of pediatric oncology. A multidisciplinary approach, tailored to the individual characteristics of both the patient and the tumor, is essential to optimize treatment and outcomes for pediatric GBM patients. This review highlights the role of advanced MRI techniques in diagnosis, treatment, and monitoring while emphasizing the need for further research and clinical trials to develop more effective therapies for this devastating disease. Recent studies indicate a median survival rate of 12-18 months for pediatric GBM, with treatment response varying based on molecular subtypes. Clinical trials show that IDH-wild-type tumors exhibit poorer prognosis, whereas targeted therapies are improving outcomes in select patient groups.
-
-
-
An Overview of the Potential Use of Selective Serotonin Reuptake Inhibitors (SSRIs) in Cancer Treatment
Available online: 23 June 2025More LessCancer is a major health problem and the second leading cause of death worldwide. Chemotherapy remains the mainstay therapeutic option to treat cancer patients, which consists of conventional, hormonal, and/or targeted therapies. However, the significant adverse effects, negative impact on patients’ quality of life, and high costs of some medications, as well as the challenges associated with developing new drugs, are prompting the scientific community to seek innovative and alternative treatment strategies. One such strategy is drug repurposing, the use of existing drugs, already approved for other medical conditions for cancer treatment, leveraging their known safety and toxicity profiles. Among these groups are the selective serotonin reuptake inhibitors (SSRIs) that target serotonin transporter (SERT). In this review, we presented the mechanism of action of SSRIs on the systems biology level, along with their network pharmacology related to protein-protein interactions. We also showed the association of SSRIs and SERT with various diseases, including several types of cancer. Knowing the expression of SERT in cancer and being a target for SSRIs, studies have been investigating the repurposing of SSRIs for cancer treatment. This review also presents a summary of several clinical and preclinical studies that have investigated the use of SSRIs either as single agents or in combination with conventional chemotherapy for cancer treatment, showing promising results. Collectively, they have shown the antiproliferative and growth inhibition effects on cancer cells and/or tumors. We also presented the mechanism(s) of action and pathways these drugs are acting in cancer, along with molecular changes in cellular proteins and enzymes.
-
-
-
Role of Non-Coding RNAs in Regulating PD-L1 Expression in Breast Cancer: Emerging Insights and Implications
Authors: Jianqin Zhu, Weijin Zhu, Xulin Zhou, Jingwen Hua and Xiaochun SunAvailable online: 18 June 2025More LessThe initiation and progression of breast cancer generally involve complex immune regulatory mechanisms, with increased expression of programmed cell death ligand 1 (PD-L1) as an essential factor for immune evasion and the formation of a tumor-promoting immune microenvironment. Emerging evidence underscores the regulatory role of non-coding RNAs (ncRNAs) in modulating PD-L1 expression, influencing immune evasion, tumorigenesis, and therapy resistance in breast cancer. Therefore, it is crucial further to clarify alternative regulatory mechanisms that control PD-L1 expression. The variations in PD-L1 expression among different breast cancer subtypes and the mechanisms by which ncRNAs regulate the expression of PD-L1 are delineated. This study explores the potential and challenges of combining ncRNA-based therapy with PD-L1 inhibitors, offering insights into PD-L1 regulation and personalized treatment strategies in breast cancer.
-
-
-
Controversial Role of Opioids: From Pain Control to Cancer Recurrence in Breast Cancer
Authors: Mudasir Maqbool, Gyas Khan, Liming Zhang and Md Sadique HussainAvailable online: 18 June 2025More LessOpioids are widely used for pain management in breast cancer patients; however, their influence on tumor progression and recurrence remains controversial. Opioid receptors-mu (MOR), delta (DOR), and kappa (KOR)-play diverse roles in cancer biology, modulating tumor growth, immune responses, and angiogenesis. MOR activation is associated with increased proliferation, Epithelial-Mesenchymal Transition (EMT), and immunosuppression, contributing to an aggressive tumor phenotype. Conversely, KOR exhibits tumor-suppressive properties, reducing angiogenesis via VEGF inhibition. Emerging preclinical evidence suggests that opioids, particularly morphine, may facilitate breast cancer progression by enhancing cancer cell migration, angiogenesis, and immune evasion. Genetic variations in opioid receptor pathways, such as the OPRM1 A118G polymorphism, further complicate the opioid-cancer relationship, demonstrating population-dependent effects on patient outcomes. In contrast, tramadol has shown potential immune-protective effects by preserving Natural Killer (NK) cell function and inhibiting adrenergic signaling; fentanyl and sufentanil exhibit variable impacts on tumor biology, necessitating further investigation. Clinical studies, however, remain inconclusive regarding opioids' direct contribution to breast cancer recurrence, highlighting the need for targeted research. Opioid-sparing analgesic strategies, including multimodal pain management, regional anesthesia, and immunomodulatory agents, offer promising alternatives to mitigate potential oncogenic risks while ensuring adequate pain relief. Future studies integrating single-cell transcriptomics and tumor microenvironment analyses will be critical in elucidating the molecular impact of opioids in breast cancer. Personalized pain management approaches tailored to genetic and clinical profiles may optimize oncological outcomes while preserving analgesic efficacy.
-
-
-
Comprehensive Pan-cancer Analysis and Experimental Verification of EGLN Family: Potential Biomarkers in Cervical Cancer
Authors: Dongli Zhang, Ruifang Fu, Guixia Sun, Junfang Yan and Xiaofeng YangAvailable online: 03 June 2025More LessBackgroundHypoxia plays a crucial role in malignant tumor formation, primarily mediated by hypoxia-inducible factors (HIFs). Despite extensive research, the complexities and prognostic implications of the EGLN gene family (EGLN1, EGLN2, EGLN3) in cancers remain unclear.
MethodsUtilizing public databases (TCGA, GTEx, TARGET, GEO) and bioinformatics tools, a comprehensive analysis of EGLN genes across various cancer types was conducted. Gene expression, mutation data, stemness scores, and clinical information were integrated to evaluate the mutation landscape, expression levels, and prognostic values of EGLNs. Enrichment and pathway analyses explored EGLN-associated biological processes and functional networks. ssGSEA constructed EGLN scores for prognostic evaluation. Colocalization analysis combined eQTL and GWAS data to investigate genetic variations in cervical cancer. Immunohistochemistry validated EGLN expression in cervical cancer tissues.
ResultsEGLN genes showed differential expression across cancer types. EGLN1 overexpression was associated with worse survival in cervical squamous cell carcinoma (CESC), pancreatic adenocarcinoma (PAAD), and neuroblastoma (NB), while EGLN3 was linked to poor survival in CESC, lung adenocarcinoma (LUAD), and kidney cancers. EGLNs also demonstrated varied roles in modulating tumor immune activity and heterogeneity.
ConclusionThis study provides new insights into EGLN biology and identifies EGLN1 as a potential biomarker for cervical cancer.
-
-
-
Raddeanoside R13 Inhibits Proliferation, Invasion, and Metastasis of Gastric Cancer Cells Based on Network Pharmacology and Experimental Validation
Authors: Tiantian Zhao, Qiong Wu, Mingxu Da and Chenglou ZhuAvailable online: 02 June 2025More LessObjectiveThis study aims to explore the potential mechanisms by which Raddeanoside R13 (R13) inhibits the proliferation, invasion, and metastasis of gastric cancer (GC) cells through network pharmacology analysis and experimental validation.
MethodsFirst, network pharmacology was used to explore the potential mechanisms of R13 in treating GC. The effects of R13 on GC cell proliferation were assessed using CCK-8 and colony formation assays. Apoptosis was measured by flow cytometry, while the effects of R13 on invasion and metastasis were evaluated through wound healing and Transwell invasion assays. Finally, Western blotting was performed to investigate the impact of R13 on the expression of epithelial-to-mesenchymal transition (EMT) markers, PI3K/AKT signaling pathway proteins, and apoptosis-related proteins in GC cells.
ResultsA total of 58 potential targets of R13 in the treatment of GC were identified. R13 was found to affect the development of GC by regulating pathways, such as NFKB1, mTOR, apoptosis, and the PI3K-AKT signaling pathway. In vitro experiments confirmed that R13 inhibited the proliferation, invasion, and metastasis of GC cells while promoting apoptosis. Additionally, we found that R13 suppressed the EMT of GC cells and reduced the phosphorylation levels of PI3K, AKT, and mTOR. When this pathway was activated, it partially reversed these effects.
ConclusionR13 inhibited the proliferation, invasion, and metastasis of GC cells while inducing apoptosis. Furthermore, R13 may suppress the EMT process in GC cells by inhibiting the PI3K/AKT/mTOR signaling pathway. These findings provide a foundation for the potential use of R13 as a therapeutic strategy for GC.
-
-
-
Extracellular Vesicles-Associated tRFs as Emerging Biomarkers in Breast Cancer
Authors: Md Sadique Hussain, Liming Zhang and Sumel AshiqueAvailable online: 02 June 2025More LessBreast cancer (BC) remains a leading cause of cancer-related mortality among women worldwide, underscoring the urgent need for sensitive, non-invasive biomarkers to improve diagnosis, prognosis, and treatment monitoring. Traditional biomarkers like ER, PR, and HER2 offer limited efficacy, particularly for heterogeneous subtypes such as triple-negative breast cancer (TNBC). Extracellular vesicles (EVs), including exosomes and microvesicles, have emerged as promising biomarker carriers due to their stability and ability to encapsulate diverse bioactive molecules reflective of the parental cell’s state. Among EV cargoes, tRNA-derived fragments (tRFs), which are small non-coding RNAs produced by precise cleavage of tRNAs, have gained increasing attention. Once considered mere degradation products, tRFs are now recognized for their roles in gene regulation, translation control, apoptosis modulation, and immune response. Recent studies have revealed the selective enrichment of tRFs within EVs, highlighting their role in intercellular communication in breast cancer. Differential expression of EV-associated tRFs correlates with BC subtype, stage, and patient prognosis, highlighting their potential as minimally invasive biomarkers. Specifically, altered levels of certain 5′- and 3′-tRFs in patient sera and tumor tissues have been associated with poor survival, metastasis, and therapeutic resistance. Despite these promising findings, gaps remain regarding the mechanisms of tRF sorting into EVs and their functional impact on the tumor microenvironment. This review systematically examines the current understanding of EV-associated tRFs in breast cancer, emphasizing their clinical relevance, detection strategies, and translational potential. By addressing existing challenges, we aim to provide insights into the utility of EV-tRFs as novel biomarkers and therapeutic targets in BC.
-
-
-
Trimethylamine N-oxide Impairs Oocyte Maturation and Embryogenesis via NF-κB/NLRP3 Pathway Modulation
Authors: Fengping He, Yongmei Zhang, Yanle Guo, Tizhen Yan and Jiwu LouAvailable online: 22 May 2025More LessBackgroundThe role of Trimethylamine N-oxide (TMAO) in oocyte maturation and embryogenesis remains unclear, particularly its impact on ovarian granulosa cells (OGCs) and its underlying mechanisms.
MethodsThis study examined the effects of TMAO (100-400 µmol/L) on oocyte maturation, cumulus cell expansion, mitochondrial distribution, and embryonic development in vitro and in a BALB/c mouse model. The involvement of the NF-κB/NLRP3 signaling pathway in TMAO-induced ovarian dysfunction was assessed using Western blotting and gene expression analyses. The potential therapeutic effect of miRNA-146, an NF-κB inhibitor, was also explored.
ResultsWestern blotting confirmed that TMAO activates the NF-κB signaling pathway and induces the synthesis of caspase 3 and NLRP3 complexes. However, pretreatment with miRNA-146, an NF-κB inhibitor, significantly reduced inflammation and inflammatory gene expression during TMAO therapy. Additionally, miRNA-146 pretreatment promoted oocyte maturation by suppressing NF-κB/NLRP3 activation, OGCs apoptotic inflammatory factor expression, and the gene expression of NF-κB, caspase 3, and NLRP3.
ConclusionFindings demonstrate that TMAO disrupts oocyte development through NF-κB/NLRP3 activation, contributing to ovarian dysfunction. Notably, targeting TMAO and its downstream signaling could serve as a novel therapeutic strategy for premature ovarian insufficiency (POI).
-