Skip to content
2000
image of CD133+-Derived Exosomes Carrying EIF3B Mediate Cell Metastasis and Stemness in Colorectal Cancer

Abstract

Background

Colorectal cancer (CRC) is among the most widespread malignancies worldwide and is a leading cause for cancer mortality. The interstitial interaction between cancer and stem cells is important during cancer cell metastasis.

Objective

In this study, we aimed to elucidate the regulatory role and the underlying mechanisms controlling the activity of exosomes derived from cancer stem cells (CSCs).

Methods

Our group isolated exosomes from CSCs and non-CSCs to examine their regulatory mechanisms using Transwell migration, Cell Counting Kit-8 (CCK-8), and 5-ethynyl-2′-deoxyuridine (EdU) assays.

Results

The role of Eukaryotic Translation Initiation Factor 3 Subunit B (EIF3B) in CRC was examined using an tumorigenesis mouse model. It was found that treatment with exosomes isolated from CD133+ cells (CD133+Exos) promoted the proliferation and migration of SW480 cells. The downregulation of EIF3B reduced the proliferation and migration-promoting effects of CD133+ Exos on SW480 cells. Furthermore, CD133+ Exos treatment promoted the tumorigenesis of SW480 cells.

Conclusion

Our findings demonstrate that CSC-derived exosomes transport EIF3B into CRC cells to initiate epithelial-to-mesenchymal transition (EMT) and promote metastasis.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096346009250628215410
2025-07-11
2025-09-13
Loading full text...

Full text loading...

/deliver/fulltext/ccdt/10.2174/0115680096346009250628215410/BMS-CCDT-2024-357.html?itemId=/content/journals/ccdt/10.2174/0115680096346009250628215410&mimeType=html&fmt=ahah

References

  1. Bray F. Ferlay J. Soerjomataram I. Siegel R.L. Torre L.A. Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018 68 6 394 424 10.3322/caac.21492 30207593
    [Google Scholar]
  2. Ferlay J. Colombet M. Soerjomataram I. Mathers C. Parkin D.M. Piñeros M. Znaor A. Bray F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 2019 144 8 1941 1953 10.1002/ijc.31937 30350310
    [Google Scholar]
  3. Schmoll H.J. Cutsem V.E. Stein A. Valentini V. Glimelius B. Haustermans K. Nordlinger B. van de Velde C.J. Balmana J. Regula J. Nagtegaal I.D. Beets-Tan R.G. Arnold D. Ciardiello F. Hoff P. Kerr D. Köhne C.H. Labianca R. Price T. Scheithauer W. Sobrero A. Tabernero J. Aderka D. Barroso S. Bodoky G. Douillard J.Y. Ghazaly E.H. Gallardo J. Garin A. Glynne-Jones R. Jordan K. Meshcheryakov A. Papamichail D. Pfeiffer P. Souglakos I. Turhal S. Cervantes A. ESMO Consensus Guidelines for management of patients with colon and rectal cancer. A personalized approach to clinical decision making. Ann. Oncol. 2012 23 10 2479 2516 10.1093/annonc/mds236 23012255
    [Google Scholar]
  4. Naseri M. Zöller M. Hadjati J. Ghods R. Pirmardan R.E. Kiani J. Eini L. Bozorgmehr M. Madjd Z. Dendritic cells loaded with exosomes derived from cancer stem cell‐enriched spheroids as a potential immunotherapeutic option. J. Cell. Mol. Med. 2021 25 7 3312 3326 10.1111/jcmm.16401 33634564
    [Google Scholar]
  5. Brown T.J. James V. The role of extracellular vesicles in the development of a cancer stem cell microenvironment niche and potential therapeutic targets: A systematic review. Cancers 2021 13 10 2435 10.3390/cancers13102435 34069860
    [Google Scholar]
  6. Roudi R. Korourian A. Shariftabrizi A. Madjd Z. Differential Expression of Cancer Stem Cell Markers ALDH1 and CD133 in Various Lung Cancer Subtypes. Cancer Invest. 2015 33 7 294 302 10.3109/07357907.2015.1034869 26046383
    [Google Scholar]
  7. Roudi R. Ebrahimi M. Sabet M.N. Najafi A. Nourani M.R. Fomeshi M.R. Samadikuchaksaraei A. Shariftabrizi A. Madjd Z. Comparative gene-expression profiling of CD133(+) and CD133(-) D10 melanoma cells. Future Oncol. 2015 11 17 2383 2393 10.2217/fon.15.174 26285774
    [Google Scholar]
  8. Rashid K. Ahmad A. Meerasa S.S. Khan A.Q. Wu X. Liang L. Cui Y. Liu T. Cancer stem cell-derived exosome-induced metastatic cancer: An orchestra within the tumor microenvironment. Biochimie 2023 212 1 11 10.1016/j.biochi.2023.03.014 37011805
    [Google Scholar]
  9. Hessvik N.P. Llorente A. Current knowledge on exosome biogenesis and release. Cell. Mol. Life Sci. 2018 75 2 193 208 10.1007/s00018‑017‑2595‑9 28733901
    [Google Scholar]
  10. Pitt J.M. Kroemer G. Zitvogel L. Extracellular vesicles: Masters of intercellular communication and potential clinical interventions. J. Clin. Invest. 2016 126 4 1139 1143 10.1172/JCI87316 27035805
    [Google Scholar]
  11. Miki Y. Yashiro M. Okuno T. Kitayama K. Masuda G. Hirakawa K. Ohira M. CD9-positive exosomes from cancer-associated fibroblasts stimulate the migration ability of scirrhous-type gastric cancer cells. Br. J. Cancer 2018 118 6 867 877 10.1038/bjc.2017.487 29438363
    [Google Scholar]
  12. Wang L. Yang G. Zhao D. Wang J. Bai Y. Peng Q. Wang H. Fang R. Chen G. Wang Z. Wang K. Li G. Yang Y. Wang Z. Guo P. Peng L. Hou D. Xu W. CD103-positive CSC exosome promotes EMT of clear cell renal cell carcinoma: Role of remote MiR-19b-3p. Mol. Cancer 2019 18 1 86 10.1186/s12943‑019‑0997‑z 30975145
    [Google Scholar]
  13. Hoque S. Dhar R. Kar R. Mukherjee S. Mukherjee D. Mukerjee N. Nag S. Tomar N. Mallik S. Cancer stem cells (CSCs): Key player of radiotherapy resistance and its clinical significance. Biomarkers 2023 28 2 139 151 10.1080/1354750X.2022.2157875 36503350
    [Google Scholar]
  14. Walcher L. Kistenmacher A.K. Suo H. Kitte R. Dluczek S. Strauß A. Blaudszun A.R. Yevsa T. Fricke S. Kossatz-Boehlert U. Cancer stem cells—origins and biomarkers: Perspectives for targeted personalized therapies. Front. Immunol. 2020 11 1280 10.3389/fimmu.2020.01280 32849491
    [Google Scholar]
  15. Babaei G. Aziz S.G.G. Jaghi N.Z.Z. EMT, cancer stem cells and autophagy; The three main axes of metastasis. Biomed. Pharmacother. 2021 133 110909 10.1016/j.biopha.2020.110909 33227701
    [Google Scholar]
  16. Dawood S. Austin L. Cristofanilli M. Cancer stem cells: Implications for cancer therapy. Oncology 2014 28 12 1101 1107 [PMID: 25510809
    [Google Scholar]
  17. Barbato L. Bocchetti M. Biase D.A. Regad T. Cancer stem cells and targeting strategies. Cells 2019 8 8 926 10.3390/cells8080926 31426611
    [Google Scholar]
  18. Zhang H. Deng T. Liu R. Bai M. Zhou L. Wang X. Li S. Wang X. Yang H. Li J. Ning T. Huang D. Li H. Zhang L. Ying G. Ba Y. Exosome-delivered EGFR regulates liver microenvironment to promote gastric cancer liver metastasis. Nat. Commun. 2017 8 1 15016 10.1038/ncomms15016 28393839
    [Google Scholar]
  19. Fong M.Y. Zhou W. Liu L. Alontaga A.Y. Chandra M. Ashby J. Chow A. O’Connor S.T.F. Li S. Chin A.R. Somlo G. Palomares M. Li Z. Tremblay J.R. Tsuyada A. Sun G. Reid M.A. Wu X. Swiderski P. Ren X. Shi Y. Kong M. Zhong W. Chen Y. Wang S.E. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat. Cell Biol. 2015 17 2 183 194 10.1038/ncb3094 25621950
    [Google Scholar]
  20. Nawaz M. Fatima F. Vallabhaneni K.C. Penfornis P. Valadi H. Ekström K. Kholia S. Whitt J.D. Fernandes J.D. Pochampally R. Squire J.A. Camussi G. Extracellular vesicles: Evolving factors in stem cell biology. Stem Cells Int. 2016 2016 1 1073140 10.1155/2016/1073140 26649044
    [Google Scholar]
  21. Li Q. He G. Yu Y. Li X. Peng X. Yang L. Exosome crosstalk between cancer stem cells and tumor microenvironment: Cancer progression and therapeutic strategies. Stem Cell Res. Ther. 2024 15 1 449 10.1186/s13287‑024‑04061‑z 39578849
    [Google Scholar]
  22. Sipos F. Műzes G. Interconnection of CD133 stem cell marker with autophagy and apoptosis in colorectal cancer. Int. J. Mol. Sci. 2024 25 20 11201 10.3390/ijms252011201 39456981
    [Google Scholar]
  23. Zhu H. Shan Y. Ge K. Lu J. Kong W. Jia C. EIF3B promotes cancer progression in pancreatic cancer. Scand. J. Gastroenterol. 2021 56 3 281 288 10.1080/00365521.2020.1868566 33459066
    [Google Scholar]
  24. Huang L. Wei Z. Chang X. Zheng X. Yan J. Huang J. Zhang J. Sheng L. eIF3b regulates the cell proliferation and apoptosis processes in chronic myelogenous leukemia cell lines via regulating the expression of C3G. Biotechnol. Lett. 2020 42 7 1275 1286 10.1007/s10529‑020‑02878‑1 32236758
    [Google Scholar]
  25. Wang L. Wen X. Luan F. Fu T. Gao C. Du H. Guo T. Han J. Huangfu L. Cheng X. Ji J. EIF3B is associated with poor outcomes in gastric cancer patients and promotes cancer progression via the PI3K/AKT/mTOR signaling pathway. Cancer Manag. Res. 2019 11 7877 7891 10.2147/CMAR.S207834 31686906
    [Google Scholar]
  26. Tian Y. Zhao K. Yuan L. Li J. Feng S. Feng Y. Fang Z. Li H. Deng R. EIF3B correlates with advanced disease stages and poor prognosis, and it promotes proliferation and inhibits apoptosis in non-small cell lung cancer. Cancer Biomark. 2018 23 2 291 300 10.3233/CBM‑181628 30198870
    [Google Scholar]
  27. Choi Y.J. Lee Y.S. Lee H.W. Shim D.M. Seo S.W. Silencing of translation initiation factor eIF3b promotes apoptosis in osteosarcoma cells. Bone Joint Res. 2017 6 3 186 193 10.1302/2046‑3758.63.BJR‑2016‑0151.R2 28360085
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096346009250628215410
Loading
/content/journals/ccdt/10.2174/0115680096346009250628215410
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: EIF3B ; digestive system ; colorectal cancer ; Exosomes ; intestinal neoplasms ; CD133+
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test