Skip to content
2000
image of Single-Cell Transcriptomics: Technical Advances, Applications and Challenges in Cancer Drug Discovery

Abstract

With advancements in technology, single-cell RNA sequencing has emerged as a powerful tool in cancer drug discovery. This technique enables the construction of gene expression profiles at the individual cell level, offering detailed insights into cellular heterogeneity and molecular pathways involved in tumor development. It enables researchers to gain a deeper understanding of tumor heterogeneity. Researchers can study cell subpopulations and gene expression patterns. This understanding helps in identifying potential drug targets. Additionally, it aids in predicting therapeutic responses. This high-resolution gene expression analysis provides a new perspective and opportunity for cancer drug development, which is expected to accelerate the discovery and development process of new anti-cancer drugs. This article provides a comprehensive overview of the basic processes and developmental trajectory of single-cell RNA sequencing technology, with a particular emphasis on its applications in various aspects of cancer drug discovery. It also addresses the challenges faced by single-cell RNA sequencing and potential future directions. This review aims to enhance readers’ understanding of single-cell sequencing, inspire new ideas for oncology drug development, and support the translation of clinical research into practice, ultimately enabling physicians to design more precise and personalized treatment strategies.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096372729250715050452
2025-07-30
2025-12-17
Loading full text...

Full text loading...

/deliver/fulltext/ccdt/10.2174/0115680096372729250715050452/BMS-CCDT-2024-HT39-5763-3.html?itemId=/content/journals/ccdt/10.2174/0115680096372729250715050452&mimeType=html&fmt=ahah

References

  1. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  2. DiMasi J.A. Grabowski H.G. Hansen R.W. Innovation in the pharmaceutical industry: New estimates of R&D costs. J. Health Econ. 2016 47 20 33 10.1016/j.jhealeco.2016.01.012 26928437
    [Google Scholar]
  3. Paul S.M. Mytelka D.S. Dunwiddie C.T. Persinger C.C. Munos B.H. Lindborg S.R. Schacht A.L. How to improve R&D productivity: The pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov. 2010 9 3 203 214 10.1038/nrd3078 20168317
    [Google Scholar]
  4. Wang F. Ruan D.Y. Xu R.H. Challenges and opportunities in oncology drug development and clinical research in China. Cell 2024 187 7 1578 1583 10.1016/j.cell.2024.02.040 38552607
    [Google Scholar]
  5. Liu Z. Chen J. Ren Y. Liu S. Ba Y. Zuo A. Luo P. Cheng Q. Xu H. Han X. Multi-stage mechanisms of tumor metastasis and therapeutic strategies. Signal Transduct. Target. Ther. 2024 9 1 270 10.1038/s41392‑024‑01955‑5 39389953
    [Google Scholar]
  6. Zhang S. Xiao X. Yi Y. Wang X. Zhu L. Shen Y. Lin D. Wu C. Tumor initiation and early tumorigenesis: Molecular mechanisms and interventional targets. Signal Transduct. Target. Ther. 2024 9 1 149 10.1038/s41392‑024‑01848‑7 38890350
    [Google Scholar]
  7. El-Sayes N. Vito A. Mossman K. Tumor heterogeneity: A great barrier in the age of cancer immunotherapy. Cancers 2021 13 4 14 10.3390/cancers13040806 33671881
    [Google Scholar]
  8. Imodoye S.O. Adedokun K.A. Bello I.O. From complexity to clarity: Unravelling tumor heterogeneity through the lens of tumor microenvironment for innovative cancer therapy. Histochem. Cell Biol. 2024 161 4 299 323 10.1007/s00418‑023‑02258‑6 38189822
    [Google Scholar]
  9. Duhan L. Kumari D. Naime M. Parmar V.S. Chhillar A.K. Dangi M. Pasrija R. Single-cell transcriptomics: Background, technologies, applications, and challenges. Mol. Biol. Rep. 2024 51 1 600 10.1007/s11033‑024‑09553‑y 38689046
    [Google Scholar]
  10. Huang D. Ma N. Li X. Gou Y. Duan Y. Liu B. Xia J. Zhao X. Wang X. Li Q. Rao J. Zhang X. Advances in single-cell RNA sequencing and its applications in cancer research. J. Hematol. Oncol. 2023 16 1 98 10.1186/s13045‑023‑01494‑6 37612741
    [Google Scholar]
  11. Liu B. Hu S. Wang X. Applications of single-cell technologies in drug discovery for tumor treatment. iScience 2024 27 8 110486 10.1016/j.isci.2024.110486 39171294
    [Google Scholar]
  12. Van de Sande B. Lee J.S. Mutasa-Gottgens E. Naughton B. Bacon W. Manning J. Wang Y. Pollard J. Mendez M. Hill J. Kumar N. Cao X. Chen X. Khaladkar M. Wen J. Leach A. Ferran E. Applications of single-cell RNA sequencing in drug discovery and development. Nat. Rev. Drug Discov. 2023 22 6 496 520 10.1038/s41573‑023‑00688‑4 37117846
    [Google Scholar]
  13. Potter S.S. Single-cell RNA sequencing for the study of development, physiology and disease. Nat. Rev. Nephrol. 2018 14 8 479 492 10.1038/s41581‑018‑0021‑7 29789704
    [Google Scholar]
  14. Gonzalez-Pena V. Gawad C. Sequencing the genomes of single cells. Methods Mol. Biol. 2019 1979 227 234 10.1007/978‑1‑4939‑9240‑9_14 31028641
    [Google Scholar]
  15. Lo P-K. Zhou Q. Emerging techniques in single-cell epigenomics and their applications to cancer research. J. Clin. Genom. 2018 1 1 10.4172/JCG.1000103 30079405
    [Google Scholar]
  16. Stark R. Grzelak M. Hadfield J. RNA sequencing: The teenage years. Nat. Rev. Genet. 2019 20 11 631 656 10.1038/s41576‑019‑0150‑2 31341269
    [Google Scholar]
  17. Wang Z. Gerstein M. Snyder M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009 10 1 57 63 10.1038/nrg2484 19015660
    [Google Scholar]
  18. Chang X. Zheng Y. Xu K. Single-cell RNA sequencing: Technological progress and biomedical application in cancer research. Mol. Biotechnol. 2024 66 7 1497 1519 10.1007/s12033‑023‑00777‑0 37322261
    [Google Scholar]
  19. Hwang B. Lee J.H. Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp. Mol. Med. 2018 50 8 1 14 10.1038/s12276‑018‑0071‑8 30089861
    [Google Scholar]
  20. Luecken M.D. Theis F.J. Current best practices in single‐cell RNA‐seq analysis: A tutorial. Mol. Syst. Biol. 2019 15 6 e8746 10.15252/msb.20188746 31217225
    [Google Scholar]
  21. Nguyen Q.H. Pervolarakis N. Blake K. Ma D. Davis R.T. James N. Phung A.T. Willey E. Kumar R. Jabart E. Driver I. Rock J. Goga A. Khan S.A. Lawson D.A. Werb Z. Kessenbrock K. Profiling human breast epithelial cells using single cell RNA sequencing identifies cell diversity. Nat. Commun. 2018 9 1 2028 10.1038/s41467‑018‑04334‑1 29795293
    [Google Scholar]
  22. Tang F. Barbacioru C. Wang Y. Nordman E. Lee C. Xu N. Wang X. Bodeau J. Tuch B.B. Siddiqui A. Lao K. Surani M.A. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 2009 6 5 377 382 10.1038/nmeth.1315 19349980
    [Google Scholar]
  23. Sun F.Y. Li H.Y. Sun D.Q. Fu S.L. Gu L. Shao X. Wang Q.Q. Dong X. Duan B. Xing F.Y. Wu J. Xiao M.M. Zhao F.Q. Han J.D.J. Liu Q. Fan X.H. Li C. Wang C.F. Shi T.L. Single-cell omics: Experimental workflow, data analyses and applications. Sci. China Life Sci. 2024 68 1 5 102 10.1007/s11427‑023‑2561‑0 39060615
    [Google Scholar]
  24. Gross A. Schoendube J. Zimmermann S. Steeb M. Zengerle R. Koltay P. Technologies for single-cell isolation. Int. J. Mol. Sci. 2015 16 8 16897 16919 10.3390/ijms160816897 26213926
    [Google Scholar]
  25. Zhang X. Wei X. Wei Y. Chen M. Wang J. The up-to-date strategies for the isolation and manipulation of single cells. Talanta 2020 218 121147 10.1016/j.talanta.2020.121147 32797903
    [Google Scholar]
  26. Gautam V. Chatterjee S. Sarkar A.K. Single cell type specific RNA isolation and gene expression analysis in rice using laser capture microdissection (LCM)-based method. Methods Mol. Biol. 2021 2238 275 283 10.1007/978‑1‑0716‑1068‑8_18 33471338
    [Google Scholar]
  27. Bowers R.M. Lee J. Woyke T. Sequencing of genomes from environmental single cells. Methods Mol. Biol. 2018 1712 97 111 10.1007/978‑1‑4939‑7514‑3_8 29224071
    [Google Scholar]
  28. Gassei K. Ehmcke J. Schlatt S. Efficient enrichment of undifferentiated GFR alpha 1+ spermatogonia from immature rat testis by magnetic activated cell sorting. Cell Tissue Res. 2009 337 1 177 183 10.1007/s00441‑009‑0799‑5 19434428
    [Google Scholar]
  29. García Alonso D. Yu M. Qu H. Ma L. Shen F. Advances in microfluidics‐based technologies for single cell culture. Adv. Biosyst. 2019 3 11 1900003 10.1002/adbi.201900003 32648694
    [Google Scholar]
  30. Lan Y. Zhou Y. Wu M. Jia C. Zhao J. Microfluidic based single cell or droplet manipulation: Methods and applications. Talanta 2023 265 124776 10.1016/j.talanta.2023.124776 37348357
    [Google Scholar]
  31. Salmen F. De Jonghe J. Kaminski T.S. Alemany A. Parada G.E. Verity-Legg J. Yanagida A. Kohler T.N. Battich N. van den Brekel F. Ellermann A.L. Arias A.M. Nichols J. Hemberg M. Hollfelder F. van Oudenaarden A. High-throughput total RNA sequencing in single cells using VASA-seq. Nat. Biotechnol. 2022 40 12 1780 1793 10.1038/s41587‑022‑01361‑8 35760914
    [Google Scholar]
  32. Ambardar S. Gupta R. Trakroo D. Lal R. Vakhlu J. High throughput sequencing: An overview of sequencing chemistry. Indian J. Microbiol. 2016 56 4 394 404 10.1007/s12088‑016‑0606‑4 27784934
    [Google Scholar]
  33. Hagemann-Jensen M. Ziegenhain C. Sandberg R. Scalable single-cell RNA sequencing from full transcripts with Smart-seq3xpress. Nat. Biotechnol. 2022 40 10 1452 1457 10.1038/s41587‑022‑01311‑4 35637418
    [Google Scholar]
  34. Ramsköld D. Luo S. Wang Y.C. Li R. Deng Q. Faridani O.R. Daniels G.A. Khrebtukova I. Loring J.F. Laurent L.C. Schroth G.P. Sandberg R. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 2012 30 8 777 782 10.1038/nbt.2282 22820318
    [Google Scholar]
  35. Fan X. Tang D. Liao Y. Li P. Zhang Y. Wang M. Liang F. Wang X. Gao Y. Wen L. Wang D. Wang Y. Tang F. Single-cell RNA-seq analysis of mouse preimplantation embryos by third-generation sequencing. PLoS Biol. 2020 18 12 e3001017 10.1371/journal.pbio.3001017 33378329
    [Google Scholar]
  36. Liao Y. Liu Z. Zhang Y. Lu P. Wen L. Tang F. High-throughput and high-sensitivity full-length single-cell RNA-seq analysis on third-generation sequencing platform. Cell Discov. 2023 9 1 5 10.1038/s41421‑022‑00500‑4 36631434
    [Google Scholar]
  37. Jaitin D.A. Kenigsberg E. Keren-Shaul H. Elefant N. Paul F. Zaretsky I. Mildner A. Cohen N. Jung S. Tanay A. Amit I. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 2014 343 6172 776 779 10.1126/science.1247651 24531970
    [Google Scholar]
  38. Hashimshony T. Wagner F. Sher N. Yanai I. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep. 2012 2 3 666 673 10.1016/j.celrep.2012.08.003 22939981
    [Google Scholar]
  39. Hashimshony T. Senderovich N. Avital G. Klochendler A. de Leeuw Y. Anavy L. Gennert D. Li S. Livak K.J. Rozenblatt-Rosen O. Dor Y. Regev A. Yanai I. CEL-Seq2: Sensitive highly-multiplexed single-cell RNA-Seq. Genome Biol. 2016 17 1 77 10.1186/s13059‑016‑0938‑8 27121950
    [Google Scholar]
  40. Islam S. Kjällquist U. Moliner A. Zajac P. Fan J.B. Lönnerberg P. Linnarsson S. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 2011 21 7 1160 1167 10.1101/gr.110882.110 21543516
    [Google Scholar]
  41. Islam S. Zeisel A. Joost S. La Manno G. Zajac P. Kasper M. Lönnerberg P. Linnarsson S. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat. Methods 2014 11 2 163 166 10.1038/nmeth.2772 24363023
    [Google Scholar]
  42. Zilionis R. Nainys J. Veres A. Savova V. Zemmour D. Klein A.M. Mazutis L. Single-cell barcoding and sequencing using droplet microfluidics. Nat. Protoc. 2017 12 1 44 73 10.1038/nprot.2016.154 27929523
    [Google Scholar]
  43. Gierahn T.M. Wadsworth M.H. II Hughes T.K. Bryson B.D. Butler A. Satija R. Fortune S. Love J.C. Shalek A.K. Seq-Well: Portable, low-cost RNA sequencing of single cells at high throughput. Nat. Methods 2017 14 4 395 398 10.1038/nmeth.4179 28192419
    [Google Scholar]
  44. Macosko E.Z. Basu A. Satija R. Nemesh J. Shekhar K. Goldman M. Tirosh I. Bialas A.R. Kamitaki N. Martersteck E.M. Trombetta J.J. Weitz D.A. Sanes J.R. Shalek A.K. Regev A. McCarroll S.A. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 2015 161 5 1202 1214 10.1016/j.cell.2015.05.002 26000488
    [Google Scholar]
  45. Klein A.M. Mazutis L. Akartuna I. Tallapragada N. Veres A. Li V. Peshkin L. Weitz D.A. Kirschner M.W. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 2015 161 5 1187 1201 10.1016/j.cell.2015.04.044 26000487
    [Google Scholar]
  46. Baysoy A. Bai Z. Satija R. Fan R. The technological landscape and applications of single-cell multi-omics. Nat. Rev. Mol. Cell Biol. 2023 24 10 695 713 10.1038/s41580‑023‑00615‑w 37280296
    [Google Scholar]
  47. Wu X. Yang X. Dai Y. Zhao Z. Zhu J. Guo H. Yang R. Single-cell sequencing to multi-omics: Technologies and applications. Biomark. Res. 2024 12 1 110 10.1186/s40364‑024‑00643‑4 39334490
    [Google Scholar]
  48. Macaulay I.C. Haerty W. Kumar P. Li Y.I. Hu T.X. Teng M.J. Goolam M. Saurat N. Coupland P. Shirley L.M. Smith M. Van der Aa N. Banerjee R. Ellis P.D. Quail M.A. Swerdlow H.P. Zernicka-Goetz M. Livesey F.J. Ponting C.P. Voet T. G&T-seq: Parallel sequencing of single-cell genomes and transcriptomes. Nat. Methods 2015 12 6 519 522 10.1038/nmeth.3370 25915121
    [Google Scholar]
  49. Dey S.S. Kester L. Spanjaard B. Bienko M. van Oudenaarden A. Integrated genome and transcriptome sequencing of the same cell. Nat. Biotechnol. 2015 33 3 285 289 10.1038/nbt.3129 25599178
    [Google Scholar]
  50. Hou Y. Guo H. Cao C. Li X. Hu B. Zhu P. Wu X. Wen L. Tang F. Huang Y. Peng J. Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas. Cell Res. 2016 26 3 304 319 10.1038/cr.2016.23 26902283
    [Google Scholar]
  51. Angermueller C. Clark S.J. Lee H.J. Macaulay I.C. Teng M.J. Hu T.X. Krueger F. Smallwood S.A. Ponting C.P. Voet T. Kelsey G. Stegle O. Reik W. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat. Methods 2016 13 3 229 232 10.1038/nmeth.3728 26752769
    [Google Scholar]
  52. Stoeckius M. Hafemeister C. Stephenson W. Houck-Loomis B. Chattopadhyay P.K. Swerdlow H. Satija R. Smibert P. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 2017 14 9 865 868 10.1038/nmeth.4380 28759029
    [Google Scholar]
  53. Peterson V.M. Zhang K.X. Kumar N. Wong J. Li L. Wilson D.C. Moore R. McClanahan T.K. Sadekova S. Klappenbach J.A. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol. 2017 35 10 936 939 10.1038/nbt.3973 28854175
    [Google Scholar]
  54. Rooijers K. Markodimitraki C.M. Rang F.J. de Vries S.S. Chialastri A. de Luca K.L. Mooijman D. Dey S.S. Kind J. Simultaneous quantification of protein–DNA contacts and transcriptomes in single cells. Nat. Biotechnol. 2019 37 7 766 772 10.1038/s41587‑019‑0150‑y 31209373
    [Google Scholar]
  55. Chen S. Lake B.B. Zhang K. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nat. Biotechnol. 2019 37 12 1452 1457 10.1038/s41587‑019‑0290‑0 31611697
    [Google Scholar]
  56. Liu L. Liu C. Quintero A. Wu L. Yuan Y. Wang M. Cheng M. Leng L. Xu L. Dong G. Li R. Liu Y. Wei X. Xu J. Chen X. Lu H. Chen D. Wang Q. Zhou Q. Lin X. Li G. Liu S. Wang Q. Wang H. Fink J.L. Gao Z. Liu X. Hou Y. Zhu S. Yang H. Ye Y. Lin G. Chen F. Herrmann C. Eils R. Shang Z. Xu X. Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity. Nat. Commun. 2019 10 1 470 10.1038/s41467‑018‑08205‑7 30692544
    [Google Scholar]
  57. Wang Y. Yuan P. Yan Z. Yang M. Huo Y. Nie Y. Zhu X. Qiao J. Yan L. Single-cell multiomics sequencing reveals the functional regulatory landscape of early embryos. Nat. Commun. 2021 12 1 1247 10.1038/s41467‑021‑21409‑8 33623021
    [Google Scholar]
  58. Luo C. Liu H. Xie F. Armand E.J. Siletti K. Bakken T.E. Fang R. Doyle W.I. Stuart T. Hodge R.D. Hu L. Wang B.A. Zhang Z. Preissl S. Lee D.S. Zhou J. Niu S.Y. Castanon R. Bartlett A. Rivkin A. Wang X. Lucero J. Nery J.R. Davis D.A. Mash D.C. Satija R. Dixon J.R. Linnarsson S. Lein E. Behrens M.M. Ren B. Mukamel E.A. Ecker J.R. Single nucleus multi-omics identifies human cortical cell regulatory genome diversity. Cell Genomics 2022 2 3 100107 10.1016/j.xgen.2022.100107 35419551
    [Google Scholar]
  59. Mimitou E.P. Cheng A. Montalbano A. Hao S. Stoeckius M. Legut M. Roush T. Herrera A. Papalexi E. Ouyang Z. Satija R. Sanjana N.E. Koralov S.B. Smibert P. Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells. Nat. Methods 2019 16 5 409 412 10.1038/s41592‑019‑0392‑0 31011186
    [Google Scholar]
  60. Clark S.J. Argelaguet R. Kapourani C.A. Stubbs T.M. Lee H.J. Alda-Catalinas C. Krueger F. Sanguinetti G. Kelsey G. Marioni J.C. Stegle O. Reik W. scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nat. Commun. 2018 9 1 781 10.1038/s41467‑018‑03149‑4 29472610
    [Google Scholar]
  61. Mimitou E.P. Lareau C.A. Chen K.Y. Zorzetto-Fernandes A.L. Hao Y. Takeshima Y. Luo W. Huang T.S. Yeung B.Z. Papalexi E. Thakore P.I. Kibayashi T. Wing J.B. Hata M. Satija R. Nazor K.L. Sakaguchi S. Ludwig L.S. Sankaran V.G. Regev A. Smibert P. Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells. Nat. Biotechnol. 2021 39 10 1246 1258 10.1038/s41587‑021‑00927‑2 34083792
    [Google Scholar]
  62. Li X. Wang C.Y. From bulk, single-cell to spatial RNA sequencing. Int. J. Oral Sci. 2021 13 1 36 10.1038/s41368‑021‑00146‑0 34782601
    [Google Scholar]
  63. Kruse F. Junker J.P. van Oudenaarden A. Bakkers J. Tomo-seq: A method to obtain genome-wide expression data with spatial resolution. Methods Cell Biol 2016 135 299 307 10.1016/bs.mcb.2016.01.006 27443932
    [Google Scholar]
  64. Lovatt D. Ruble B.K. Lee J. Dueck H. Kim T.K. Fisher S. Francis C. Spaethling J.M. Wolf J.A. Grady M.S. Ulyanova A.V. Yeldell S.B. Griepenburg J.C. Buckley P.T. Kim J. Sul J.Y. Dmochowski I.J. Eberwine J. Transcriptome in vivo analysis (TIVA) of spatially defined single cells in live tissue. Nat. Methods 2014 11 2 190 196 10.1038/nmeth.2804 24412976
    [Google Scholar]
  65. Lee J.H. Daugharthy E.R. Scheiman J. Kalhor R. Ferrante T.C. Terry R. Turczyk B.M. Yang J.L. Lee H.S. Aach J. Zhang K. Church G.M. Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat. Protoc. 2015 10 3 442 458 10.1038/nprot.2014.191 25675209
    [Google Scholar]
  66. Medaglia C. Giladi A. Stoler-Barak L. De Giovanni M. Salame T.M. Biram A. David E. Li H. Iannacone M. Shulman Z. Amit I. Spatial reconstruction of immune niches by combining photoactivatable reporters and scRNA-seq. Science 2017 358 6370 1622 1626 10.1126/science.aao4277 29217582
    [Google Scholar]
  67. Chen J. Suo S. Tam P.P.L. Han J.D.J. Peng G. Jing N. Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq. Nat. Protoc. 2017 12 3 566 580 10.1038/nprot.2017.003 28207000
    [Google Scholar]
  68. Cai L. Transcriptome-scale super-resolved imaging in tissues by RNA SeqFISH. Eur. J. Hum. Genet. 2020 568 7751 235 239 10.1038/s41586‑019‑1049‑y 30911168
    [Google Scholar]
  69. Giladi A. Cohen M. Medaglia C. Baran Y. Li B. Zada M. Bost P. Blecher-Gonen R. Salame T.M. Mayer J.U. David E. Ronchese F. Tanay A. Amit I. Dissecting cellular crosstalk by sequencing physically interacting cells. Nat. Biotechnol. 2020 38 5 629 637 10.1038/s41587‑020‑0442‑2 32152598
    [Google Scholar]
  70. Fu X. Sun L. Dong R. Chen J.Y. Silakit R. Condon L.F. Lin Y. Lin S. Palmiter R.D. Gu L. Polony gels enable amplifiable DNA stamping and spatial transcriptomics of chronic pain. Cell 2022 185 24 4621 4633.e17 10.1016/j.cell.2022.10.021 36368323
    [Google Scholar]
  71. Ståhl P.L. Salmén F. Vickovic S. Lundmark A. Navarro J.F. Magnusson J. Giacomello S. Asp M. Westholm J.O. Huss M. Mollbrink A. Linnarsson S. Codeluppi S. Borg Å. Pontén F. Costea P.I. Sahlén P. Mulder J. Bergmann O. Lundeberg J. Frisén J. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 2016 353 6294 78 82 10.1126/science.aaf2403 27365449
    [Google Scholar]
  72. Lee J.H. Daugharthy E.R. Scheiman J. Kalhor R. Yang J.L. Ferrante T.C. Terry R. Jeanty S.S.F. Li C. Amamoto R. Peters D.T. Turczyk B.M. Marblestone A.H. Inverso S.A. Bernard A. Mali P. Rios X. Aach J. Church G.M. Highly multiplexed subcellular RNA sequencing in situ. Science 2014 343 6177 1360 1363 10.1126/science.1250212 24578530
    [Google Scholar]
  73. Schede H.H. Schneider C.G. Stergiadou J. Borm L.E. Ranjak A. Yamawaki T.M. David F.P.A. Lönnerberg P. Tosches M.A. Codeluppi S. La Manno G. Spatial tissue profiling by imaging-free molecular tomography. Nat. Biotechnol. 2021 39 8 968 977 10.1038/s41587‑021‑00879‑7 33875865
    [Google Scholar]
  74. Chen A. Liao S. Cheng M. Ma K. Wu L. Lai Y. Qiu X. Yang J. Xu J. Hao S. Wang X. Lu H. Chen X. Liu X. Huang X. Li Z. Hong Y. Jiang Y. Peng J. Liu S. Shen M. Liu C. Li Q. Yuan Y. Wei X. Zheng H. Feng W. Wang Z. Liu Y. Wang Z. Yang Y. Xiang H. Han L. Qin B. Guo P. Lai G. Muñoz-Cánoves P. Maxwell P.H. Thiery J.P. Wu Q.F. Zhao F. Chen B. Li M. Dai X. Wang S. Kuang H. Hui J. Wang L. Fei J.F. Wang O. Wei X. Lu H. Wang B. Liu S. Gu Y. Ni M. Zhang W. Mu F. Yin Y. Yang H. Lisby M. Cornall R.J. Mulder J. Uhlén M. Esteban M.A. Li Y. Liu L. Xu X. Wang J. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 2022 185 10 1777 1792.e21 10.1016/j.cell.2022.04.003 35512705
    [Google Scholar]
  75. Hao Y. Stuart T. Kowalski M.H. Choudhary S. Hoffman P. Hartman A. Srivastava A. Molla G. Madad S. Fernandez-Granda C. Satija R. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. 2024 42 2 293 304 10.1038/s41587‑023‑01767‑y 37231261
    [Google Scholar]
  76. Wolf F.A. Angerer P. Theis F.J. SCANPY: Large-scale single-cell gene expression data analysis. Genome Biol. 2018 19 1 15 10.1186/s13059‑017‑1382‑0 29409532
    [Google Scholar]
  77. Edgar R. Domrachev M. Lash A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002 30 1 207 210 10.1093/nar/30.1.207 11752295
    [Google Scholar]
  78. Regev A. Teichmann S.A. Lander E.S. Amit I. Benoist C. Birney E. Bodenmiller B. Campbell P. Carninci P. Clatworthy M. Clevers H. Deplancke B. Dunham I. Eberwine J. Eils R. Enard W. Farmer A. Fugger L. Göttgens B. Hacohen N. Haniffa M. Hemberg M. Kim S. Klenerman P. Kriegstein A. Lein E. Linnarsson S. Lundberg E. Lundeberg J. Majumder P. Marioni J.C. Merad M. Mhlanga M. Nawijn M. Netea M. Nolan G. Pe’er D. Phillipakis A. Ponting C.P. Quake S. Reik W. Rozenblatt-Rosen O. Sanes J. Satija R. Schumacher T.N. Shalek A. Shapiro E. Sharma P. Shin J.W. Stegle O. Stratton M. Stubbington M.J.T. Theis F.J. Uhlen M. van Oudenaarden A. Wagner A. Watt F. Weissman J. Wold B. Xavier R. Yosef N. The Human Cell Atlas. eLife 2017 6 e27041 10.7554/eLife.27041 29206104
    [Google Scholar]
  79. Cao Y. Zhu J. Jia P. Zhao Z. scRNASeqDB: A database for RNA-Seq based gene expression profiles in human single cells. Genes 2017 8 12 368 10.3390/genes8120368 29206167
    [Google Scholar]
  80. Li Y. Ma L. Wu D. Chen G. Advances in bulk and single-cell multi-omics approaches for systems biology and precision medicine. Brief. Bioinform. 2021 22 5 bbab024 10.1093/bib/bbab024 33778867
    [Google Scholar]
  81. Liu Q. Liang Y. Wang D. Li J. LFSC: A linear fast semi-supervised clustering algorithm that integrates reference-bulk and single-cell transcriptomes. Front. Genet. 2022 13 1068075 10.3389/fgene.2022.1068075 36531230
    [Google Scholar]
  82. Jew B. Alvarez M. Rahmani E. Miao Z. Ko A. Garske K.M. Sul J.H. Pietiläinen K.H. Pajukanta P. Halperin E. Accurate estimation of cell composition in bulk expression through robust integration of single-cell information. Nat. Commun. 2020 11 1 11 10.1038/s41467‑020‑15816‑6 32332754
    [Google Scholar]
  83. Awuah W.A. Roy S. Tan J.K. Adebusoye F.T. Qiang Z. Ferreira T. Ahluwalia A. Shet V. Yee A.L.W. Abdul-Rahman T. Papadakis M. Exploring the current landscape of single‐cell RNA sequencing applications in gastric cancer research. J. Cell. Mol. Med. 2024 28 7 e18159 10.1111/jcmm.18159 38494861
    [Google Scholar]
  84. Nicholas C.A. Smith M.J. Application of single-cell RNA sequencing methods to develop B cell targeted treatments for autoimmunity. Front. Immunol. 2023 14 1103690 10.3389/fimmu.2023.1103690 37520578
    [Google Scholar]
  85. Cao Y.H. Ding J. Tang Q.H. Zhang J. Huang Z.Y. Tang X.M. Liu J.B. Ma Y.S. Fu D. Deciphering cell–cell interactions and communication in the tumor microenvironment and unraveling intratumoral genetic heterogeneity via single-cell genomic sequencing. Bioengineered 2022 13 7-12 14974 14986 10.1080/21655979.2023.2185434 37105769
    [Google Scholar]
  86. Li P.H. Kong X.Y. He Y.Z. Liu Y. Peng X. Li Z.H. Xu H. Luo H. Park J. Recent developments in application of single-cell RNA sequencing in the tumour immune microenvironment and cancer therapy. Mil. Med. Res. 2022 9 1 52 10.1186/s40779‑022‑00414‑y 36154923
    [Google Scholar]
  87. Greten F.R. Grivennikov S. Newman A.M. Astle W.J. Genomic map of the cellular composition of the tumor microenvironment. Nat. Immunol. 2024 25 10 1789 1790 10.1038/s41590‑024‑01964‑0 39289558
    [Google Scholar]
  88. Cheng S. Li Z. Gao R. Xing B. Gao Y. Yang Y. Qin S. Zhang L. Ouyang H. Du P. Jiang L. Zhang B. Yang Y. Wang X. Ren X. Bei J.X. Hu X. Bu Z. Ji J. Zhang Z. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. Cell 2021 184 3 792 809.e23 10.1016/j.cell.2021.01.010 33545035
    [Google Scholar]
  89. Tang F. Li J. Qi L. Liu D. Bo Y. Qin S. Miao Y. Yu K. Hou W. Li J. Peng J. Tian Z. Zhu L. Peng H. Wang D. Zhang Z. A pan-cancer single-cell panorama of human natural killer cells. Cell 2023 186 19 4235 4251.e20 10.1016/j.cell.2023.07.034 37607536
    [Google Scholar]
  90. Zhang L. Yu X. Zheng L. Zhang Y. Li Y. Fang Q. Gao R. Kang B. Zhang Q. Huang J.Y. Konno H. Guo X. Ye Y. Gao S. Wang S. Hu X. Ren X. Shen Z. Ouyang W. Zhang Z. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature 2018 564 7735 268 272 10.1038/s41586‑018‑0694‑x 30479382
    [Google Scholar]
  91. Zhang Q. He Y. Luo N. Patel S.J. Han Y. Gao R. Modak M. Carotta S. Haslinger C. Kind D. Peet G.W. Zhong G. Lu S. Zhu W. Mao Y. Xiao M. Bergmann M. Hu X. Kerkar S.P. Vogt A.B. Pflanz S. Liu K. Peng J. Ren X. Zhang Z. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell 2019 179 4 829 845.e20 10.1016/j.cell.2019.10.003 31675496
    [Google Scholar]
  92. Zheng C. Zheng L. Yoo J.K. Guo H. Zhang Y. Guo X. Kang B. Hu R. Huang J.Y. Zhang Q. Liu Z. Dong M. Hu X. Ouyang W. Peng J. Zhang Z. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 2017 169 7 1342 1356.e16 10.1016/j.cell.2017.05.035 28622514
    [Google Scholar]
  93. Zhao Q. Zhao R. Song C. Wang H. Rong J. Wang F. Yan L. Song Y. Xie Y. Increased IGFBP7 expression correlates with poor prognosis and immune infiltration in gastric cancer. J. Cancer 2021 12 5 1343 1355 10.7150/jca.50370 33531979
    [Google Scholar]
  94. Yang J. Wu B. Li G. Zhang C. Xie Y. Kong W. Zeng Z. Landscape of epithelial cell subpopulations in the human esophageal squamous cell carcinoma microenvironment. Heliyon 2024 10 19 e38091 10.1016/j.heliyon.2024.e38091 39391485
    [Google Scholar]
  95. Wilk A.J. Shalek A.K. Holmes S. Blish C.A. Comparative analysis of cell–cell communication at single-cell resolution. Nat. Biotechnol. 2024 42 3 470 483 10.1038/s41587‑023‑01782‑z 37169965
    [Google Scholar]
  96. Li L. Liu J. Wang W. Fu Y. Deng Y. Li X. Liu Z. Pang Y. Xu Y. Yan M. Li Z. Cancer stem cells promote lymph nodes metastasis of breast cancer by reprogramming tumor microenvironment. Transl. Oncol. 2023 35 101733 10.1016/j.tranon.2023.101733 37421907
    [Google Scholar]
  97. Yao J. Liu Y. Yang J. Li M. Li S. Zhang B. Yang R. Zhang Y. Cui X. Feng C. Single-cell sequencing reveals that DBI is the key gene and potential therapeutic target in quiescent bladder cancer stem cells. Front. Genet. 2022 13 904536 10.3389/fgene.2022.904536 35769986
    [Google Scholar]
  98. Orrapin S. Thongkumkoon P. Udomruk S. Moonmuang S. Sutthitthasakul S. Yongpitakwattana P. Pruksakorn D. Chaiyawat P. Deciphering the biology of circulating tumor cells through single-cell RNA sequencing: Implications for precision medicine in cancer. Int. J. Mol. Sci. 2023 24 15 12337 10.3390/ijms241512337 37569711
    [Google Scholar]
  99. Gostomczyk K. Marsool M.D.M. Tayyab H. Pandey A. Borowczak J. Macome F. Chacon J. Dave T. Maniewski M. Szylberg Ł. Targeting circulating tumor cells to prevent metastases. Hum. Cell 2023 37 1 101 120 10.1007/s13577‑023‑00992‑6 37874534
    [Google Scholar]
  100. Chen C. Guo Q. Liu Y. Hou Q. Liao M. Guo Y. Zang Y. Wang F. Liu H. Luan X. Liang Y. Guan Z. Li Y. Liu H. Dong X. Zhang X. Liu J. Xu Q. Single‐cell and spatial transcriptomics reveal POSTN + cancer‐associated fibroblasts correlated with immune suppression and tumour progression in non‐small cell lung cancer. Clin. Transl. Med. 2023 13 12 e1515 10.1002/ctm2.1515 38115703
    [Google Scholar]
  101. Rui R. Zhou L. He S. Cancer immunotherapies: Advances and bottlenecks. Front. Immunol. 2023 14 1212476 10.3389/fimmu.2023.1212476 37691932
    [Google Scholar]
  102. Luo W. Zeng Z. Jin Y. Yang L. Fan T. Wang Z. Pan Y. Yang Y. Yao M. Li Y. Xiao X. Wang G. Wang C. Chang S. Che G. Zhang L. Li Y. Peng Y. Li W. Distinct immune microenvironment of lung adenocarcinoma in never-smokers from smokers. Cell Rep. Med. 2023 4 6 101078 10.1016/j.xcrm.2023.101078 37301197
    [Google Scholar]
  103. Bock C. Datlinger P. Chardon F. Coelho M.A. Dong M.B. Lawson K.A. Lu T. Maroc L. Norman T.M. Song B. Stanley G. Chen S. Garnett M. Li W. Moffat J. Qi L.S. Shapiro R.S. Shendure J. Weissman J.S. Zhuang X. High-content CRISPR screening. Nat. Rev. Methods Primers 2022 2 1 8 10.1038/s43586‑021‑00093‑4 37214176
    [Google Scholar]
  104. Lotfollahi M. Klimovskaia Susmelj A. De Donno C. Hetzel L. Ji Y. Ibarra I.L. Srivatsan S.R. Naghipourfar M. Daza R.M. Martin B. Shendure J. McFaline-Figueroa J.L. Boyeau P. Wolf F.A. Yakubova N. Günnemann S. Trapnell C. Lopez-Paz D. Theis F.J. Predicting cellular responses to complex perturbations in high‐throughput screens. Mol. Syst. Biol. 2023 19 6 e11517 10.15252/msb.202211517 37154091
    [Google Scholar]
  105. Gezelius H. Enblad A.P. Lundmark A. Åberg M. Blom K. Rudfeldt J. Raine A. Harila A. Rendo V. Heinäniemi M. Andersson C. Nordlund J. Comparison of high-throughput single-cell RNA-seq methods for ex vivo drug screening. NAR Genom. Bioinform. 2024 6 1 lqae001 10.1093/nargab/lqae001 38288374
    [Google Scholar]
  106. Shin D. Lee W. Lee J.H. Bang D. Multiplexed single-cell RNA-seq via transient barcoding for simultaneous expression profiling of various drug perturbations. Sci. Adv. 2019 5 5 eaav2249 10.1126/sciadv.aav2249 31106268
    [Google Scholar]
  107. Duan X. Zhang T. Feng L. de Silva N. Greenspun B. Wang X. Moyer J. Martin M.L. Chandwani R. Elemento O. Leach S.D. Evans T. Chen S. Pan F.C. A pancreatic cancer organoid platform identifies an inhibitor specific to mutant KRAS. Cell Stem Cell 2024 31 1 71 88.e8 10.1016/j.stem.2023.11.011 38151022
    [Google Scholar]
  108. McFarland J.M. Paolella B.R. Warren A. Geiger-Schuller K. Shibue T. Rothberg M. Kuksenko O. Colgan W.N. Jones A. Chambers E. Dionne D. Bender S. Wolpin B.M. Ghandi M. Tirosh I. Rozenblatt-Rosen O. Roth J.A. Golub T.R. Regev A. Aguirre A.J. Vazquez F. Tsherniak A. Multiplexed single-cell transcriptional response profiling to define cancer vulnerabilities and therapeutic mechanism of action. Nat. Commun. 2020 11 1 4296 10.1038/s41467‑020‑17440‑w 32855387
    [Google Scholar]
  109. Li C. Shao X. Zhang S. Wang Y. Jin K. Yang P. Lu X. Fan X. Wang Y. scRank infers drug-responsive cell types from untreated scRNA-seq data using a target-perturbed gene regulatory network. Cell Rep. Med. 2024 5 6 101568 10.1016/j.xcrm.2024.101568 38754419
    [Google Scholar]
  110. Chen D. Liu P. Lu X. Li J. Qi D. Zang L. Lin J. Liu Y. Zhai S. Fu D. Weng Y. Li H. Shen B. Pan-cancer analysis implicates novel insights of lactate metabolism into immunotherapy response prediction and survival prognostication. J. Exp. Clin. Cancer Res. 2024 43 1 125 10.1186/s13046‑024‑03042‑7 38664705
    [Google Scholar]
  111. Foutadakis S. Kordias D. Vatsellas G. Magklara A. Identification of new chemoresistance-associated genes in triple-negative breast cancer by single-cell transcriptomic analysis. Int. J. Mol. Sci. 2024 25 13 6853 10.3390/ijms25136853 38999963
    [Google Scholar]
  112. Fateeva A. Chen S. Editorial: The role of immunotherapy in melanomas. Front. Oncol. 2023 13 1293040 10.3389/fonc.2023.1293040 37841439
    [Google Scholar]
  113. Premi S. Qin Y. Ahmad N. Editorial: Mechanisms of resistance to the targeted therapy and immunotherapy in cutaneous melanoma. Front. Oncol. 2022 12 1016901 10.3389/fonc.2022.1016901 36110949
    [Google Scholar]
  114. Spiliopoulou P. Vornicova O. Genta S. Spreafico A. Shaping the future of immunotherapy targets and biomarkers in melanoma and non-melanoma cutaneous cancers. Int. J. Mol. Sci. 2023 24 2 1294 10.3390/ijms24021294 36674809
    [Google Scholar]
  115. Ding Y. Zhao Z. Cai H. Zhou Y. Chen H. Bai Y. Liu Z. Liu S. Zhou W. Single-cell sequencing analysis related to sphingolipid metabolism guides immunotherapy and prognosis of skin cutaneous melanoma. Front. Immunol. 2023 14 1304466 10.3389/fimmu.2023.1304466 38077400
    [Google Scholar]
  116. Tang S. Zhang Y. Huang S. Zhu T. Huang X. Single cell RNA-sequencing in uveal melanoma: Advances in heterogeneity, tumor microenvironment and immunotherapy. Front. Immunol. 2024 15 1427348 10.3389/fimmu.2024.1427348 38966635
    [Google Scholar]
  117. He B. Xiao Y. Liang H. Huang Q. Du Y. Li Y. Garmire D. Sun D. Garmire L.X. ASGARD is a single-cell guided pipeline to aid repurposing of drugs. Nat. Commun. 2023 14 1 993 10.1038/s41467‑023‑36637‑3 36813801
    [Google Scholar]
  118. Hsieh C.Y. Wen J.H. Lin S.M. Tseng T.Y. Huang J.H. Huang H.C. Juan H.F. scDrug: From single-cell RNA-seq to drug response prediction. Comput. Struct. Biotechnol. J. 2023 21 150 157 10.1016/j.csbj.2022.11.055 36544472
    [Google Scholar]
  119. Sun Y.Y. Hsieh C.Y. Wen J.H. Tseng T.Y. Huang J.H. Oyang Y.J. Huang H.C. Juan H.F. scDrug+: Predicting drug-responses using single-cell transcriptomics and molecular structure. Biomed. Pharmacother. 2024 177 117070 10.1016/j.biopha.2024.117070
    [Google Scholar]
  120. Lee H.M. Wright W.C. Pan M. Low J. Currier D. Fang J. Singh S. Nance S. Delahunty I. Kim Y. Chapple R.H. Zhang Y. Liu X. Steele J.A. Qi J. Pruett-Miller S.M. Easton J. Chen T. Yang J. Durbin A.D. Geeleher P. A CRISPR-drug perturbational map for identifying compounds to combine with commonly used chemotherapeutics. Nat. Commun. 2023 14 1 7332 10.1038/s41467‑023‑43134‑0 37957169
    [Google Scholar]
  121. Zhong C. Jiang W.J. Yao Y. Li Z. Li Y. Wang S. Wang X. Zhu W. Wu S. Wang J. Fan S. Ma S. Liu Y. Zhang H. Zhao W. Zhao L. Feng Y. Li Z. Guo R. Yu L. Pei F. Hu J. Feng X. Yang Z. Yang Z. Yang X. Hou Y. Zhang D. Xu D. Sheng R. Li Y. Liu L. Wu H.J. Huang J. Fei T. CRISPR screens reveal convergent targeting strategies against evolutionarily distinct chemoresistance in cancer. Nat. Commun. 2024 15 1 5502 10.1038/s41467‑024‑49673‑4 38951519
    [Google Scholar]
  122. Jin X. Simmons S.K. Guo A. Shetty A.S. Ko M. Nguyen L. Jokhi V. Robinson E. Oyler P. Curry N. Deangeli G. Lodato S. Levin J.Z. Regev A. Zhang F. Arlotta P. In vivo Perturb-Seq reveals neuronal and glial abnormalities associated with autism risk genes. Science 2020 370 6520 eaaz6063 10.1126/science.aaz6063 33243861
    [Google Scholar]
  123. Liu S.J. Zou C. Pak J. Morse A. Pang D. Casey-Clyde T. Borah A.A. Wu D. Seo K. O’Loughlin T. Lim D.A. Ozawa T. Berger M.S. Kamber R.A. Weiss W.A. Raleigh D.R. Gilbert L.A. In vivo perturb-seq of cancer and microenvironment cells dissects oncologic drivers and radiotherapy responses in glioblastoma. Genome Biol. 2024 25 1 256 10.1186/s13059‑024‑03404‑6 39375777
    [Google Scholar]
  124. Janesick A. Shelansky R. Gottscho A.D. Wagner F. Williams S.R. Rouault M. Beliakoff G. Morrison C.A. Oliveira M.F. Sicherman J.T. Kohlway A. Abousoud J. Drennon T.Y. Mohabbat S.H. Taylor S.E.B. High resolution mapping of the tumor microenvironment using integrated single-cell, spatial and in situ analysis. Nat. Commun. 2023 14 1 8353 10.1038/s41467‑023‑43458‑x 36650137
    [Google Scholar]
  125. Liang A. Kong Y. Chen Z. Qiu Y. Wu Y. Zhu X. Li Z. Advancements and applications of single-cell multi-omics techniques in cancer research: Unveiling heterogeneity and paving the way for precision therapeutics. Biochem. Biophys. Rep. 2024 37 101589 10.1016/j.bbrep.2023.101589 38074997
    [Google Scholar]
  126. Wang Q. Zhi Y. Zi M. Mo Y. Wang Y. Liao Q. Zhang S. Gong Z. Wang F. Zeng Z. Guo C. Xiong W. Spatially resolved transcriptomics technology facilitates cancer research. Adv. Sci. 2023 10 30 2302558 10.1002/advs.202302558 37632718
    [Google Scholar]
  127. Savage S.R. Yi X. Lei J.T. Wen B. Zhao H. Liao Y. Jaehnig E.J. Somes L.K. Shafer P.W. Lee T.D. Fu Z. Dou Y. Shi Z. Gao D. Hoyos V. Gao Q. Zhang B. Pan-cancer proteogenomics expands the landscape of therapeutic targets. Cell 2024 187 16 4389 4407.e15 10.1016/j.cell.2024.05.039 38917788
    [Google Scholar]
  128. Izumi M. Fujii M. Kobayashi I.S. Ho V. Kashima Y. Udagawa H. Costa D.B. Kobayashi S.S. Integrative single-cell RNA-seq and spatial transcriptomics analyses reveal diverse apoptosis-related gene expression profiles in EGFR-mutated lung cancer. Cell Death Dis. 2024 15 8 580 10.1038/s41419‑024‑06940‑y 39122703
    [Google Scholar]
  129. Liu Y. Yang M. Deng Y. Su G. Enninful A. Guo C.C. Tebaldi T. Zhang D. Kim D. Bai Z. Norris E. Pan A. Li J. Xiao Y. Halene S. Fan R. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell 2020 183 6 1665 1681.e18 10.1016/j.cell.2020.10.026 33188776
    [Google Scholar]
  130. Jiang F. Zhou X. Qian Y. Zhu M. Wang L. Li Z. Shen Q. Wang M. Qu F. Cui G. Chen K. Peng G. Simultaneous profiling of spatial gene expression and chromatin accessibility during mouse brain development. Nat. Methods 2023 20 7 1048 1057 10.1038/s41592‑023‑01884‑1 37231265
    [Google Scholar]
  131. Wu X. Xu W. Deng L. Li Y. Wang Z. Sun L. Gao A. Wang H. Yang X. Wu C. Zou Y. Yan K. Liu Z. Zhang L. Du G. Yang L. Lin D. Yue J. Wang P. Han Y. Fu Z. Dai J. Cao G. Spatial multi-omics at subcellular resolution via high-throughput in situ pairwise sequencing. Nat. Biomed. Eng. 2024 8 7 872 889 10.1038/s41551‑024‑01205‑7 38745110
    [Google Scholar]
  132. Chen J. Larsson L. Swarbrick A. Lundeberg J. Spatial landscapes of cancers: Insights and opportunities. Nat. Rev. Clin. Oncol. 2024 21 9 660 674 10.1038/s41571‑024‑00926‑7 39043872
    [Google Scholar]
  133. Li S. Wang Z. Huang H.D. Lee T.Y. Machine learning-based characterization and identification of tertiary lymphoid structures using spatial transcriptomics data. Int. J. Mol. Sci. 2024 25 7 3887 10.3390/ijms25073887 38612697
    [Google Scholar]
  134. Xu W. Lu J. Tian X. Ye S. Wei S. Wang J. Anwaier A. Qu Y. Liu W. Chang K. Zhang H. Ye D. Unveiling the impact of tertiary lymphoid structures on immunotherapeutic responses of clear cell renal cell carcinoma. MedComm 2024 5 1 e461 10.1002/mco2.461 38222314
    [Google Scholar]
  135. Jiang P. Quality control of single-cell RNA-seq. Methods Mol. Biol. 2019 1935 1 9 10.1007/978‑1‑4939‑9057‑3_1 30758816
    [Google Scholar]
  136. Qu H.Q. Kao C. Hakonarson H. Single-cell RNA sequencing technology landscape in 2023. Stem Cells 2024 42 1 1 12 10.1093/stmcls/sxad077 37934608
    [Google Scholar]
  137. Xiong J. Gong F. Ma L. Wan L. scVIC: Deep generative modeling of heterogeneity for scRNA-seq data. Bioinform. Adv. 2024 4 1 vbae086 10.1093/bioadv/vbae086 39027640
    [Google Scholar]
  138. Xu L. Li Z. Ren J. Liu S. Xu Y. Single-cell RNA sequencing data analysis utilizing multi-type graph neural networks. Comput. Biol. Med. 2024 179 108921 10.1016/j.compbiomed.2024.108921 39059210
    [Google Scholar]
  139. Yarlagadda S. Giorgio T.D. A guide to single‐cell RNA sequencing analysis using web‐based tools for non‐bioinformatician. FEBS J. 2024 291 12 2545 2561 10.1111/febs.17036 38148322
    [Google Scholar]
  140. Zhang P. Wang X. Cen X. Zhang Q. Fu Y. Mei Y. Wang X. Wang R. Wang J. Ouyang H. Liang T. Xia H. Han X. Guo G. A deep learning framework for in silico screening of anticancer drugs at the single-cell level. Natl. Sci. Rev. 2025 12 2 nwae451 10.1093/nsr/nwae451 39872221
    [Google Scholar]
  141. Lim J. Chin V. Fairfax K. Moutinho C. Suan D. Ji H. Powell J.E. Transitioning single-cell genomics into the clinic. Nat. Rev. Genet. 2023 24 8 573 584 10.1038/s41576‑023‑00613‑w 37258725
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096372729250715050452
Loading
/content/journals/ccdt/10.2174/0115680096372729250715050452
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test