Skip to content
2000
image of Cancer Vaccines: Mechanisms, Clinical Applications, Challenges, and Future Directions in Precision Medicine

Abstract

Cancer poses a major health burden worldwide, necessitating the development of novel therapeutic approaches. Personalized cancer vaccines represent a promising form of immunotherapy that enhances the ability of the immune system to recognize and destroy tumor cells through tumor-associated and cancer-specific antigens. This review categorizes cancer vaccines into preventive, therapeutic, and personalized vaccines, discussing their mechanisms, clinical applications, and current FDA-approved examples, such as Sipuleucel-T and HPV vaccines. We highlight the recent advances in RNA-based vaccines, viral vectors, and nanotechnology, along with the synergistic role of cancer vaccines and immune checkpoint inhibitors in improving therapeutic efficacy. Overcoming ethical, regulatory, and technological barriers through global collaboration is essential for maximizing vaccine efficacy and enhancing patient outcomes. This review highlights the pivotal role of personalized vaccines in advancing precision medicine and reshaping cancer treatment paradigms.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096381121250628142857
2025-07-11
2025-12-17
Loading full text...

Full text loading...

/deliver/fulltext/ccdt/10.2174/0115680096381121250628142857/BMS-CCDT-2024-587.html?itemId=/content/journals/ccdt/10.2174/0115680096381121250628142857&mimeType=html&fmt=ahah

References

  1. Cancer 2025 Available from: https://www.who.int/news-room/fact-sheets/detail/cancer
  2. Yuan S. Almagro J. Fuchs E. Beyond genetics: Driving cancer with the tumour microenvironment behind the wheel. Nat. Rev. Cancer 2024 24 4 274 286 10.1038/s41568‑023‑00660‑9 38347101
    [Google Scholar]
  3. Shlyakhtina Y. Moran K.L. Portal M.M. Genetic and non-genetic mechanisms underlying cancer evolution. Cancers (Basel) 2021 13 6 1380 10.3390/cancers13061380 33803675
    [Google Scholar]
  4. Sinkala M. Mutational landscape of cancer-driver genes across human cancers. Sci. Rep. 2023 13 1 12742 10.1038/s41598‑023‑39608‑2 37550388
    [Google Scholar]
  5. Debela D.T. Muzazu S.G.Y. Heraro K.D. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021 9 20503121211034366 10.1177/20503121211034366 34408877
    [Google Scholar]
  6. Vancoppenolle J.M. Koole S.N. O’Mahony J.F. Targeted combination therapies in oncology: Challenging regulatory frameworks designed for monotherapies in Europe. Drug Discov. Today 2023 28 8 103620 10.1016/j.drudis.2023.103620 37201780
    [Google Scholar]
  7. The global challenge of cancer. Nat. Can. 2020 1 1 1 2 10.1038/s43018‑019‑0023‑9 35121840
    [Google Scholar]
  8. Global cancer data by country. Available from: (accessed on 15/02/2024). https://www.wcrf.org/cancer-trends/global-cancer-data-by-country/
  9. Cancer mortality statistics. Available from: (accessed on 15/02/2024).https://www.cancerresearchuk.org/health-professional/cancer-statistics/mortality
  10. Siegel R.L. Giaquinto A.N. Jemal A. Cancer statistics, 2024. CA Cancer J. Clin. 2024 74 1 12 49 10.3322/caac.21820 38230766
    [Google Scholar]
  11. American cancer society annual report. Available from: (accessed on 16/02/2024). https://www.cancer.org/about-us/financial-governance-information/stewardship-report.html
  12. The international agency for research on cancer. Available from: (accessed on 18/02/2024).https://www.iarc.who.int/cancer-topics/#country
  13. Cancer registry cancer incidence in Jordan. 2019 Available from: (accessed on 16/02/2024).https://moh.gov.jo/ebv4.0/root_storage/ar/eb_list_page/%D8%A7%D9%84%D8%AA%D9%82%D8%B1%D9%8A%D8%B1_%D8%A7%D9%84%D8%B3%D9%86%D9%88%D9%8A_%D9%84%D8%A7%D8%B5%D8%A7%D8%A8%D8%A7%D8%AA_%D8%A7%D9%84%D8%B3%D8%B1%D8%B7%D8%A7%D9%86_%D8%A7%D9%84%D9%85%D8%B3%D8%AC%D9%84%D8%A9_%D9%81%D9%8A_%D8%A7%D9%84%D8%A7%D8%B1%D8%AF%D9%86_%D9%84%D8%B9%D8%A7%D9%85_2019.pdf
  14. García-Pardo M. Gorria T. Malenica I. Corgnac S. Teixidó C. Mezquita L. Vaccine therapy in non-small cell lung cancer. Vaccines (Basel) 2022 10 5 740 10.3390/vaccines10050740 35632496
    [Google Scholar]
  15. Hoeben A. Joosten E.A.J. Everdingen M.H.J.V.D.B. Personalized medicine: Recent progress in cancer therapy. Cancers (Basel) 2021 13 2 242 10.3390/cancers13020242 33440729
    [Google Scholar]
  16. Verma C. Pawar V. Srivastava S. Cancer vaccines in the immunotherapy era: Promise and potential. Vaccines (Basel) 2023 11 12 1783 10.3390/vaccines11121783 38140187
    [Google Scholar]
  17. Vafaei S. Zekiy A.O. Khanamir R.A. Combination therapy with immune checkpoint inhibitors (ICIs); A new frontier. Cancer Cell Int. 2022 22 1 2 10.1186/s12935‑021‑02407‑8 34980128
    [Google Scholar]
  18. Miao L. Zhang Y. Huang L. mRNA vaccine for cancer immunotherapy. Mol. Cancer 2021 20 1 41 10.1186/s12943‑021‑01335‑5 33632261
    [Google Scholar]
  19. Morse M.A. Crosby E.J. Force J. Clinical trials of self-replicating RNA-based cancer vaccines. Cancer Gene Ther. 2023 30 6 803 811 10.1038/s41417‑023‑00587‑1 36765179
    [Google Scholar]
  20. Zamyatnin A.A. Soltani M. Savvateeva L.V. Ganjalikhani-Hakemi M. Clinical combinatorial treatments based on cancer vaccines: Combination with checkpoint inhibitors and beyond. Curr. Drug Targets 2022 23 11 1072 1084 10.2174/1389450123666220421124542 35593358
    [Google Scholar]
  21. Gupta M. Wahi A. Sharma P. Recent advances in cancer vaccines: Challenges, achievements, and futuristic prospects. Vaccines (Basel) 2022 10 12 2011 10.3390/vaccines10122011 36560420
    [Google Scholar]
  22. Grimmett E. Al-Share B. Alkassab M.B. Cancer vaccines: Past, present and future; A review article. Discov. Oncol. 2022 13 1 31 10.1007/s12672‑022‑00491‑4 35576080
    [Google Scholar]
  23. Tay B.Q. Wright Q. Ladwa R. Evolution of cancer vaccines—challenges, achievements, and future directions. Vaccines (Basel) 2021 9 5 535 10.3390/vaccines9050535 34065557
    [Google Scholar]
  24. Malla R. Srilatha M. Farran B. Nagaraju G.P. mRNA vaccines and their delivery strategies: A journey from infectious diseases to cancer. Mol. Ther. 2024 32 1 13 31 10.1016/j.ymthe.2023.10.024 37919901
    [Google Scholar]
  25. Bouazzaoui A. Abdellatif A.A.H. Al-Allaf F.A. Bogari N.M. Al-Dehlawi S. Qari S.H. Strategies for vaccination: Conventional vaccine approaches versus new-generation strategies in combination with adjuvants. Pharmaceutics 2021 13 2 140 10.3390/pharmaceutics13020140 33499096
    [Google Scholar]
  26. Makker S. Galley C. Bennett C.L. Cancer vaccines: From an immunology perspective. Immunother. Adv. 2024 4 1 ltad030 10.1093/immadv/ltad030 38223410
    [Google Scholar]
  27. Lin M.J. Svensson-Arvelund J. Lubitz G.S. Cancer vaccines: The next immunotherapy frontier. Nat. Can. 2022 3 8 911 926 10.1038/s43018‑022‑00418‑6 35999309
    [Google Scholar]
  28. Fan T. Zhang M. Yang J. Zhu Z. Cao W. Dong C. Therapeutic cancer vaccines: Advancements, challenges and prospects. Signal Transduct. Target. Ther. 2023 8 1 450 10.1038/s41392‑023‑01674‑3 38086815
    [Google Scholar]
  29. Zhang X. Cui H. Zhang W. Li Z. Gao J. Engineered tumor cell-derived vaccines against cancer: The art of combating poison with poison. Bioact. Mater. 2023 22 491 517 10.1016/j.bioactmat.2022.10.016 36330160
    [Google Scholar]
  30. Liston A. Humblet-Baron S. Duffy D. Goris A. Human immune diversity: From evolution to modernity. Nat. Immunol. 2021 22 12 1479 1489 10.1038/s41590‑021‑01058‑1 34795445
    [Google Scholar]
  31. Liu J. Fu M. Wang M. Wan D. Wei Y. Wei X. Cancer vaccines as promising immuno-therapeutics: platforms and current progress. J. Hematol. Oncol. 2022 15 1 28 10.1186/s13045‑022‑01247‑x 35303904
    [Google Scholar]
  32. Enokida T. Moreira A. Bhardwaj N. Vaccines for immunoprevention of cancer. J. Clin. Invest. 2021 131 9 e146956 10.1172/JCI146956 33938446
    [Google Scholar]
  33. Kumar A.R. Devan A.R. Nair B. Vinod B.S. Nath L.R. Harnessing the immune system against cancer: Current immunotherapy approaches and therapeutic targets. Mol. Biol. Rep. 2021 48 12 8075 8095 10.1007/s11033‑021‑06752‑9 34671902
    [Google Scholar]
  34. Pérez-Baños A. Gleisner M.A. Flores I. Whole tumour cell-based vaccines: Tuning the instruments to orchestrate an optimal antitumour immune response. Br. J. Cancer 2023 129 4 572 585 10.1038/s41416‑023‑02327‑6 37355722
    [Google Scholar]
  35. Apavaloaei A. Hardy M.P. Thibault P. Perreault C. The origin and immune recognition of tumor-specific antigens. Cancers (Basel) 2020 12 9 2607 10.3390/cancers12092607 32932620
    [Google Scholar]
  36. Lee K.W. Yam J.W.P. Mao X. Dendritic cell vaccines: A shift from conventional approach to new generations. Cells 2023 12 17 2147 10.3390/cells12172147 37681880
    [Google Scholar]
  37. Del Prete A. Salvi V. Soriani A. Dendritic cell subsets in cancer immunity and tumor antigen sensing. Cell. Mol. Immunol. 2023 20 5 432 447 10.1038/s41423‑023‑00990‑6 36949244
    [Google Scholar]
  38. Saxena M. van der Burg S.H. Melief C.J.M. Bhardwaj N. Therapeutic cancer vaccines. Nat. Rev. Cancer 2021 21 6 360 378 10.1038/s41568‑021‑00346‑0 33907315
    [Google Scholar]
  39. Gambirasi M. Safa A. Vruzhaj I. Giacomin A. Sartor F. Toffoli G. Oral administration of cancer vaccines: Challenges and future perspectives. Vaccines (Basel) 2023 12 1 26 10.3390/vaccines12010026 38250839
    [Google Scholar]
  40. Duan L.J. Wang Q. Zhang C. Yang D.X. Zhang X.Y. Potentialities and challenges of mRNA vaccine in cancer immunotherapy. Front. Immunol. 2022 13 923647 10.3389/fimmu.2022.923647 35711457
    [Google Scholar]
  41. Chen S. Huang X. Xue Y. Nanotechnology-based mRNA vaccines. Nat. Rev. Methods Primers 2023 3 1 63 10.1038/s43586‑023‑00246‑7
    [Google Scholar]
  42. Aljabali A.A.A. Bashatwah R.M. Obeid M.A. Current state of, prospects for, and obstacles to mRNA vaccine development. Drug Discov. Today 2023 28 2 103458 10.1016/j.drudis.2022.103458 36427779
    [Google Scholar]
  43. Wang Y. Zhang Z. Luo J. Han X. Wei Y. Wei X. mRNA vaccine: A potential therapeutic strategy. Mol. Cancer 2021 20 1 33 10.1186/s12943‑021‑01311‑z 33593376
    [Google Scholar]
  44. Yi M. Zheng X. Niu M. Zhu S. Ge H. Wu K. Combination strategies with PD-1/PD-L1 blockade: Current advances and future directions. Mol. Cancer 2022 21 1 28 10.1186/s12943‑021‑01489‑2 35062949
    [Google Scholar]
  45. Editorial N.M. Precision medicine meets cancer vaccines. Nat. Med. 2023 29 6 1287 7 10.1038/s41591‑023‑02432‑2 37328586
    [Google Scholar]
  46. Sheikhlary S. Lopez D.H. Moghimi S. Sun B. Recent findings on therapeutic cancer vaccines: An updated review. Biomolecules 2024 14 4 503 10.3390/biom14040503 38672519
    [Google Scholar]
  47. Malonis R.J. Lai J.R. Vergnolle O. Peptide-based vaccines: Current progress and future challenges. Chem. Rev. 2020 120 6 3210 3229 10.1021/acs.chemrev.9b00472 31804810
    [Google Scholar]
  48. Nelde A. Rammensee H.G. Walz J.S. The peptide vaccine of the future. Mol. Cell. Proteomics 2021 20 100022 10.1074/mcp.R120.002309 33583769
    [Google Scholar]
  49. Jahanafrooz Z. Baradaran B. Mosafer J. Comparison of DNA and mRNA vaccines against cancer. Drug Discov. Today 2020 25 3 552 560 10.1016/j.drudis.2019.12.003 31843577
    [Google Scholar]
  50. Leitner W.W. Ying H. Restifo N.P. DNA and RNA-based vaccines: Principles, progress and prospects. Vaccine 1999 18 9-10 765 777 10.1016/S0264‑410X(99)00271‑6 10580187
    [Google Scholar]
  51. Liu S. Jiang Q. Zhao X. A DNA nanodevice-based vaccine for cancer immunotherapy. Nat. Mater. 2021 20 3 421 430 10.1038/s41563‑020‑0793‑6 32895504
    [Google Scholar]
  52. Travieso T. Li J. Mahesh S. Mello J.D.F.R.E. Blasi M. The use of viral vectors in vaccine development. NPJ Vaccines 2022 7 1 75 10.1038/s41541‑022‑00503‑y 35787629
    [Google Scholar]
  53. Harrop R. John J. Carroll M.W. Recombinant viral vectors: Cancer vaccines. Adv. Drug Deliv. Rev. 2006 58 8 931 947 10.1016/j.addr.2006.05.005 17030074
    [Google Scholar]
  54. Franke A.C. Hardet R. Prager L. Capsid-modified adeno-associated virus vectors as novel vaccine platform for cancer immunotherapy. Mol. Ther. Methods Clin. Dev. 2023 29 238 253 10.1016/j.omtm.2023.03.010 37090479
    [Google Scholar]
  55. Fishman M. Challenges facing the development of cancer vaccines. Methods Mol. Biol. 2014 1139 543 553 10.1007/978‑1‑4939‑0345‑0_39 24619703
    [Google Scholar]
  56. Kiyotani K Toyoshima Y Nakamura Y Personalized immunotherapy in cancer precision medicine. Cancer Biol Med 2021 18 10.20892/j.issn.2095‑3941.2021.0032 34369137
    [Google Scholar]
  57. Aktar N. Yueting C. Abbas M. Understanding of immune escape mechanisms and advances in cancer immunotherapy. J. Oncol. 2022 2022 1 13 10.1155/2022/8901326 35401745
    [Google Scholar]
  58. El-Sayes N. Vito A. Mossman K. Tumor heterogeneity: A great barrier in the age of cancer immunotherapy. Cancers (Basel) 2021 13 4 806 10.3390/cancers13040806 33671881
    [Google Scholar]
  59. Butterfield L.H. Najjar Y.G. Immunotherapy combination approaches: Mechanisms, biomarkers and clinical observations. Nat. Rev. Immunol. 2023 24 6 399 416 10.1038/s41577‑023‑00973‑8 38057451
    [Google Scholar]
  60. Ren A. Tong X. Xu N. Zhang T. Zhou F. Zhu H. CAR T-cell immunotherapy treating T-ALL: Challenges and opportunities. Vaccines (Basel) 2023 11 1 165 10.3390/vaccines11010165 36680011
    [Google Scholar]
  61. Blass E. Ott P.A. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat. Rev. Clin. Oncol. 2021 18 4 215 229 10.1038/s41571‑020‑00460‑2 33473220
    [Google Scholar]
  62. Katsikis P.D. Ishii K.J. Schliehe C. Challenges in developing personalized neoantigen cancer vaccines. Nat. Rev. Immunol. 2024 24 3 213 227 10.1038/s41577‑023‑00937‑y 37783860
    [Google Scholar]
  63. Huang T. Peng L. Han Y. Lipid nanoparticle-based mRNA vaccines in cancers: Current advances and future prospects. Front. Immunol. 2022 13 922301 10.3389/fimmu.2022.922301 36090974
    [Google Scholar]
  64. Karam M. Daoud G. mRNA vaccines: Past, present, future. Asian J. Pharm. Sci. 2022 17 4 491 522 36105317
    [Google Scholar]
  65. Buschmann M.D. Carrasco M.J. Alishetty S. Paige M. Alameh M.G. Weissman D. Nanomaterial delivery systems for mRNA vaccines. Vaccines (Basel) 2021 9 1 65 10.3390/vaccines9010065 33478109
    [Google Scholar]
  66. Li D. Liu Q. Yang M. Nanomaterials for mRNA‐based therapeutics: Challenges and opportunities. Bioeng. Transl. Med. 2023 8 3 e10492 10.1002/btm2.10492 37206219
    [Google Scholar]
  67. Alifu M. Tao M. Chen X. Chen J. Tang K. Tang Y. Checkpoint inhibitors as dual immunotherapy in advanced non-small cell lung cancer: A meta-analysis. Front. Oncol. 2023 13 1146905 10.3389/fonc.2023.1146905 37397392
    [Google Scholar]
  68. Rotte A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J. Exp. Clin. Cancer Res. 2019 38 1 255 10.1186/s13046‑019‑1259‑z 31196207
    [Google Scholar]
  69. Hodge J.W. Ardiani A. Farsaci B. Kwilas A.R. Gameiro S.R. The tipping point for combination therapy: Cancer vaccines with radiation, chemotherapy, or targeted small molecule inhibitors. Semin. Oncol. 2012 39 3 323 339 10.1053/j.seminoncol.2012.02.006 22595055
    [Google Scholar]
  70. Aljabali A. Akkam Y. Al Zoubi M. Synthesis of gold nanoparticles using leaf extract of Ziziphus zizyphus and their antimicrobial activity. Nanomaterials (Basel) 2018 8 3 174 10.3390/nano8030174 29562669
    [Google Scholar]
  71. Aljabali A.A.A. Bakshi H.A. Satija S. COVID-19: Underpinning research for detection, therapeutics, and vaccines development. Pharm. Nanotechnol. 2020 8 4 323 353 10.2174/2211738508999200817163335 32811406
    [Google Scholar]
  72. Morse M.A. Gwin W.R. Mitchell D.A. Vaccine therapies for cancer: Then and now. Target. Oncol. 2021 16 2 121 152 10.1007/s11523‑020‑00788‑w 33512679
    [Google Scholar]
  73. Santos P. Almeida F. Exosome-based vaccines: History, current state, and clinical trials. Front. Immunol. 2021 12 711565 10.3389/fimmu.2021.711565 34335627
    [Google Scholar]
  74. Bordeaux S.J. Baca A.W. Begay R.L. Designing inclusive HPV cancer vaccines and increasing uptake among native Americans - A cultural perspective review. Curr. Oncol. 2021 28 5 3705 3716 10.3390/curroncol28050316 34590604
    [Google Scholar]
  75. Gatti-Mays M.E. Redman J.M. Collins J.M. Bilušić M. Cancer vaccines: Enhanced immunogenic modulation through therapeutic combinations. Hum. Vaccin. Immunother. 2017 13 11 2561 2574 10.1080/21645515.2017.1364322 28857666
    [Google Scholar]
  76. Hollingsworth R.E. Jansen K. Turning the corner on therapeutic cancer vaccines. NPJ Vaccines 2019 4 1 7 10.1038/s41541‑019‑0103‑y 30774998
    [Google Scholar]
  77. Roy S. Sethi T.K. Taylor D. Kim Y.J. Johnson D.B. Breakthrough concepts in immune-oncology: Cancer vaccines at the bedside. J. Leukoc. Biol. 2020 108 4 1455 1489 10.1002/JLB.5BT0420‑585RR 32557857
    [Google Scholar]
  78. Wolf J. Bruno S. Eichberg M. Applying lessons from the Ebola vaccine experience for SARS-CoV-2 and other epidemic pathogens. NPJ Vaccines 2020 5 1 51 10.1038/s41541‑020‑0204‑7 32566261
    [Google Scholar]
  79. Kearney C.J. Vervoort S.J. Hogg S.J. Tumor immune evasion arises through loss of TNF sensitivity. Sci. Immunol. 2018 3 23 eaar3451 10.1126/sciimmunol.aar3451 29776993
    [Google Scholar]
  80. Martínez-Bosch N. Vinaixa J. Navarro P. Immune evasion in pancreatic cancer: From mechanisms to therapy. Cancers (Basel) 2018 10 1 6 10.3390/cancers10010006 29301364
    [Google Scholar]
  81. Crane C.A. Austgen K. Haberthur K. Immune evasion mediated by tumor-derived lactate dehydrogenase induction of NKG2D ligands on myeloid cells in glioblastoma patients. Proc. Natl. Acad. Sci. USA 2014 111 35 12823 12828 10.1073/pnas.1413933111
    [Google Scholar]
  82. Yoshihama S. Vijayan S. Sidiq T. Kobayashi K.S. NLRC5/CITA: A key player in cancer immune surveillance. Trends Cancer 2017 3 1 28 38 10.1016/j.trecan.2016.12.003 28718425
    [Google Scholar]
  83. Díaz-Montero C.M. Finke J. Montero A.J. Myeloid-derived suppressor cells in cancer: Therapeutic, predictive, and prognostic implications. Semin. Oncol. 2014 41 2 174 184 10.1053/j.seminoncol.2014.02.003 24787291
    [Google Scholar]
  84. Albacker L.A. Wu J. Smith P. Loss of function JAK1 mutations occur at high frequency in cancers with microsatellite instability and are suggestive of immune evasion. PLoS One 2017 12 11 e0176181 10.1371/journal.pone.0176181 29121062
    [Google Scholar]
  85. Chen H. Cheng H. Liang X. Cai S. Liu G. Immunosuppression reversal nanovaccines substituting dendritic cells for personalized cancer immunotherapy. Front. Immunol. 2022 13 934259 10.3389/fimmu.2022.934259 35812415
    [Google Scholar]
  86. Khan M. Maker A.V. Jain S. The evolution of cancer immunotherapy. Vaccines (Basel) 2021 9 6 614 10.3390/vaccines9060614 34200997
    [Google Scholar]
  87. Esprit A. de Mey W. Bahadur Shahi R. Thielemans K. Franceschini L. Breckpot K. Neo-antigen mRNA vaccines. Vaccines (Basel) 2020 8 4 776 10.3390/vaccines8040776 33353155
    [Google Scholar]
  88. Niemi J.V.L. Sokolov A.V. Schiöth H.B. Neoantigen vaccines; clinical trials, classes, indications, adjuvants and combinatorial treatments. Cancers (Basel) 2022 14 20 5163 10.3390/cancers14205163 36291947
    [Google Scholar]
  89. Zhu J. NSCLC vaccines: Mechanism, efficacy and side effects. Highl Sci Eng Technol 2022 8 127 132 10.54097/hset.v8i.1119
    [Google Scholar]
  90. Malik H. Khan F.H. Ahsan H. Human papillomavirus: Current status and issues of vaccination. Arch. Virol. 2013 159 2 199 205 10.1007/s00705‑013‑1827‑z 24022639
    [Google Scholar]
  91. Kim K.S. Park S.A. Ko K.N. Yi S. Cho Y.J. Current status of human papillomavirus vaccines. Clin. Exp. Vaccine Res. 2014 3 2 168 175 10.7774/cevr.2014.3.2.168 25003090
    [Google Scholar]
  92. Crews D.W. Dombroski J.A. King M.R. Prophylactic cancer vaccines engineered to elicit specific adaptive immune response. Front. Oncol. 2021 11 626463 10.3389/fonc.2021.626463 33869008
    [Google Scholar]
  93. Khan T.M. Buksh M.A. Rehman I.U. Saleem A. Knowledge, attitudes, and perception towards human papillomavirus among university students in Pakistan. Papillomavirus Res. 2016 2 122 127 10.1016/j.pvr.2016.06.001 29074171
    [Google Scholar]
  94. Kim D. Lee H. Kim M. Overview of human papillomavirus vaccination policy changes and its impact in the United States: Lessons learned and challenges for the future. Public Health Nurs. 2021 38 3 396 405 10.1111/phn.12873 33569854
    [Google Scholar]
  95. Khansari N. The future direction of cancer vaccines: An editorial. Vacc Res Open J 2022 6 1 e1 e2 10.17140/VROJ‑6‑e007
    [Google Scholar]
  96. Li Y. Virus vaccines in cancer immunotherapy: Principles, and Clinical manifestations. Highl Sci Eng Technol 2022 14 338 344 10.54097/hset.v14i.1843
    [Google Scholar]
  97. Yamaguchi Y. Yamaue H. Okusaka T. Guidance for peptide vaccines for the treatment of cancer. Cancer Sci. 2014 105 7 924 931 10.1111/cas.12443 25040224
    [Google Scholar]
  98. Patel C. Brotherton J.M.L. Pillsbury A. The impact of 10 years of human papillomavirus (HPV) vaccination in Australia: What additional disease burden will a nonavalent vaccine prevent? Euro Surveill. 2018 23 41 1700737 10.2807/1560‑7917.ES.2018.23.41.1700737 30326995
    [Google Scholar]
  99. Gillison M.L. Chaturvedi A.K. Lowy D.R. HPV prophylactic vaccines and the potential prevention of noncervical cancers in both men and women. Cancer 2008 113 S10 3036 3046 10.1002/cncr.23764 18980286
    [Google Scholar]
  100. Saraiya M. Rosser J.I. Cooper C.P. Cancers that U.S. physicians believe the HPV vaccine prevents: Findings from a physician survey, 2009. J. Womens Health (Larchmt.) 2012 21 2 111 117 10.1089/jwh.2011.3313 22216920
    [Google Scholar]
  101. Guo T. Eisele D.W. Fakhry C. The potential impact of prophylactic human papillomavirus vaccination on oropharyngeal cancer. Cancer 2016 122 15 2313 2323 10.1002/cncr.29992 27152637
    [Google Scholar]
  102. Wu T.C. Therapeutic human papillomavirus DNA vaccination strategies to control cervical cancer. Eur. J. Immunol. 2007 37 2 310 314 10.1002/eji.200636978 17273998
    [Google Scholar]
  103. Soliman M. Oredein O. Dass C.R. Update on safety and efficacy of HPV vaccines: Focus on gardasil. Int. J. Mol. Cell. Med. 2021 10 2 101 113 10.22088/ijmcm.Bums.10.2.101 34703794
    [Google Scholar]
  104. Pathak P. Pajai S. Kesharwani H. A Review on the Use of the HPV Vaccine in the Prevention of Cervical Cancer. Cureus 2022 14 9 e28710 10.7759/cureus.28710 36211088
    [Google Scholar]
  105. Yousefi Z. Aria H. Ghaedrahmati F. An update on human papilloma virus vaccines: History, types, protection, and efficacy. Front. Immunol. 2022 12 805695 10.3389/fimmu.2021.805695 35154080
    [Google Scholar]
  106. Hosaka T. Suzuki F. Kobayashi M. Long-term entecavir treatment reduces hepatocellular carcinoma incidence in patients with hepatitis B virus infection. Hepatology 2013 58 1 98 107 10.1002/hep.26180 23213040
    [Google Scholar]
  107. Chang M.H. Chen C.J. Lai M.S. Universal hepatitis B vaccination in Taiwan and the incidence of hepatocellular carcinoma in children. N. Engl. J. Med. 1997 336 26 1855 1859 10.1056/NEJM199706263362602 9197213
    [Google Scholar]
  108. Yim S.Y. Kim J.H. The epidemiology of hepatitis B virus infection in Korea. Korean J. Intern. Med. 2019 34 5 945 953 10.3904/kjim.2019.007 30919608
    [Google Scholar]
  109. Kew M. Hepatocellular carcinoma: Epidemiology and risk factors. J. Hepatocell. Carcinoma 2014 1 115 125 10.2147/JHC.S44381 27508181
    [Google Scholar]
  110. Huang Q. Tan Y. Yin P. Metabolic characterization of hepatocellular carcinoma using nontargeted tissue metabolomics. Cancer Res. 2013 73 16 4992 5002 10.1158/0008‑5472.CAN‑13‑0308 23824744
    [Google Scholar]
  111. Kao J.H. Molecular epidemiology of hepatitis B virus. Korean J. Intern. Med. 2011 26 3 255 261 10.3904/kjim.2011.26.3.255 22016585
    [Google Scholar]
  112. Shen C. Jiang X. Li M. Luo Y. Hepatitis virus and hepatocellular carcinoma: Recent advances. Cancers (Basel) 2023 15 2 533 10.3390/cancers15020533 36672482
    [Google Scholar]
  113. Flores J.E. Thompson A.J. Ryan M. Howell J. The global impact of hepatitis B vaccination on hepatocellular carcinoma. Vaccines (Basel) 2022 10 5 793 10.3390/vaccines10050793 35632549
    [Google Scholar]
  114. Arbuthnot P. Kew M. Hepatitis B virus and hepatocellular carcinoma. Int. J. Exp. Pathol. 2001 82 2 77 100 10.1111/j.1365‑2613.2001.iep178.x 11454100
    [Google Scholar]
  115. Mougel A. Terme M. Tanchot C. Therapeutic cancer vaccine and combinations with antiangiogenic therapies and immune checkpoint blockade. Front. Immunol. 2019 10 467 10.3389/fimmu.2019.00467 30923527
    [Google Scholar]
  116. Pallerla S. Abdul A.R.M. Comeau J. Jois S. Cancer vaccines, treatment of the future: With emphasis on HER2-positive breast cancer. Int. J. Mol. Sci. 2021 22 2 779 10.3390/ijms22020779 33466691
    [Google Scholar]
  117. Zhang Y. Fang Z. Li R. Huang X. Liu Q. Design of outer membrane vesicles as cancer vaccines: A new toolkit for cancer therapy. Cancers (Basel) 2019 11 9 1314 10.3390/cancers11091314 31500086
    [Google Scholar]
  118. Butterfield LH Cancer vaccines. BMJ 2015 350 apr22 14 h988 10.1136/bmj.h988 25904595
    [Google Scholar]
  119. Tagliamonte M. Petrizzo A. Tornesello M.L. Buonaguro F.M. Buonaguro L. Antigen-specific vaccines for cancer treatment. Hum. Vaccin. Immunother. 2014 10 11 3332 3346 10.4161/21645515.2014.973317 25483639
    [Google Scholar]
  120. de Bruijn S. Anguille S. Verlooy J. Dendritic cell-based and other vaccination strategies for pediatric cancer. Cancers (Basel) 2019 11 9 1396 10.3390/cancers11091396 31546858
    [Google Scholar]
  121. Ye Z. Qian Q. Jin H. Qian Q. Cancer vaccine: Llearning lessons from immune checkpoint inhibitors. J. Cancer 2018 9 2 263 268 10.7150/jca.20059 29344272
    [Google Scholar]
  122. Cerić T. Perspectives of immunotherapy in prostate cancer. In: Prostate Cancer: Advancements in the Pathogenesis, Diagnosis and Personalized Therapy. Cham Springer 2024 325 333 10.1007/978‑3‑031‑51712‑9_16
    [Google Scholar]
  123. Hammerstrom A.E. Cauley D.H. Atkinson B.J. Sharma P. Cancer immunotherapy: Sipuleucel-T and beyond. Pharmacotherapy 2011 31 8 813 828 10.1592/phco.31.8.813 21923608
    [Google Scholar]
  124. Tekkesin N. Tetik S. Therapeutic vaccines for pancreatic cancer. In: Theranostic Approach for Pancreatic Cancer. Elsevier 2019 275 294 10.1016/B978‑0‑12‑819457‑7.00014‑1
    [Google Scholar]
  125. Marriott M. Post B. Chablani L. A comparison of cancer vaccine adjuvants in clinical trials. Cancer Treat. Res. Commun. 2023 34 100667 10.1016/j.ctarc.2022.100667 36516613
    [Google Scholar]
  126. Tojjari A. Saeed A. Singh M. Cavalcante L. Sahin I.H. Saeed A. A comprehensive review on cancer vaccines and vaccine strategies in hepatocellular carcinoma. Vaccines (Basel) 2023 11 8 1357 10.3390/vaccines11081357 37631925
    [Google Scholar]
  127. Şahin U. Derhovanessian E. Miller M. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 2017 547 7662 222 226 10.1038/nature23003 28678784
    [Google Scholar]
  128. Terbuch A. Lopez J. Next generation cancer vaccines—make it personal! Vaccines (Basel) 2018 6 3 52 10.3390/vaccines6030052 30096953
    [Google Scholar]
  129. Rojas L.A. Sethna Z. Soares K.C. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 2023 618 7963 144 150 10.1038/s41586‑023‑06063‑y 37165196
    [Google Scholar]
  130. Lang F. Schrörs B. Löwer M. Türeci Ö. Sahin U. Identification of neoantigens for individualized therapeutic cancer vaccines. Nat. Rev. Drug Discov. 2022 21 4 261 282 10.1038/s41573‑021‑00387‑y 35105974
    [Google Scholar]
  131. Xie N. Shen G. Gao W. Huang Z. Huang C. Fu L. Neoantigens: Promising targets for cancer therapy. Signal Transduct. Target. Ther. 2023 8 1 9 10.1038/s41392‑022‑01270‑x 36604431
    [Google Scholar]
  132. Sobhani N. Scaggiante B. Morris R. Therapeutic cancer vaccines: From biological mechanisms and engineering to ongoing clinical trials. Cancer Treat. Rev. 2022 109 102429 10.1016/j.ctrv.2022.102429 35759856
    [Google Scholar]
  133. Chaplin D.D. Overview of the immune response. J. Allergy Clin. Immunol. 2010 125 Suppl. 2 S3 S23 10.1016/j.jaci.2009.12.980 20176265
    [Google Scholar]
  134. Pishesha N. Harmand T.J. Ploegh H.L. A guide to antigen processing and presentation. Nat. Rev. Immunol. 2022 22 12 751 764 10.1038/s41577‑022‑00707‑2 35418563
    [Google Scholar]
  135. Rastogi I. Jeon D. Moseman J.E. Muralidhar A. Potluri H.K. McNeel D.G. Role of B cells as antigen presenting cells. Front. Immunol. 2022 13 954936 10.3389/fimmu.2022.954936 36159874
    [Google Scholar]
  136. Taylor B.C. Balko J.M. Mechanisms of MHC-I Downregulation and Role in Immunotherapy Response. Front. Immunol. 2022 13 844866 10.3389/fimmu.2022.844866 35296095
    [Google Scholar]
  137. Wu X. Li T. Jiang R. Yang X. Guo H. Yang R. Targeting MHC-I molecules for cancer: Function, mechanism, and therapeutic prospects. Mol. Cancer 2023 22 1 194 10.1186/s12943‑023‑01899‑4 38041084
    [Google Scholar]
  138. Liu W. Tang H. Li L. Wang X. Yu Z. Li J. Peptide‐based therapeutic cancer vaccine: Current trends in clinical application. Cell Prolif. 2021 54 5 e13025 10.1111/cpr.13025 33754407
    [Google Scholar]
  139. Santos P.M. Butterfield L.H. Dendritic cell–based cancer vaccines. J. Immunol. 2018 200 2 443 449 10.4049/jimmunol.1701024 29311386
    [Google Scholar]
  140. McCann N. O’Connor D. Lambe T. Pollard A.J. Viral vector vaccines. Curr. Opin. Immunol. 2022 77 102210 10.1016/j.coi.2022.102210 35643023
    [Google Scholar]
  141. He Q. Gao H. Tan D. Zhang H. Wang J. mRNA cancer vaccines: Advances, trends and challenges. Acta Pharm. Sin. B 2022 12 7 2969 2989 10.1016/j.apsb.2022.03.011 35345451
    [Google Scholar]
  142. Pandya A. Shah Y. Kothari N. The future of cancer immunotherapy: DNA vaccines leading the way. Med. Oncol. 2023 40 7 200 10.1007/s12032‑023‑02060‑3 37294501
    [Google Scholar]
  143. Huang X. Zhang G. Tang T.Y. Gao X. Liang T.B. Personalized pancreatic cancer therapy: From the perspective of mRNA vaccine. Mil. Med. Res. 2022 9 1 53 10.1186/s40779‑022‑00416‑w 36224645
    [Google Scholar]
  144. Li M. Jiang A. Han H. A trinity nano-vaccine system with spatiotemporal immune effect for the adjuvant cancer therapy after radiofrequency ablation. ACS Nano 2024 18 5 4590 4612 10.1021/acsnano.3c03352 38047809
    [Google Scholar]
  145. Wang J. Wang Y. Qiao S. Mamuti M. An H. Wang H. In situ phase transitional polymeric vaccines for improved immunotherapy. Natl. Sci. Rev. 2022 9 2 nwab159 10.1093/nsr/nwab159 35145705
    [Google Scholar]
  146. Wang M. Yin B. Wang H.Y. Wang R.F. Current advances in T-cell-based cancer immunotherapy. Immunotherapy 2014 6 12 1265 1278 10.2217/imt.14.86 25524383
    [Google Scholar]
  147. Raskov H. Orhan A. Christensen J.P. Gögenur I. Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. Br. J. Cancer 2021 124 2 359 367 10.1038/s41416‑020‑01048‑4 32929195
    [Google Scholar]
  148. Sun L. Su Y. Jiao A. Wang X. Zhang B. T cells in health and disease. Signal Transduct. Target. Ther. 2023 8 1 235 10.1038/s41392‑023‑01471‑y 37332039
    [Google Scholar]
  149. Ribatti D. The concept of immune surveillance against tumors: The first theories. Oncotarget 2017 8 4 7175 7180 10.18632/oncotarget.12739 27764780
    [Google Scholar]
  150. Rao S. Gharib K. Han A. Cancer Immunosurveillance by T Cells. Int. Rev. Cell Mol. Biol. 2019 342 149 173 10.1016/bs.ircmb.2018.08.001 30635090
    [Google Scholar]
  151. Igarashi Y. Sasada T. Cancer vaccines: Toward the next breakthrough in cancer immunotherapy. J. Immunol. Res. 2020 2020 1 13 10.1155/2020/5825401 33282961
    [Google Scholar]
  152. Schiller J.T. Lowy D.R. Frazer I.H. Cancer vaccines. Cancer Cell 2022 40 6 559 564 10.1016/j.ccell.2022.05.015 35700704
    [Google Scholar]
  153. Wang B. Pei J. Xu S. Liu J. Yu J. Recent advances in mRNA cancer vaccines: Meeting challenges and embracing opportunities. Front. Immunol. 2023 14 1246682 10.3389/fimmu.2023.1246682 37744371
    [Google Scholar]
  154. Shemesh C.S. Hsu J.C. Hosseini I. Personalized cancer vaccines: Clinical landscape, challenges, and opportunities. Mol. Ther. 2021 29 2 555 570 10.1016/j.ymthe.2020.09.038 33038322
    [Google Scholar]
  155. Kudrin A. Cancer vaccines: What do we need to measure in clinical trials? Hum. Vaccin. Immunother. 2014 10 11 3236 3240 10.4161/hv.27586 25483508
    [Google Scholar]
  156. Knoche S.M. Larson A.C. Sliker B.H. Poelaert B.J. Solheim J.C. The role of tumor heterogeneity in immune-tumor interactions. Cancer Metastasis Rev. 2021 40 2 377 389 10.1007/s10555‑021‑09957‑3 33682030
    [Google Scholar]
  157. Setlai B.P. Hull R. Bida M. Immunosuppressive signaling pathways as targeted cancer therapies. Biomedicines 2022 10 3 682 10.3390/biomedicines10030682 35327484
    [Google Scholar]
  158. Cuzick J. The importance of long-term follow up of participants in clinical trials. Br. J. Cancer 2023 128 3 432 438 10.1038/s41416‑022‑02038‑4 36456713
    [Google Scholar]
  159. Zhao Y. Baldin A.V. Isayev O. Werner J. Zamyatnin A.A. Bazhin A.V. Cancer vaccines: Antigen selection strategy. Vaccines (Basel) 2021 9 2 85 10.3390/vaccines9020085 33503926
    [Google Scholar]
  160. King A. Vaccines beyond antibodies. EMBO Rep. 2021 22 11 e54073 10.15252/embr.202154073 34661336
    [Google Scholar]
  161. Pardoll D. Does the immune system see tumors as foreign or self? Annu. Rev. Immunol. 2003 21 1 807 839 10.1146/annurev.immunol.21.120601.141135 12615893
    [Google Scholar]
  162. Pardoll D. Cancer and the Immune System: Basic Concepts and Targets for Intervention. Semin. Oncol. 2015 42 4 523 538 10.1053/j.seminoncol.2015.05.003 26320058
    [Google Scholar]
  163. Zajac P. Schultz-Thater E. Tornillo L. MAGE-A antigens and cancer immunotherapy. Front. Med. (Lausanne) 2017 4 18 10.3389/fmed.2017.00018 28337438
    [Google Scholar]
  164. Zhao X. Pan X. Wang Y. Zhang Y. Targeting neoantigens for cancer immunotherapy. Biomark. Res. 2021 9 1 61 10.1186/s40364‑021‑00315‑7 34321091
    [Google Scholar]
  165. Choi H.Y. Chang J.E. Targeted therapy for cancers: From ongoing clinical trials to FDA-approved drugs. Int. J. Mol. Sci. 2023 24 17 13618 10.3390/ijms241713618 37686423
    [Google Scholar]
  166. Liao J.Y. Zhang S. Safety and efficacy of personalized cancer vaccines in combination with immune checkpoint inhibitors in cancer treatment. Front. Oncol. 2021 11 663264 10.3389/fonc.2021.663264 34123821
    [Google Scholar]
  167. Collins J.M. Redman J.M. Gulley J.L. Combining vaccines and immune checkpoint inhibitors to prime, expand, and facilitate effective tumor immunotherapy. Expert Rev. Vaccines 2018 17 8 697 705 10.1080/14760584.2018.1506332 30058393
    [Google Scholar]
  168. Singh P. Pal S.K. Alex A. Agarwal N. Development of PROSTVAC immunotherapy in prostate cancer. Future Oncol. 2015 11 15 2137 2148 10.2217/fon.15.120 26235179
    [Google Scholar]
  169. Shore N.D. PROSTVAC® targeted immunotherapy candidate for prostate cancer. Immunotherapy 2014 6 3 235 247 10.2217/imt.13.176 24762070
    [Google Scholar]
  170. Guo C.X. Huang X. Xu J. Combined targeted therapy and immunotherapy for cancer treatment. World J. Clin. Cases 2021 9 26 7643 7652 10.12998/wjcc.v9.i26.7643 34621816
    [Google Scholar]
  171. Conroy M. Naidoo J. Immune-related adverse events and the balancing act of immunotherapy. Nat. Commun. 2022 13 1 392 10.1038/s41467‑022‑27960‑2 35046403
    [Google Scholar]
  172. Bodaghi A. Fattahi N. Ramazani A. Biomarkers: Promising and valuable tools towards diagnosis, prognosis and treatment of Covid-19 and other diseases. Heliyon 2023 9 2 e13323 10.1016/j.heliyon.2023.e13323 36744065
    [Google Scholar]
  173. Kwon M. Jung H. Nam G.H. Kim I.S. The right Timing, right combination, right sequence, and right delivery for Cancer immunotherapy. J. Control. Release 2021 331 321 334 10.1016/j.jconrel.2021.01.009 33434599
    [Google Scholar]
  174. Lee K.S. Kassab Y.W. Taha N.A. Zainal Z.A. Factors impacting pharmaceutical prices and affordability: Narrative review. Pharmacy (Basel) 2020 9 1 1 10.3390/pharmacy9010001 33374493
    [Google Scholar]
  175. Zhu L. Jiang M. Wang H. A narrative review of tumor heterogeneity and challenges to tumor drug therapy. Ann. Transl. Med. 2021 9 16 1351 10.21037/atm‑21‑1948 34532488
    [Google Scholar]
  176. Al Fayez N. Nassar M.S. Alshehri A.A. Recent Advancement in mRNA Vaccine Development and Applications. Pharmaceutics 2023 15 7 1972 10.3390/pharmaceutics15071972 37514158
    [Google Scholar]
  177. Yetisgin A.A. Cetinel S. Zuvin M. Kosar A. Kutlu O. Therapeutic nanoparticles and their targeted delivery applications. Molecules 2020 25 9 2193 10.3390/molecules25092193 32397080
    [Google Scholar]
  178. Bezbaruah R. Chavda V.P. Nongrang L. Nanoparticle-based delivery systems for vaccines. Vaccines (Basel) 2022 10 11 1946 10.3390/vaccines10111946 36423041
    [Google Scholar]
  179. Thomas S. Abraham A. Baldwin J. Piplani S. Petrovsky N. Artificial intelligence in vaccine and drug design. Methods Mol. Biol. 2022 2410 131 146 10.1007/978‑1‑0716‑1884‑4_6 34914045
    [Google Scholar]
  180. Sebastian A.M. Peter D. Artificial intelligence in cancer research: Trends, challenges and future directions. Life (Basel) 2022 12 12 1991 10.3390/life12121991 36556356
    [Google Scholar]
  181. Daum S. Reshetnikov M.S.V. Sisa M. Lysosome‐targeting amplifiers of reactive oxygen species as anticancer prodrugs. Angew. Chem. Int. Ed. 2017 56 49 15545 15549 10.1002/anie.201706585 28994179
    [Google Scholar]
  182. Sun B. Luo C. Zhang X. Probing the impact of sulfur/selenium/carbon linkages on prodrug nanoassemblies for cancer therapy. Nat. Commun. 2019 10 1 3211 10.1038/s41467‑019‑11193‑x 31324811
    [Google Scholar]
  183. Bio M. Rajaputra P. Nkepang G. Awuah S.G. Hossion A.M.L. You Y. Site-specific and far-red-light-activatable prodrug of combretastatin A-4 using photo-unclick chemistry. J. Med. Chem. 2013 56 10 3936 3942 10.1021/jm400139w 23631389
    [Google Scholar]
  184. Cihova M. Altanerova V. Altaner C. Stem cell based cancer gene therapy. Mol. Pharm. 2011 8 5 1480 1487 10.1021/mp200151a 21755953
    [Google Scholar]
  185. Reshetnikov V. Özkan H.G. Daum S. N-alkylaminoferrocene-based prodrugs targeting mitochondria of cancer cells. Molecules 2020 25 11 2545 10.3390/molecules25112545 32486084
    [Google Scholar]
  186. Rani S. Sahoo R.K. Mahale A. Sialic acid engineered prodrug nanoparticles for codelivery of bortezomib and selenium in tumor bearing mice. Bioconjug. Chem. 2023 34 9 1528 1552 10.1021/acs.bioconjchem.3c00210 37603704
    [Google Scholar]
  187. Excler J.L. Saville M. Berkley S. Kim J.H. Vaccine development for emerging infectious diseases. Nat. Med. 2021 27 4 591 600 10.1038/s41591‑021‑01301‑0 33846611
    [Google Scholar]
  188. Drolet M.J. Rose-Derouin E. Leblanc J.C. Ruest M. Williams-Jones B. Ethical issues in research: Perceptions of researchers, research ethics board members and research ethics experts. J. Acad. Ethics 2023 21 2 269 292 10.1007/s10805‑022‑09455‑3 35975128
    [Google Scholar]
  189. Grimsrud K.N. Sherwin C.M.T. Constance J.E. Special population considerations and regulatory affairs for clinical research. Clin. Res. Regul. Aff. 2015 32 2 45 54 10.3109/10601333.2015.1001900 26401094
    [Google Scholar]
  190. Wilkins J.M. Forester B.P. Informed consent, therapeutic misconception, and clinical trials for Alzheimer’s disease. Int. J. Geriatr. Psychiatry 2020 35 5 430 435 10.1002/gps.5262 31895474
    [Google Scholar]
  191. Klette K. Sahlström F. Blikstad-Balas M. Justice through participation: Student engagement in Nordic classrooms. Education Inquiry 2018 9 1 57 77 10.1080/20004508.2018.1428036
    [Google Scholar]
  192. Schiappacasse G.V. Ethical considerations in chemotherapy and vaccines in cancer patients in times of the COVID-19 pandemic. Curr. Oncol. 2021 28 3 2007 2013 10.3390/curroncol28030186 34073214
    [Google Scholar]
  193. Sharma P. Jhawat V. Mathur P. Dutt R. Innovation in cancer therapeutics and regulatory perspectives. Med. Oncol. 2022 39 5 76 10.1007/s12032‑022‑01677‑0 35195787
    [Google Scholar]
  194. Yao B. Zhu L. Jiang Q. Xia H. Safety monitoring in clinical trials. Pharmaceutics 2013 5 1 94 106 10.3390/pharmaceutics5010094 24300399
    [Google Scholar]
  195. Meissner H.C. Understanding vaccine safety and the roles of the FDA and the CDC. N. Engl. J. Med. 2022 386 17 1638 1645 10.1056/NEJMra2200583 35476652
    [Google Scholar]
  196. Poland G.A. Kennedy R.B. Vaccine safety in an era of novel vaccines: A proposed research agenda. Nat. Rev. Immunol. 2022 22 4 203 204 10.1038/s41577‑022‑00695‑3 35197577
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096381121250628142857
Loading
/content/journals/ccdt/10.2174/0115680096381121250628142857
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test