Skip to content
2000
image of Analysis of Single-Cell RNA-Seq Data to Investigate Tumor Cell Heterogeneity in Uroepithelial Bladder Cancer and Predict Immunotherapy Response

Abstract

Background

Numerous studies have suggested a close association between cancer stem cells (CSCs) and the tumor microenvironment (TME), suggesting that cancer stemness might also contribute to ICI resistance. However, the interplay between these physiological processes in urothelial bladder cancer (UBC) remains unclear.

Methods

A meta-analysis was performed using the UBC Single-cell RNA sequencing (scRNA-seq) dataset, and tumor stemness gene sets (Ste.genes) were obtained. The relationship between Ste.genes and ICI response, as well as response to drug therapy, was investigated using Tumour Immune Dysfunction and Exclusion (TIDE) and drug sensitivity analyses. Machine learning based on Ste.genes was also used to predict ICI response.

Results

A hypoxia-related tumor subgroup associated with angiogenesis and tumor metastasis was identified, and prognostic models were constructed based on hypoxic tumor subgroups. It was also found that the Ste.genes score was associated with cellular immunity, tumor immunotherapy response, and drug sensitivity. Multiple machine learning models were used to predict ICI response based on Ste.genes, and the AUC was greater than 0.7, indicating that Ste.genes can predict ICI response effectively.

Conclusion

In this study, the analysis of UBC scRNA-seq data provided further insight into the role of hypoxic tumor subpopulations in tumor development in UBC, and a prognostic model was constructed. Additionally, an association was found between cell stemness and resistance to immunotherapy as well as drug sensitivity in UBC. Ste.genes were extracted and utilized to predict the ICI response.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096377593250626133719
2025-07-08
2025-09-13
Loading full text...

Full text loading...

References

  1. Zhang Y. Zhang X. Huang X. Tang X. Zhang M. Li Z. Hu X. Zhang M. Wang X. Yan Y. Tumor stemness score to estimate epithelial-to-mesenchymal transition (EMT) and cancer stem cells (CSCs) characterization and to predict the prognosis and immunotherapy response in bladder urothelial carcinoma. Stem Cell Res. Ther. 2023 14 1 15 10.1186/s13287‑023‑03239‑1 36721217
    [Google Scholar]
  2. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global Cancer Statistics 2020: GLOBOCAn estimates of incidence and mortality worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  3. Torre L.A. Bray F. Siegel R.L. Ferlay J. Lortet-Tieulent J. Jemal A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015 65 2 87 108 10.3322/caac.21262 25651787
    [Google Scholar]
  4. Sylvester R.J. Oosterlinck W. Witjes J.A. The schedule and duration of intravesical chemotherapy in patients with non-muscle-invasive bladder cancer: a systematic review of the published results of randomized clinical trials. Eur. Urol. 2008 53 4 709 719 10.1016/j.eururo.2008.01.015 18207317
    [Google Scholar]
  5. Sanli O. Dobruch J. Knowles M.A. Burger M. Alemozaffar M. Nielsen M.E. Lotan Y. Bladder cancer. Nat. Rev. Dis. Primers 2017 3 1 17022 10.1038/nrdp.2017.22 28406148
    [Google Scholar]
  6. Lenis A.T. Lec P.M. Chamie K. Mshs M. Bladder Cancer. JAMA 2020 324 19 1980 1991 10.1001/jama.2020.17598 33201207
    [Google Scholar]
  7. Witjes J.A. Bruins H.M. Cathomas R. Compérat E.M. Cowan N.C. Gakis G. Hernández V. Linares Espinós E. Lorch A. Neuzillet Y. Rouanne M. Thalmann G.N. Veskimäe E. Ribal M.J. van der Heijden A.G. European Association of Urology Guidelines on Muscle-invasive and Metastatic Bladder Cancer: Summary of the 2020 Guidelines. Eur. Urol. 2021 79 1 82 104 10.1016/j.eururo.2020.03.055 32360052
    [Google Scholar]
  8. von der Maase H. Sengelov L. Roberts J.T. Ricci S. Dogliotti L. Oliver T. Moore M.J. Zimmermann A. Arning M. Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. J. Clin. Oncol. 2005 23 21 4602 4608 10.1200/JCO.2005.07.757 16034041
    [Google Scholar]
  9. Wang Y. Wang M. Wu H.X. Xu R.H. Advancing to the era of cancer immunotherapy. Cancer Commun. (Lond.) 2021 41 9 803 829 10.1002/cac2.12178 34165252
    [Google Scholar]
  10. Zang J. Ye K. Fei Y. Zhang R. Chen H. Zhuang G. Immunotherapy in the Treatment of Urothelial Bladder Cancer: Insights From Single-Cell Analysis. Front. Oncol. 2021 11 696716 10.3389/fonc.2021.696716 34123863
    [Google Scholar]
  11. Sharma P. Retz M. Siefker-Radtke A. Baron A. Necchi A. Bedke J. Plimack E.R. Vaena D. Grimm M.O. Bracarda S. Arranz J.Á. Pal S. Ohyama C. Saci A. Qu X. Lambert A. Krishnan S. Azrilevich A. Galsky M.D. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 2017 18 3 312 322 10.1016/S1470‑2045(17)30065‑7 28131785
    [Google Scholar]
  12. Ayob A.Z. Ramasamy T.S. Cancer stem cells as key drivers of tumour progression. J. Biomed. Sci. 2018 25 1 20 10.1186/s12929‑018‑0426‑4 29506506
    [Google Scholar]
  13. Chen P. Hsu W.H. Han J. Xia Y. DePinho R.A. Cancer Stemness Meets Immunity: From Mechanism to Therapy. Cell Rep. 2021 34 1 108597 10.1016/j.celrep.2020.108597 33406434
    [Google Scholar]
  14. Hwang B. Lee J.H. Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp. Mol. Med. 2018 50 8 1 14 10.1038/s12276‑018‑0071‑8 30089861
    [Google Scholar]
  15. Van Loo P. Voet T. Single cell analysis of cancer genomes. Curr. Opin. Genet. Dev. 2014 24 82 91 10.1016/j.gde.2013.12.004 24531336
    [Google Scholar]
  16. Zarrilli G. Businello G. Dieci M.V. Paccagnella S. Carraro V. Cappellesso R. Miglietta F. Griguolo G. Guarneri V. Lo Mele M. Fassan M. The Tumor Microenvironment of Primitive and Metastatic Breast Cancer: Implications for Novel Therapeutic Strategies. Int. J. Mol. Sci. 2020 21 21 8102 10.3390/ijms21218102 33143050
    [Google Scholar]
  17. Shi Y. Huang X. Du Z. Tan J. Analysis of single-cell RNA-sequencing data identifies a hypoxic tumor subpopulation associated with poor prognosis in triple-negative breast cancer. Math. Biosci. Eng. 2022 19 6 5793 5812 10.3934/mbe.2022271 35603379
    [Google Scholar]
  18. Jing X. Yang F. Shao C. Wei K. Xie M. Shen H. Shu Y. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol. Cancer 2019 18 1 157 10.1186/s12943‑019‑1089‑9 31711497
    [Google Scholar]
  19. Muz B. de la Puente P. Azab F. Azab A.K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl.) 2015 3 83 92 10.2147/HP.S93413 27774485
    [Google Scholar]
  20. Lee H.W. Chung W. Lee H.O. Jeong D.E. Jo A. Lim J.E. Hong J.H. Nam D.H. Jeong B.C. Park S.H. Joo K.M. Park W.Y. Single-cell RNA sequencing reveals the tumor microenvironment and facilitates strategic choices to circumvent treatment failure in a chemorefractory bladder cancer patient. Genome Med. 2020 12 1 47 10.1186/s13073‑020‑00741‑6 32460812
    [Google Scholar]
  21. Sjödahl G. Lauss M. Lövgren K. Chebil G. Gudjonsson S. Veerla S. Patschan O. Aine M. Fernö M. Ringnér M. Månsson W. Liedberg F. Lindgren D. Höglund M. A molecular taxonomy for urothelial carcinoma. Clin. Cancer Res. 2012 18 12 3377 3386 10.1158/1078‑0432.CCR‑12‑0077‑T 22553347
    [Google Scholar]
  22. Mariathasan S. Turley S.J. Nickles D. Castiglioni A. Yuen K. Wang Y. Kadel E.E. Koeppen H. Astarita J.L. Cubas R. Jhunjhunwala S. Banchereau R. Yang Y. Guan Y. Chalouni C. Ziai J. Şenbabaoğlu Y. Santoro S. Sheinson D. Hung J. Giltnane J.M. Pierce A.A. Mesh K. Lianoglou S. Riegler J. Carano R.A.D. Eriksson P. Höglund M. Somarriba L. Halligan D.L. van der Heijden M.S. Loriot Y. Rosenberg J.E. Fong L. Mellman I. Chen D.S. Green M. Derleth C. Fine G.D. Hegde P.S. Bourgon R. Powles T. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 2018 554 7693 544 548 10.1038/nature25501 29443960
    [Google Scholar]
  23. Braun D.A. Hou Y. Bakouny Z. Ficial M. Sant’ Angelo, M.; Forman, J.; Ross-Macdonald, P.; Berger, A.C.; Jegede, O.A.; Elagina, L.; Steinharter, J.; Sun, M.; Wind-Rotolo, M.; Pignon, J.C.; Cherniack, A.D.; Lichtenstein, L.; Neuberg, D.; Catalano, P.; Freeman, G.J.; Sharpe, A.H.; McDermott, D.F.; Van Allen, E.M.; Signoretti, S.; Wu, C.J.; Shukla, S.A.; Choueiri, T.K. Interplay of somatic alterations and immune infiltration modulates response to PD-1 blockade in advanced clear cell renal cell carcinoma. Nat. Med. 2020 26 6 909 918 10.1038/s41591‑020‑0839‑y 32472114
    [Google Scholar]
  24. Hugo W. Zaretsky J.M. Sun L. Song C. Moreno B.H. Hu-Lieskovan S. Berent-Maoz B. Pang J. Chmielowski B. Cherry G. Seja E. Lomeli S. Kong X. Kelley M.C. Sosman J.A. Johnson D.B. Ribas A. Lo R.S. Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma. Cell 2016 165 1 35 44 10.1016/j.cell.2016.02.065 26997480
    [Google Scholar]
  25. Liu D. Schilling B. Liu D. Sucker A. Livingstone E. Jerby-Arnon L. Zimmer L. Gutzmer R. Satzger I. Loquai C. Grabbe S. Vokes N. Margolis C.A. Conway J. He M.X. Elmarakeby H. Dietlein F. Miao D. Tracy A. Gogas H. Goldinger S.M. Utikal J. Blank C.U. Rauschenberg R. von Bubnoff D. Krackhardt A. Weide B. Haferkamp S. Kiecker F. Izar B. Garraway L. Regev A. Flaherty K. Paschen A. Van Allen E.M. Schadendorf D. Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma. Nat. Med. 2019 25 12 1916 1927 10.1038/s41591‑019‑0654‑5 31792460
    [Google Scholar]
  26. Gide T.N. Quek C. Menzies A.M. Tasker A.T. Shang P. Holst J. Madore J. Lim S.Y. Velickovic R. Wongchenko M. Yan Y. Lo S. Carlino M.S. Guminski A. Saw R.P.M. Pang A. McGuire H.M. Palendira U. Thompson J.F. Rizos H. Silva I.P. Batten M. Scolyer R.A. Long G.V. Wilmott J.S. Distinct Immune Cell Populations Define Response to Anti-PD-1 Monotherapy and Anti-PD-1/Anti-CTLA-4 Combined Therapy. Cancer Cell 2019 35 2 238 255.e6 10.1016/j.ccell.2019.01.003 30753825
    [Google Scholar]
  27. Riaz N. Havel J.J. Makarov V. Desrichard A. Urba W.J. Sims J.S. Hodi F.S. Martín-Algarra S. Mandal R. Sharfman W.H. Bhatia S. Hwu W.J. Gajewski T.F. Slingluff C.L. Chowell D. Kendall S.M. Chang H. Shah R. Kuo F. Morris L.G.T. Sidhom J.W. Schneck J.P. Horak C.E. Weinhold N. Chan T.A. Tumor and Microenvironment Evolution during Immunotherapy with Nivolumab. Cell 2017 171 4 934 949.e16 10.1016/j.cell.2017.09.028 29033130
    [Google Scholar]
  28. Van Allen E.M. Miao D. Schilling B. Shukla S.A. Blank C. Zimmer L. Sucker A. Hillen U. Geukes Foppen M.H. Goldinger S.M. Utikal J. Hassel J.C. Weide B. Kaehler K.C. Loquai C. Mohr P. Gutzmer R. Dummer R. Gabriel S. Wu C.J. Schadendorf D. Garraway L.A. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 2015 350 6257 207 211 10.1126/science.aad0095 26359337
    [Google Scholar]
  29. Ayers M. Lunceford J. Nebozhyn M. Murphy E. Loboda A. Kaufman D.R. Albright A. Cheng J.D. Kang S.P. Shankaran V. Piha-Paul S.A. Yearley J. Seiwert T.Y. Ribas A. McClanahan T.K. IFN-γ–related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest. 2017 127 8 2930 2940 10.1172/JCI91190 28650338
    [Google Scholar]
  30. Dominguez C.X. Müller S. Keerthivasan S. Koeppen H. Hung J. Gierke S. Breart B. Foreman O. Bainbridge T.W. Castiglioni A. Senbabaoglu Y. Modrusan Z. Liang Y. Junttila M.R. Klijn C. Bourgon R. Turley S.J. Single-Cell RNA Sequencing Reveals Stromal Evolution into LRRC15+ Myofibroblasts as a Determinant of Patient Response to Cancer Immunotherapy. Cancer Discov. 2020 10 2 232 253 10.1158/2159‑8290.CD‑19‑0644 31699795
    [Google Scholar]
  31. Ju M. Bi J. Wei Q. Jiang L. Guan Q. Zhang M. Song X. Chen T. Fan J. Li X. Wei M. Zhao L. Pan-cancer analysis of NLRP3 inflammasome with potential implications in prognosis and immunotherapy in human cancer. Brief. Bioinform. 2021 22 4 bbaa345 10.1093/bib/bbaa345 33212483
    [Google Scholar]
  32. Hao Y. Hao S. Andersen-Nissen E. Mauck W.M. Zheng S. Butler A. Lee M.J. Wilk A.J. Darby C. Zager M. Hoffman P. Stoeckius M. Papalexi E. Mimitou E.P. Jain J. Srivastava A. Stuart T. Fleming L.M. Yeung B. Rogers A.J. McElrath J.M. Blish C.A. Gottardo R. Smibert P. Satija R. Integrated analysis of multimodal single-cell data. Cell 2021 184 13 3573 3587.e29 10.1016/j.cell.2021.04.048 34062119
    [Google Scholar]
  33. Gaujoux R. Seoighe C. A flexible R package for nonnegative matrix factorization. BMC Bioinformatics 2010 11 1 367 10.1186/1471‑2105‑11‑367 20598126
    [Google Scholar]
  34. Aran D. Looney A.P. Liu L. Wu E. Fong V. Hsu A. Chak S. Naikawadi R.P. Wolters P.J. Abate A.R. Butte A.J. Bhattacharya M. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 2019 20 2 163 172 10.1038/s41590‑018‑0276‑y 30643263
    [Google Scholar]
  35. Gao R. Bai S. Henderson Y.C. Lin Y. Schalck A. Yan Y. Kumar T. Hu M. Sei E. Davis A. Wang F. Shaitelman S.F. Wang J.R. Chen K. Moulder S. Lai S.Y. Navin N.E. Delineating copy number and clonal substructure in human tumors from single-cell transcriptomes. Nat. Biotechnol. 2021 39 5 599 608 10.1038/s41587‑020‑00795‑2 33462507
    [Google Scholar]
  36. Hänzelmann S. Castelo R. Guinney J. GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics 2013 14 1 7 10.1186/1471‑2105‑14‑7 23323831
    [Google Scholar]
  37. Liberzon A. Birger C. Thorvaldsdóttir H. Ghandi M. Mesirov J.P. Tamayo P. The Molecular Signatures Database Hallmark Gene Set Collection. Cell Syst. 2015 1 6 417 425 10.1016/j.cels.2015.12.004 26771021
    [Google Scholar]
  38. Cao J. Spielmann M. Qiu X. Huang X. Ibrahim D.M. Hill A.J. Zhang F. Mundlos S. Christiansen L. Steemers F.J. Trapnell C. Shendure J. The single-cell transcriptional landscape of mammalian organogenesis. Nature 2019 566 7745 496 502 10.1038/s41586‑019‑0969‑x 30787437
    [Google Scholar]
  39. Jin S. Guerrero-Juarez C.F. Zhang L. Chang I. Ramos R. Kuan C.H. Myung P. Plikus M.V. Nie Q. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 2021 12 1 1088 10.1038/s41467‑021‑21246‑9 33597522
    [Google Scholar]
  40. Gulati G.S. Sikandar S.S. Wesche D.J. Manjunath A. Bharadwaj A. Berger M.J. Ilagan F. Kuo A.H. Hsieh R.W. Cai S. Zabala M. Scheeren F.A. Lobo N.A. Qian D. Yu F.B. Dirbas F.M. Clarke M.F. Newman A.M. Single-cell transcriptional diversity is a hallmark of developmental potential. Science 2020 367 6476 405 411 10.1126/science.aax0249 31974247
    [Google Scholar]
  41. Yu G. Wang L.G. Han Y. He Q.Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 2012 16 5 284 287 10.1089/omi.2011.0118 22455463
    [Google Scholar]
  42. Boyle E.I. Weng S. Gollub J. Jin H. Botstein D. Cherry J.M. Sherlock G.G.O. TermFinder—open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 2004 20 18 3710 3715 10.1093/bioinformatics/bth456 15297299
    [Google Scholar]
  43. Yoshihara K. Shahmoradgoli M. Martínez E. Vegesna R. Kim H. Torres-Garcia W. Treviño V. Shen H. Laird P.W. Levine D.A. Carter S.L. Getz G. Stemke-Hale K. Mills G.B. Verhaak R.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 2013 4 1 2612 10.1038/ncomms3612 24113773
    [Google Scholar]
  44. Newman A.M. Steen C.B. Liu C.L. Gentles A.J. Chaudhuri A.A. Scherer F. Khodadoust M.S. Esfahani M.S. Luca B.A. Steiner D. Diehn M. Alizadeh A.A. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 2019 37 7 773 782 10.1038/s41587‑019‑0114‑2 31061481
    [Google Scholar]
  45. Fu J. Li K. Zhang W. Wan C. Zhang J. Jiang P. Liu X.S. Large-scale public data reuse to model immunotherapy response and resistance. Genome Med. 2020 12 1 21 10.1186/s13073‑020‑0721‑z 32102694
    [Google Scholar]
  46. Maeser D. Gruener R.F. Huang R.S. oncoPredict: an R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data. Brief. Bioinform. 2021 22 6 bbab260 10.1093/bib/bbab260 34260682
    [Google Scholar]
  47. Vougas K. Sakellaropoulos T. Kotsinas A. Foukas G.R.P. Ntargaras A. Koinis F. Polyzos A. Myrianthopoulos V. Zhou H. Narang S. Georgoulias V. Alexopoulos L. Aifantis I. Townsend P.A. Sfikakis P. Fitzgerald R. Thanos D. Bartek J. Petty R. Tsirigos A. Gorgoulis V.G. Machine learning and data mining frameworks for predicting drug response in cancer: An overview and a novel in silico screening process based on association rule mining. Pharmacol. Ther. 2019 203 107395 10.1016/j.pharmthera.2019.107395 31374225
    [Google Scholar]
  48. Jan B. Kosztyla D. von Törne C. Stenzinger A. Darb-Esfahani S. Dietel M. Denkert C. cancerclass: An R Package for Development and Validation of Diagnostic Tests from High-Dimensional Molecular Data. J. Stat. Softw. 2014 59 1 1 19
    [Google Scholar]
  49. Hellström I. Raycraft J. Hayden-Ledbetter M. Ledbetter J.A. Schummer M. McIntosh M. Drescher C. Urban N. Hellström K.E. The HE4 (WFDC2) protein is a biomarker for ovarian carcinoma. Cancer Res. 2003 63 13 3695 3700 12839961
    [Google Scholar]
  50. Galgano M.T. Hampton G.M. Frierson H.F. Comprehensive analysis of HE4 expression in normal and malignant human tissues. Modern pathology: an official journal of the United States and Canadian Academy of Pathology. Inc 2006 19 6 847 853
    [Google Scholar]
  51. Moore R.G. Hill E.K. Horan T. Yano N. Kim K. MacLaughlan S. Lambert-Messerlian G. Tseng Y.D. Padbury J.F. Miller M.C. Lange T.S. Singh R.K. HE4 (WFDC2) gene overexpression promotes ovarian tumor growth. Sci. Rep. 2014 4 1 3574 10.1038/srep03574 24389815
    [Google Scholar]
  52. Chen Y. Huang L. Wang S. Li J.L. Li M. Wu Y. Liu T. WFDC2 contributes to epithelial–mesenchymal transition (EMT) by activating AKT signaling pathway and regulating MMP-2 expression. Cancer Manag. Res. 2019 11 2415 2424 10.2147/CMAR.S192950 31118763
    [Google Scholar]
  53. James N.E. Emerson J.B. Borgstadt A.D. Beffa L. Oliver M.T. Hovanesian V. Urh A. Singh R.K. Rowswell-Turner R. DiSilvestro P.A. Ou J. Moore R.G. Ribeiro J.R. The biomarker HE4 (WFDC2) promotes a pro-angiogenic and immunosuppressive tumor microenvironment via regulation of STAT3 target genes. Sci. Rep. 2020 10 1 8558 10.1038/s41598‑020‑65353‑x 32444701
    [Google Scholar]
  54. Wang M. Chen X. Tan P. Wang Y. Pan X. Lin T. Jiang Y. Wang B. Xu H. Wang Y. Yang Y. Wang J. Zhao L. Zhang J. Zhong A. Peng Y. Du J. Zhang Q. Zheng J. Chen J. Dai S. Na F. Lu Z. Liu J. Zheng X. Yang L. Zhang P. Han P. Gong Q. Zhong Q. Xiao K. Yang H. Deng H. Zhao Y. Shi H. Man J. Gou M. Zhao C. Dai L. Xue Z. Chen L. Wang Y. Zeng M. Huang C. Wei Q. Wei Y. Liu Y. Chen C. Acquired semi-squamatization during chemotherapy suggests differentiation as a therapeutic strategy for bladder cancer. Cancer Cell 2022 40 9 1044 1059.e8 10.1016/j.ccell.2022.08.010 36099882
    [Google Scholar]
  55. Wei Q. Li J. Liu T. Tong X. Ye X. Phosphorylation of minichromosome maintenance protein 7 (MCM7) by cyclin/cyclin-dependent kinase affects its function in cell cycle regulation. J. Biol. Chem. 2013 288 27 19715 19725 10.1074/jbc.M112.449652 23720738
    [Google Scholar]
  56. Foltz D.R. Jansen L.E.T. Black B.E. Bailey A.O. Yates J.R. Cleveland D.W. The human CENP-A centromeric nucleosome-associated complex. Nat. Cell Biol. 2006 8 5 458 469 10.1038/ncb1397 16622419
    [Google Scholar]
  57. Arango M.T. Perricone C. Kivity S. Cipriano E. Ceccarelli F. Valesini G. Shoenfeld Y. HLA-DRB1 the notorious gene in the mosaic of autoimmunity. Immunol. Res. 2017 65 1 82 98 10.1007/s12026‑016‑8817‑7 27435705
    [Google Scholar]
  58. Li J. Duran M.A. Dhanota N. Chatila W.K. Bettigole S.E. Kwon J. Sriram R.K. Humphries M.P. Salto-Tellez M. James J.A. Hanna M.G. Melms J.C. Vallabhaneni S. Litchfield K. Usaite I. Biswas D. Bareja R. Li H.W. Martin M.L. Dorsaint P. Cavallo J.A. Li P. Pauli C. Gottesdiener L. DiPardo B.J. Hollmann T.J. Merghoub T. Wen H.Y. Reis-Filho J.S. Riaz N. Su S.S.M. Kalbasi A. Vasan N. Powell S.N. Wolchok J.D. Elemento O. Swanton C. Shoushtari A.N. Parkes E.E. Izar B. Bakhoum S.F. Metastasis and Immune Evasion from Extracellular cGAMP Hydrolysis. Cancer Discov. 2021 11 5 1212 1227 10.1158/2159‑8290.CD‑20‑0387 33372007
    [Google Scholar]
  59. Huang H. Li T. Ye G. Zhao L. Zhang Z. Mo D. Wang Y. Zhang C. Deng H. Li G. Liu H. High expression of COL10A1 is associated with poor prognosis in colorectal cancer. OncoTargets Ther. 2018 11 1571 1581 10.2147/OTT.S160196 29593423
    [Google Scholar]
  60. Aljohani A.I. Toss M.S. Green A.R. Rakha E.A. The clinical significance of cyclin B1 (CCNB1) in invasive breast cancer with emphasis on its contribution to lymphovascular invasion development. Breast Cancer Res. Treat. 2023 198 3 423 435 10.1007/s10549‑022‑06801‑2 36418517
    [Google Scholar]
  61. Wang Z. Wan L. Zhong J. Inuzuka H. Liu P. Sarkar F.H. Wei W. Cdc20: a potential novel therapeutic target for cancer treatment. Curr. Pharm. Des. 2013 19 18 3210 3214 10.2174/1381612811319180005 23151139
    [Google Scholar]
  62. Bergers G. Benjamin L.E. Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer 2003 3 6 401 410 10.1038/nrc1093 12778130
    [Google Scholar]
  63. Dang C.V. O’Donnell K.A. Zeller K.I. Nguyen T. Osthus R.C. Li F. The c-Myc target gene network. Semin. Cancer Biol. 2006 16 4 253 264 10.1016/j.semcancer.2006.07.014 16904903
    [Google Scholar]
  64. Xu J. Chen Y. Olopade O.I. MYC and Breast Cancer. Genes Cancer 2010 1 6 629 640 10.1177/1947601910378691 21779462
    [Google Scholar]
  65. Mitchell S. Vargas J. Hoffmann A. Signaling via the NFκB system. Wiley Interdiscip. Rev. Syst. Biol. Med. 2016 8 3 227 241 10.1002/wsbm.1331 26990581
    [Google Scholar]
  66. Zhao H. Wu L. Yan G. Chen Y. Zhou M. Wu Y. Li Y. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 2021 6 1 263 10.1038/s41392‑021‑00658‑5 34248142
    [Google Scholar]
  67. Tao G. Jiao C. Wang Y. Zhou Q. Comprehensive analysis of hypoxia-related genes for prognosis, immune features, and drugs treatment strategy in gastric cancer using bulk and single-cell RNA-sequencing. Sci. Rep. 2022 12 1 21739 10.1038/s41598‑022‑26395‑5 36526698
    [Google Scholar]
  68. Książkiewicz M. Markiewicz A. Zaczek A.J. Epithelial-mesenchymal transition: a hallmark in metastasis formation linking circulating tumor cells and cancer stem cells. Pathobiology 2012 79 4 195 208 10.1159/000337106
    [Google Scholar]
  69. Liberzon A. Birger C. Thorvaldsdóttir H. Ghandi M. Mesirov J.P. Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015 1 6 417 425 10.1016/j.cels.2015.12.004 26771021
    [Google Scholar]
  70. Ono T. Hayashi M. Sasaki F. Nakashima T. RANKL biology: bone metabolism, the immune system, and beyond. Inflamm. Regen. 2020 40 1 2 10.1186/s41232‑019‑0111‑3 32047573
    [Google Scholar]
  71. Sadanandam A. Rosenbaugh E.G. Singh S. Varney M. Singh R.K. Semaphorin 5A promotes angiogenesis by increasing endothelial cell proliferation, migration, and decreasing apoptosis. Microvasc. Res. 2010 79 1 1 9 10.1016/j.mvr.2009.10.005 19850054
    [Google Scholar]
  72. Sadanandam A. Varney M.L. Singh S. Ashour A.E. Moniaux N. Deb S. Lele S.M. Batra S.K. Singh R.K. High gene expression of semaphorin 5A in pancreatic cancer is associated with tumor growth, invasion and metastasis. Int. J. Cancer 2010 127 6 1373 1383 10.1002/ijc.25166 20073063
    [Google Scholar]
  73. Taverna S. Cammarata G. Colomba P. Sciarrino S. Zizzo C. Francofonte D. Zora M. Scalia S. Brando C. Curto A.L. Marsana E.M. Olivieri R. Vitale S. Duro G. Pompe disease: pathogenesis, molecular genetics and diagnosis. Aging 2020 12 15 15856 15874 10.18632/aging.103794 32745073
    [Google Scholar]
  74. Vannahme C. Schübel S. Herud M. Gösling S. Hülsmann H. Paulsson M. Hartmann U. Maurer P. Molecular cloning of testican-2: defining a novel calcium-binding proteoglycan family expressed in brain. J. Neurochem. 1999 73 1 12 20 10.1046/j.1471‑4159.1999.0730012.x 10386950
    [Google Scholar]
  75. Luo J. Lai C. Xu X. Shi J. Hu J. Guo K. Mulati Y. Xiao Y. Kong D. Liu C. Xu K. Mechanism of prognostic marker SPOCK3 affecting malignant progression of prostate cancer and construction of prognostic model. BMC Cancer 2023 23 1 741 10.1186/s12885‑023‑11151‑3 37563543
    [Google Scholar]
  76. Bariwal J. Kumar V. Dong Y. Mahato R.I. Design of Hedgehog pathway inhibitors for cancer treatment. Med. Res. Rev. 2019 39 3 1137 1204 10.1002/med.21555 30484872
    [Google Scholar]
  77. Li Z. Cui Y. Duan Q. Zhang J. Shao D. Cao X. Gao Y. Wang S. Li J. Jones O.D. Lei X. Wang L. Zhou X. Xu M. Ma J. Liu Y. Xu X. The Prognostic Significance of FKBP1A and Its Related Immune Infiltration in Liver Hepatocellular Carcinoma. Int. J. Mol. Sci. 2022 23 21 12797 10.3390/ijms232112797 36361587
    [Google Scholar]
  78. Miranda A. Hamilton P.T. Zhang A.W. Pattnaik S. Becht E. Mezheyeuski A. Bruun J. Micke P. de Reynies A. Nelson B.H. Cancer stemness, intratumoral heterogeneity, and immune response across cancers. Proc. Natl. Acad. Sci. USA 2019 116 18 9020 9029 10.1073/pnas.1818210116 30996127
    [Google Scholar]
  79. Siegel R.L. Miller K.D. Jemal A. Cancer statistics, 2017. CA Cancer J. Clin. 2017 67 1 7 30 10.3322/caac.21387 28055103
    [Google Scholar]
  80. Koshkin V.S. Grivas P. Emerging role of immunotherapy in advanced urothelial carcinoma. Curr. Oncol. Rep. 2018 20 6 48 10.1007/s11912‑018‑0693‑y 29644490
    [Google Scholar]
  81. Galsky M.D. Hahn N.M. Rosenberg J. Sonpavde G. Hutson T. Oh W.K. Dreicer R. Vogelzang N. Sternberg C.N. Bajorin D.F. Bellmunt J. Treatment of patients with metastatic urothelial cancer “unfit” for Cisplatin-based chemotherapy. J. Clin. Oncol. 2011 29 17 2432 2438 10.1200/JCO.2011.34.8433 21555688
    [Google Scholar]
  82. Ostojic S.M. Tackling guanidinoacetic acid for advanced cellular bioenergetics. Nutrition 2017 34 55 57 10.1016/j.nut.2016.09.010 28063512
    [Google Scholar]
  83. Yang J. Ren B. Ren J. Yang G. Fang Y. Wang X. Zhou F. You L. Zhao Y. Epigenetic reprogramming-induced guanidinoacetic acid synthesis promotes pancreatic cancer metastasis and transcription-activating histone modifications. J. Exp. Clin. Cancer Res. 2023 42 1 155 10.1186/s13046‑023‑02698‑x 37370109
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096377593250626133719
Loading
/content/journals/ccdt/10.2174/0115680096377593250626133719
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test