Skip to content
2000
image of Identification of AR-targeted Active Compounds from Euphorbia humifusa Willd for the Treatment of Prostate Cancer

Abstract

Introduction

Willd (EH) is a traditional medicinal herb in China. However, the anti-prostate cancer active compounds of EH and their molecular mechanisms have yet to be elucidated.

Methods

The peaks of EH water extract in the fingerprinting were analysed using liquid chromatography coupled to quadrupole time of flight mass spectrometry. The cell viability of 22RV1 cells was determined via MTT. The active compounds and potential targets were screened . The prostate cancer-associated targets were collected from the GeneCards database. The herb-compound-target-disease (H-C-T-D) and PPI networks were constructed to predict key targets. The molecular docking analysis of the active compounds with key targets was conducted using Autodock Vina 1.1.2. Western blot analysis was performed to evaluate the protein expression.

Results

LC-MS results demonstrated that EH water extract is a rich source of phenolics and flavonoids. EH water extract inhibited the viability of 22RV1 cells in a time-and dose-dependent manner. Moreover, the screening results identified 17 active compounds from EH with 518 prostate cancer-related key genes. Moreover, an H-C-T-D network analysis combined with the PPI network results effectively identified seven chemical compounds, oestrogen receptor 1, and androgen receptor (AR) to be highly related to prostate cancer. Furthermore, molecular docking results showed that 4′,5-dihydroxyflavone, ensaculin, luteolin, hypolaetin, quercetin, and kaempferol had a strong binding affinity with AR. Finally, Western blot results demonstrated that EH water extract, quercetin, kaempferol, and luteolin significantly down-regulated the AR protein expression in 22RV1 cells.

Conclusion

These results suggest that EH may provide a new promising therapeutic for prostate cancer treatment.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096359255250420022821
2025-07-10
2025-09-13
Loading full text...

Full text loading...

References

  1. Saad F. Shore N. Zhang T. Sharma S. Cho H.K. Jacobs I.A. Emerging therapeutic targets for patients with advanced prostate cancer. Cancer Treat. Rev. 2019 76 1 9 10.1016/j.ctrv.2019.03.002 30913454
    [Google Scholar]
  2. Sekhoacha M. Riet K. Motloung P. Gumenku L. Adegoke A. Mashele S. Prostate cancer review: Genetics, diagnosis, treatment options, and alternative approaches. Molecules 2022 27 17 5730 10.3390/molecules27175730 36080493
    [Google Scholar]
  3. Vietri M.T. D’Elia G. Caliendo G. Resse M. Casamassimi A. Passariello L. Albanese L. Cioffi M. Molinari A.M. Hereditary prostate cancer: Genes related, target therapy and prevention. Int. J. Mol. Sci. 2021 22 7 3753 10.3390/ijms22073753 33916521
    [Google Scholar]
  4. Fitzmaurice C. Abate D. Abbasi N. Abbastabar H. Abd-Allah F. Abdel-Rahman O. Abdelalim A. Abdoli A. Abdollahpour I. Abdulle A.S.M. Abebe N.D. Abraha H.N. Abu-Raddad L.J. Abualhasan A. Adedeji I.A. Advani S.M. Afarideh M. Afshari M. Aghaali M. Agius D. Agrawal S. Ahmadi A. Ahmadian E. Ahmadpour E. Ahmed M.B. Akbari M.E. Akinyemiju T. Al-Aly Z. AlAbdulKader A.M. Alahdab F. Alam T. Alamene G.M. Alemnew B.T.T. Alene K.A. Alinia C. Alipour V. Aljunid S.M. Bakeshei F.A. Almadi M.A.H. Almasi-Hashiani A. Alsharif U. Alsowaidi S. Alvis-Guzman N. Amini E. Amini S. Amoako Y.A. Anbari Z. Anber N.H. Andrei C.L. Anjomshoa M. Ansari F. Ansariadi A. Appiah S.C.Y. Arab-Zozani M. Arabloo J. Arefi Z. Aremu O. Areri H.A. Artaman A. Asayesh H. Asfaw E.T. Ashagre A.F. Assadi R. Ataeinia B. Atalay H.T. Ataro Z. Atique S. Ausloos M. Avila-Burgos L. Avokpaho E.F.G.A. Awasthi A. Awoke N. Quintanilla A.B.P. Ayanore M.A. Ayele H.T. Babaee E. Bacha U. Badawi A. Bagherzadeh M. Bagli E. Balakrishnan S. Balouchi A. Bärnighausen T.W. Battista R.J. Behzadifar M. Behzadifar M. Bekele B.B. Belay Y.B. Belayneh Y.M. Berfield K.K.S. Berhane A. Bernabe E. Beuran M. Bhakta N. Bhattacharyya K. Biadgo B. Bijani A. Sayeed B.M.S. Birungi C. Bisignano C. Bitew H. Bjørge T. Bleyer A. Bogale K.A. Bojia H.A. Borzì A.M. Bosetti C. Bou-Orm I.R. Brenner H. Brewer J.D. Briko A.N. Briko N.I. Bustamante-Teixeira M.T. Butt Z.A. Carreras G. Carrero J.J. Carvalho F. Castro C. Castro F. Catalá-López F. Cerin E. Chaiah Y. Chanie W.F. Chattu V.K. Chaturvedi P. Chauhan N.S. Chehrazi M. Chiang P.P.C. Chichiabellu T.Y. Chido-Amajuoyi O.G. Chimed-Ochir O. Choi J.Y.J. Christopher D.J. Chu D.T. Constantin M.M. Costa V.M. Crocetti E. Crowe C.S. Curado M.P. Dahlawi S.M.A. Damiani G. Darwish A.H. Daryani A. Neves D.J. Demeke F.M. Demis A.B. Demissie B.W. Demoz G.T. Denova-Gutiérrez E. Derakhshani A. Deribe K.S. Desai R. Desalegn B.B. Desta M. Dey S. Dharmaratne S.D. Dhimal M. Diaz D. Dinberu M.T.T. Djalalinia S. Doku D.T. Drake T.M. Dubey M. Dubljanin E. Duken E.E. Ebrahimi H. Effiong A. Eftekhari A. Sayed E.I. Zaki M.E.S. El-Jaafary S.I. El-Khatib Z. Elemineh D.A. Elkout H. Ellenbogen R.G. Elsharkawy A. Emamian M.H. Endalew D.A. Endries A.Y. Eshrati B. Fadhil I. Omrani F.V. Faramarzi M. Farhangi M.A. Farioli A. Farzadfar F. Fentahun N. Fernandes E. Feyissa G.T. Filip I. Fischer F. Fisher J.L. Force L.M. Foroutan M. Freitas M. Fukumoto T. Futran N.D. Gallus S. Gankpe F.G. Gayesa R.T. Gebrehiwot T.T. Gebremeskel G.G. Gedefaw G.A. Gelaw B.K. Geta B. Getachew S. Gezae K.E. Ghafourifard M. Ghajar A. Ghashghaee A. Gholamian A. Gill P.S. Ginindza T.T.G. Girmay A. Gizaw M. Gomez R.S. Gopalani S.V. Gorini G. Goulart B.N.G. Grada A. Guerra R.M. Guimaraes A.L.S. Gupta P.C. Gupta R. Hadkhale K. Haj-Mirzaian A. Haj-Mirzaian A. Hamadeh R.R. Hamidi S. Hanfore L.K. Haro J.M. Hasankhani M. Hasanzadeh A. Hassen H.Y. Hay R.J. Hay S.I. Henok A. Henry N.J. Herteliu C. Hidru H.D. Hoang C.L. Hole M.K. Hoogar P. Horita N. Hosgood H.D. Hosseini M. Hosseinzadeh M. Hostiuc M. Hostiuc S. Househ M. Hussen M.M. Ileanu B. Ilic M.D. Innos K. Irvani S.S.N. Iseh K.R. Islam S.M.S. Islami F. Balalami J.N. Jafarinia M. Jahangiry L. Jahani M.A. Jahanmehr N. Jakovljevic M. James S.L. Javanbakht M. Jayaraman S. Jee S.H. Jenabi E. Jha R.P. Jonas J.B. Jonnagaddala J. Joo T. Jungari S.B. Jürisson M. Kabir A. Kamangar F. Karch A. Karimi N. Karimian A. Kasaeian A. Kasahun G.G. Kassa B. Kassa T.D. Kassaw M.W. Kaul A. Keiyoro P.N. Kelbore A.G. Kerbo A.A. Khader Y.S. Khalilarjmandi M. Khan E.A. Khan G. Khang Y.H. Khatab K. Khater A. Khayamzadeh M. Khazaee-Pool M. Khazaei S. Khoja A.T. Khosravi M.H. Khubchandani J. Kianipour N. Kim D. Kim Y.J. Kisa A. Kisa S. Kissimova-Skarbek K. Komaki H. Koyanagi A. Krohn K.J. Bicer B.K. Kugbey N. Kumar V. Kuupiel D. Vecchia L.C. Lad D.P. Lake E.A. Lakew A.M. Lal D.K. Lami F.H. Lan Q. Lasrado S. Lauriola P. Lazarus J.V. Leigh J. Leshargie C.T. Liao Y. Limenih M.A. Listl S. Lopez A.D. Lopukhov P.D. Lunevicius R. Madadin M. Magdeldin S. Razek E.H.M.A. Majeed A. Maleki A. Malekzadeh R. Manafi A. Manafi N. Manamo W.A. Mansourian M. Mansournia M.A. Mantovani L.G. Maroufizadeh S. Martini S.M.S. Mashamba-Thompson T.P. Massenburg B.B. Maswabi M.T. Mathur M.R. McAlinden C. McKee M. Meheretu H.A.A. Mehrotra R. Mehta V. Meier T. Melaku Y.A. Meles G.G. Meles H.G. Melese A. Melku M. Memiah P.T.N. Mendoza W. Menezes R.G. Merat S. Meretoja T.J. Mestrovic T. Miazgowski B. Miazgowski T. Mihretie K.M.M. Miller T.R. Mills E.J. Mir S.M. Mirzaei H. Mirzaei H.R. Mishra R. Moazen B. Mohammad D.K. Mohammad K.A. Mohammad Y. Darwesh A.M. Mohammadbeigi A. Mohammadi H. Mohammadi M. Mohammadian M. Mohammadian-Hafshejani A. Mohammadoo-Khorasani M. Mohammadpourhodki R. Mohammed A.S. Mohammed J.A. Mohammed S. Mohebi F. Mokdad A.H. Monasta L. Moodley Y. Moosazadeh M. Moossavi M. Moradi G. Moradi-Joo M. Moradi-Lakeh M. Moradpour F. Morawska L. Morgado-da-Costa J. Morisaki N. Morrison S.D. Mosapour A. Mousavi S.M. Muche A.A. Muhammed O.S.S. Musa J. Nabhan A.F. Naderi M. Nagarajan A.J. Nagel G. Nahvijou A. Naik G. Najafi F. Naldi L. Nam H.S. Nasiri N. Nazari J. Negoi I. Neupane S. Newcomb P.A. Nggada H.A. Ngunjiri J.W. Nguyen C.T. Nikniaz L. Ningrum D.N.A. Nirayo Y.L. Nixon M.R. Nnaji C.A. Nojomi M. Nosratnejad S. Shiadeh M.N. Obsa M.S. Ofori-Asenso R. Ogbo F.A. Oh I.H. Olagunju A.T. Olagunju T.O. Oluwasanu M.M. Omonisi A.E. Onwujekwe O.E. Oommen A.M. Oren E. Ortega-Altamirano D.D.V. Ota E. Otstavnov S.S. Owolabi M.O. A P.M. Padubidri J.R. Pakhale S. Pakpour A.H. Pana A. Park E.K. Parsian H. Pashaei T. Patel S. Patil S.T. Pennini A. Pereira D.M. Piccinelli C. Pillay J.D. Pirestani M. Pishgar F. Postma M.J. Pourjafar H. Pourmalek F. Pourshams A. Prakash S. Prasad N. Qorbani M. Rabiee M. Rabiee N. Radfar A. Rafiei A. Rahim F. Rahimi M. Rahman M.A. Rajati F. Rana S.M. Raoofi S. Rath G.K. Rawaf D.L. Rawaf S. Reiner R.C. Renzaho A.M.N. Rezaei N. Rezapour A. Ribeiro A.I. Ribeiro D. Ronfani L. Roro E.M. Roshandel G. Rostami A. Saad R.S. Sabbagh P. Sabour S. Saddik B. Safiri S. Sahebkar A. Salahshoor M.R. Salehi F. Salem H. Salem M.R. Salimzadeh H. Salomon J.A. Samy A.M. Sanabria J. Milicevic S.M.M. Sartorius B. Sarveazad A. Sathian B. Satpathy M. Savic M. Sawhney M. Sayyah M. Schneider I.J.C. Schöttker B. Sekerija M. Sepanlou S.G. Sepehrimanesh M. Seyedmousavi S. Shaahmadi F. Shabaninejad H. Shahbaz M. Shaikh M.A. Shamshirian A. Shamsizadeh M. Sharafi H. Sharafi Z. Sharif M. Sharifi A. Sharifi H. Sharma R. Sheikh A. Shirkoohi R. Shukla S.R. Si S. Siabani S. Silva D.A.S. Silveira D.G.A. Singh A. Singh J.A. Sisay S. Sitas F. Sobngwi E. Soofi M. Soriano J.B. Stathopoulou V. Sufiyan M.B. Tabarés-Seisdedos R. Tabuchi T. Takahashi K. Tamtaji O.R. Tarawneh M.R. Tassew S.G. Taymoori P. Tehrani-Banihashemi A. Temsah M.H. Temsah O. Tesfay B.E. Tesfay F.H. Teshale M.Y. Tessema G.A. Thapa S. Tlaye K.G. Topor-Madry R. Tovani-Palone M.R. Traini E. Tran B.X. Tran K.B. Tsadik A.G. Ullah I. Uthman O.A. Vacante M. Vaezi M. Pérez V.P. Veisani Y. Vidale S. Violante F.S. Vlassov V. Vollset S.E. Vos T. Vosoughi K. Vu G.T. Vujcic I.S. Wabinga H. Wachamo T.M. Wagnew F.S. Waheed Y. Weldegebreal F. Weldesamuel G.T. Wijeratne T. Wondafrash D.Z. Wonde T.E. Wondmieneh A.B. Workie H.M. Yadav R. Yadegar A. Yadollahpour A. Yaseri M. Yazdi-Feyzabadi V. Yeshaneh A. Yimam M.A. Yimer E.M. Yisma E. Yonemoto N. Younis M.Z. Yousefi B. Yousefifard M. Yu C. Zabeh E. Zadnik V. Moghadam T.Z. Zaidi Z. Zamani M. Zandian H. Zangeneh A. Zaki L. Zendehdel K. Zenebe Z.M. Zewale T.A. Ziapour A. Zodpey S. Murray C.J.L. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017. JAMA Oncol. 2019 5 12 1749 1768 10.1001/jamaoncol.2019.2996 31560378
    [Google Scholar]
  5. Lu X. Yang F. Chen D. Zhao Q. Chen D. Ping H. Xing N. Quercetin reverses docetaxel resistance in prostate cancer via androgen receptor and PI3K/Akt signaling pathways. Int. J. Biol. Sci. 2020 16 7 1121 1134 10.7150/ijbs.41686 32174789
    [Google Scholar]
  6. Lomas D.J. Ahmed H.U. All change in the prostate cancer diagnostic pathway. Nat. Rev. Clin. Oncol. 2020 17 6 372 381 10.1038/s41571‑020‑0332‑z 32112055
    [Google Scholar]
  7. Kerkmeijer L.G.W. Groen V.H. Pos F.J. Haustermans K. Monninkhof E.M. Smeenk R.J. Kunze-Busch M. Boer D.J.C.J. Zijp D.V.V.V.J. Vulpen V.M. Draulans C. Bergh D.V.L. Isebaert S. Heide D.V.U.A. Focal boost to the intraprostatic tumor in external beam radiotherapy for patients with localized prostate cancer: Results from the flame randomized phase iii trial. J. Clin. Oncol. 2021 39 7 787 796 10.1200/JCO.20.02873 33471548
    [Google Scholar]
  8. Podder T.K. Fredman E.T. Ellis R.J. Advances in radiotherapy for prostate cancer treatment. Adv. Exp. Med. Biol. 2018 1126 31 47 10.1007/978‑3‑319‑99286‑0_2 30324346
    [Google Scholar]
  9. Corkum M.T. Buyyounouski M.K. Chang A.J. Chung H.T. Chung P. Cox B.W. Crook J.M. Davis B.J. Frank S.J. Henriquez I. Horwitz E.M. Hoskin P. Hsu I.C. Keyes M. King M.T. Kollmeier M.A. Krauss D.J. Kukielka A.M. Morton G. Orio P.F. III Pieters B.R. Potters L. Rossi P.J. Showalter T.N. Solanki A.A. Song D. Vanneste B. Vigneault E. Wojcieszek P.A. Zelefsky M.J. Kamrava M. Salvage prostate brachytherapy in radiorecurrent prostate cancer: An international Delphi consensus study. Radiother. Oncol. 2023 184 109672 10.1016/j.radonc.2023.109672 37059334
    [Google Scholar]
  10. Kato M. Higashi S. Sugino Y. Kajiwara S. Tanaka S. Kitano G. Yamashita Y. Ogura Y. Tachibana H. Kojima T. Inoue T. Clinical efficacy and openness to new challenges of low dose rate brachytherapy for prostate cancer. Curr. Oncol. 2023 30 11 9824 9835 10.3390/curroncol30110713 37999133
    [Google Scholar]
  11. Thompson A.B. Hamstra D.A. Rectal spacer usage with proton radiation therapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2020 108 3 644 648 10.1016/j.ijrobp.2020.05.034 32976788
    [Google Scholar]
  12. Wu Y.Y. Fan K.H. Proton therapy for prostate cancer: Current state and future perspectives. Br. J. Radiol. 2022 95 1131 20210670 10.1259/bjr.20210670 34558308
    [Google Scholar]
  13. Silva R.D. Kim F.J. Prostate cancer – local treatment after radiorecurrence: Salvage cryoablation. Int. Braz. J. Urol. 2018 44 3 435 439 10.1590/s1677‑5538.ibju.2018.03.05 29792652
    [Google Scholar]
  14. Wu X. Wu Y. Ng C.F. Yee C.H. Chiu P.K.F. High-intensity focused ultrasound strategies for treating prostate cancer. Asian J. Androl. 2024 26 6 595 599 10.4103/aja20245 38727256
    [Google Scholar]
  15. Guo R.Q. Guo X.X. Li Y.M. Bie Z.X. Li B. Li X.G. Cryoablation, high-intensity focused ultrasound, irreversible electroporation, and vascular-targeted photodynamic therapy for prostate cancer: A systemic review and meta-analysis. Int. J. Clin. Oncol. 2021 26 3 461 484 10.1007/s10147‑020‑01847‑y 33387088
    [Google Scholar]
  16. Haiquel L. Cathelineau X. Sanchez-Salas R. Macek P. Secin F. Pelvic lymph node dissection in high-risk prostate cancer. Int. Braz. J. Urol. 2022 48 1 54 66 10.1590/s1677‑5538.ibju.2020.1063 33861538
    [Google Scholar]
  17. Touijer K.A. Vertosick E.A. Sjoberg D.D. Liso N. Nalavenkata S. Melao B. Laudone V.P. Ehdaie B. Carver B. Eastham J.A. Scardino P.T. Vickers A.J. Pelvic lymph node dissection in prostate cancer: Update from a randomized clinical trial of limited versus extended dissection. Eur. Urol. 2025 87 2 253 260 10.1016/j.eururo.2024.10.006 39472200
    [Google Scholar]
  18. Berish R.B. Ali A.N. Telmer P.G. Ronald J.A. Leong H.S. Translational models of prostate cancer bone metastasis. Nat. Rev. Urol. 2018 15 7 403 421 10.1038/s41585‑018‑0020‑2 29769644
    [Google Scholar]
  19. Roy S. Fervaha G. Spratt D.E. Sun Y. Kishan A.U. Loblaw A. Malone S. Ong M. Saad F. Wallis C.J.D. Morgan S.C. Prostate radiotherapy in low-volume metastatic hormone-sensitive prostate cancer: A network meta-analysis. Eur. Urol. 2024 86 1 10 17 10.1016/j.eururo.2024.03.018 38570246
    [Google Scholar]
  20. Wasim S. Lee S.Y. Kim J. Complexities of prostate cancer. Int. J. Mol. Sci. 2022 23 22 14257 10.3390/ijms232214257 36430730
    [Google Scholar]
  21. Menges D. Yebyo H.G. Sivec-Muniz S. Haile S.R. Barbier M.C. Tomonaga Y. Schwenkglenks M. Puhan M.A. Treatments for metastatic hormone-sensitive prostate cancer: Systematic review, network meta-analysis, and benefit-harm assessment. Eur. Urol. Oncol. 2022 5 6 605 616 10.1016/j.euo.2022.04.007 35599144
    [Google Scholar]
  22. Dou M. Liang H. Liu Y. Zhang Q. Li R. Chen S. Shi B. Based on ARASENS trial: Efficacy and safety of darolutamide as an emerging option of endocrinotherapy for metastatic hormone-sensitive prostate cancer—an updated systematic review and network meta-analysis. J. Cancer Res. Clin. Oncol. 2023 149 10 7017 7027 10.1007/s00432‑023‑04658‑6 36856851
    [Google Scholar]
  23. Bo B. Guo J.B. Liu L.R. Wei Q. [Mechanisms of drug resistance in endocrinotherapy for castration-resistant prostate cancer]. Zhonghua Nan Ke Xue 2021 27 2 167 171 34914335
    [Google Scholar]
  24. Corn P.G. Agarwal N. Araujo J.C. Sonpavde G. Taxane-based combination therapies for metastatic prostate cancer. Eur. Urol. Focus 2019 5 3 369 380 10.1016/j.euf.2017.11.009 29275145
    [Google Scholar]
  25. Lopez W. Nguyen N. Cao J. Eddow C. Shung K.K. Lee N.S. Chow M.S.S. Ultrasound therapy, chemotherapy and their combination for prostate cancer. Technol. Cancer Res. Treat. 2021 20 15330338211011965 10.1177/15330338211011965 34013821
    [Google Scholar]
  26. Aragon-Ching J.B. Nader R. Amm E.J. Role of chemotherapy in prostate cancer. Asian J. Androl. 2018 20 3 221 229 10.4103/aja.aja_40_17 29063869
    [Google Scholar]
  27. Watson AS Gagnon R Batuyong E Alimohamed N Lee-Ying R Real-world cabazitaxel use and outcomes in metastatic castrate-resistant prostate cancer: The impact of response to first ARPI. Clin. Genit. Cancer. 2022 20 5 496.e1 496.e9
    [Google Scholar]
  28. Nakajima R. Targeted therapy for prostate cancer by prostate-specific membrane antigen-targeted small-molecule drug conjugates. Chem. Pharm. Bull. 2024 72 2 136 142 10.1248/cpb.c23‑00535 38296554
    [Google Scholar]
  29. Bidkar A.P. Zerefa L. Yadav S. VanBrocklin H.F. Flavell R.R. Actinium-225 targeted alpha particle therapy for prostate cancer. Theranostics 2024 14 7 2969 2992 10.7150/thno.96403 38773983
    [Google Scholar]
  30. Sridaran D. Bradshaw E. DeSelm C. Pachynski R. Mahajan K. Mahajan N.P. Prostate cancer immunotherapy: Improving clinical outcomes with a multi-pronged approach. Cell Rep. Med. 2023 4 10 101199 10.1016/j.xcrm.2023.101199 37738978
    [Google Scholar]
  31. Hawley J.E. Obradovic A.Z. Dallos M.C. Lim E.A. Runcie K. Ager C.R. McKiernan J. Anderson C.B. Decastro G.J. Weintraub J. Virk R. Lowy I. Hu J. Chaimowitz M.G. Guo X.V. Zhang Y. Haffner M.C. Worley J. Stein M.N. Califano A. Drake C.G. Anti-PD-1 immunotherapy with androgen deprivation therapy induces robust immune infiltration in metastatic castration-sensitive prostate cancer. Cancer Cell 2023 41 11 1972 1988.e5 10.1016/j.ccell.2023.10.006 37922910
    [Google Scholar]
  32. Tsuchida K. Inaba K. Kashihara T. Murakami N. Okuma K. Takahashi K. Igaki H. Nakayama Y. Maejima A. Shinoda Y. Matsui Y. Komiyama M. Fujimoto H. Ito Y. Sumi M. Nakano T. Itami J. Clinical outcomes of definitive whole pelvic radiotherapy for clinical lymph node metastatic prostate cancer. Cancer Med. 2020 9 18 6629 6637 10.1002/cam4.2985 32750234
    [Google Scholar]
  33. Zhong J. Jang A. Garcia J. Avril N. Li Q. Wojtylak P. Shore N. Tagawa S. Barata P. Advances in prostate cancer treatment: Radionuclide therapy for prostate cancer. Adv. Cancer Res. 2024 164 311 358 10.1016/bs.acr.2024.07.004 39306369
    [Google Scholar]
  34. Devos G. Tosco L. Baldewijns M. Gevaert T. Goffin K. Petit V. Mai C. Laenen A. Raskin Y. Haute V.C. Goeman L. Meerleer D.G. Berghen C. Devlies W. Claessens F. Poppel V.H. Everaerts W. Joniau S. ARNEO: A randomized phase II trial of neoadjuvant degarelix with or without apalutamide prior to radical prostatectomy for high-risk prostate cancer. Eur. Urol. 2023 83 6 508 518 10.1016/j.eururo.2022.09.009 36167599
    [Google Scholar]
  35. Michalski J.M. Winter K.A. Prestidge B.R. Sanda M.G. Amin M. Bice W.S. Gay H.A. Ibbott G.S. Crook J.M. Catton C.N. Raben A. Bosch W. Beyer D.C. Frank S.J. Papagikos M.A. Rosenthal S.A. Barthold H.J. Roach M. III Moughan J. Sandler H.M. Effect of brachytherapy with external beam radiation therapy versus brachytherapy alone for intermediate-risk prostate cancer: Nrg oncology rtog 0232 randomized clinical trial. J. Clin. Oncol. 2023 41 24 4035 4044 10.1200/JCO.22.01856 37315297
    [Google Scholar]
  36. Schmidt-Hegemann N.S. Zamboglou C. Mason M. Mottet N. Hinnen K. Meerleer D.G. Cozzarini C. Maingon P. Henry A. Spahn M. Cornford P. Belka C. Wiegel T. ESTRO-ACROP recommendations for evidence-based use of androgen deprivation therapy in combination with external-beam radiotherapy in prostate cancer. Radiother. Oncol. 2023 183 109544 10.1016/j.radonc.2023.109544 36813168
    [Google Scholar]
  37. Miederer M. Alpha emitting nuclides in nuclear medicine theranostics. Nucl. Med. 2022 61 3 273 279 10.1055/a‑1650‑9995 34624903
    [Google Scholar]
  38. Kratochwil C. Haberkorn U. Giesel F.L. Radionuclide therapy of metastatic prostate cancer. Semin. Nucl. Med. 2019 49 4 313 325 10.1053/j.semnuclmed.2019.02.003 31227054
    [Google Scholar]
  39. Zhang X. Interactions between cancer cells and bone microenvironment promote bone metastasis in prostate cancer. Cancer Commun. 2019 39 1 76 10.1186/s40880‑019‑0425‑1 31753020
    [Google Scholar]
  40. Gizzi M. Seront E. Tombal B. Damme V.J. Systemic treatments for metastatic prostate cancer in 2024. Eur. Urol. Focus 2024 10 4 522 524 10.1016/j.euf.2024.07.013 39127526
    [Google Scholar]
  41. Montuori E. Hyde C.A.C. Crea F. Golding J. Lauritano C. Marine natural products with activities against prostate cancer: Recent discoveries. Int. J. Mol. Sci. 2023 24 2 1435 10.3390/ijms24021435 36674949
    [Google Scholar]
  42. Cai Z. Chen W. Zhang J. Li H. Androgen receptor: What we know and what we expect in castration-resistant prostate cancer. Int. Urol. Nephrol. 2018 50 10 1753 1764 10.1007/s11255‑018‑1964‑0 30128923
    [Google Scholar]
  43. Esmeeta A. Adhikary S. Dharshnaa V. Swarnamughi P. Maqsummiya U.Z. Banerjee A. Pathak S. Duttaroy A.K. Plant-derived bioactive compounds in colon cancer treatment: An updated review. Biomed. Pharmacother. 2022 153 113384 10.1016/j.biopha.2022.113384 35820317
    [Google Scholar]
  44. Luo H. Vong C.T. Chen H. Gao Y. Lyu P. Qiu L. Zhao M. Liu Q. Cheng Z. Zou J. Yao P. Gao C. Wei J. Ung C.O.L. Wang S. Zhong Z. Wang Y. Naturally occurring anti-cancer compounds: Shining from Chinese herbal medicine. Chin. Med. 2019 14 1 48 10.1186/s13020‑019‑0270‑9 31719837
    [Google Scholar]
  45. Niedzwiecki A. Roomi M. Kalinovsky T. Rath M. Anticancer efficacy of polyphenols and their combinations. Nutrients 2016 8 9 552 10.3390/nu8090552 27618095
    [Google Scholar]
  46. Qayum A. Shah S.M. Singh S.K. Divergent signaling pathways may lead to convergence in cancer therapy - a review. Cell. Physiol. Biochem. 2022 56 2 180 208 10.33594/000000512 35462471
    [Google Scholar]
  47. Singh S. Pandey V.P. Yadav K. Yadav A. Dwivedi U.N. Natural products as anti-cancerous therapeutic molecules targeted towards topoisomerases. Curr. Protein Pept. Sci. 2020 21 11 1103 1142 10.2174/1389203721666200918152511 32951576
    [Google Scholar]
  48. Pei Y.G. Wu Q.X. Shi Y.P. Triterpenoids and other constituents from Euphorbia Humifusa. J. Chin. Chem. Soc. 2007 54 6 1565 1572 10.1002/jccs.200700221
    [Google Scholar]
  49. Tian Y. Sun L. Liu X. Dong J. Phenols from euphorbia humifusa. Zhongguo Zhongyao Zazhi 2010 35 5 613 615 20506823
    [Google Scholar]
  50. Wang T.T. Zhou G.H. Kho J.H. Sun Y.Y. Wen J.F. Kang D.G. Lee H.S. Cho K.W. Jin S.N. Vasorelaxant action of an ethylacetate fraction of Euphorbia humifusa involves NO-cGMP pathway and potassium channels. J. Ethnopharmacol. 2013 148 2 655 663 10.1016/j.jep.2013.05.025 23707330
    [Google Scholar]
  51. Rakotondrabe T.F. Fan M. Guo M. Exploring potential antidiabetic and anti-inflammatory flavonoids from Euphorbia humifusa with an integrated strategy. Front. Pharmacol. 2022 13 980945 10.3389/fphar.2022.980945 36105200
    [Google Scholar]
  52. Lee S.G. Kang H. in vitro adipocyte differentiation inhibition and in vivo effects on lipid metabolism in high-fat diet-induced obesity of Euphorbia humifusa. J. Microbiol. Biotechnol. 2024 34 2 387 398 10.4014/jmb.2308.08004 37986586
    [Google Scholar]
  53. Shin S.Y. Kim C.G. Jung Y.J. Jung Y. Jung H. Im J. Lim Y. Lee Y.H. Euphorbia humifusa Willd exerts inhibition of breast cancer cell invasion and metastasis through inhibition of TNFα-induced MMP-9 expression. BMC Complement. Altern. Med. 2016 16 1 413 10.1186/s12906‑016‑1404‑6 27776550
    [Google Scholar]
  54. Luyen B.T.T. Tai B.H. Thao N.P. Eun K.J. Cha J.Y. Xin M.J. Lee Y.M. Kim Y.H. Anti-inflammatory components of euphorbia humifusa willd. Bioorg. Med. Chem. Lett. 2014 24 8 1895 1900 10.1016/j.bmcl.2014.03.014 24679441
    [Google Scholar]
  55. Tian Y. Liu X.Q. Dong J.X. [Apigenin glycosides from Euphorbia humifusa wild]. Yao Xue Xue Bao 2009 44 5 496 499 19618725
    [Google Scholar]
  56. Ding M. Wang X. Man J. Li J. Qiu Y. Zhang Y. Ji M. Li J. Antibacterial and hemostatic polyvinyl alcohol/microcrystalline cellulose reinforced sodium alginate breathable dressing containing Euphorbia humifusa extract based on microfluidic spinning technology. Int. J. Biol. Macromol. 2023 239 124167 10.1016/j.ijbiomac.2023.124167 36963544
    [Google Scholar]
  57. Yoshida T. Amakura Y. Liu Y.Z. Okuda T. Tannins and related polyphenols of euphorbiaceous plants. XI. Three new hydrolyzable tannins and a polyphenol glucoside from Euphorbia humifusa. Chem. Pharm. Bull. 1994 42 9 1803 1807 10.1248/cpb.42.1803 7954930
    [Google Scholar]
  58. Tian Y. Sun L.M. Li B. Liu X.Q. Dong J.X. New anti-HBV caryophyllane-type sesquiterpenoids from Euphorbia humifusa Willd. Fitoterapia 2011 82 2 251 254 10.1016/j.fitote.2010.10.005 20940034
    [Google Scholar]
  59. KASHIHARA M KASHIHARA M. ISHIGURO K. Antimicrobial constituents of Euphorbia humifusa Willd. Phar. J. 1986 40 4 427 428
    [Google Scholar]
  60. Deng F. Tang N. Xu J. Shi Y.H. Zhao M. Zhang J.S. New α-pyrrolidinonoids and glycosides from Euphorbia humifusa. J. Asian Nat. Prod. Res. 2008 10 6 531 539 10.1080/10286020801967045 18470805
    [Google Scholar]
  61. Chang S.Y. Park J.H. Kim Y.H. Kang J.S. Min J.Y. A natural component from Euphorbia humifusa Willd displays novel, broad-spectrum anti-influenza activity by blocking nuclear export of viral ribonucleoprotein. Biochem. Biophys. Res. Commun. 2016 471 2 282 289 10.1016/j.bbrc.2016.01.123 26850850
    [Google Scholar]
  62. Ezzati M. Yousefi B. Velaei K. Safa A. A review on anti-cancer properties of Quercetin in breast cancer. Life Sci. 2020 248 117463 10.1016/j.lfs.2020.117463 32097663
    [Google Scholar]
  63. Harper P. A review of the dietary intake, bioavailability and health benefits of ellagic acid (EA) with a primary focus on its anti-cancer properties. Cureus 2023 15 8 e43156 10.7759/cureus.43156 37692691
    [Google Scholar]
  64. Li C.L. Han X.C. Zhang H. Wu J.S. Li B. Effect of scopoletin on apoptosis and cell cycle arrest in human prostate cancer cells in vitro. Trop. J. Pharm. Res. 2015 14 4 611 617 10.4314/tjpr.v14i4.8
    [Google Scholar]
  65. Chen Y. Yang Y. Wang N. Liu R. Wu Q. Pei H. Li W. β‐Sitosterol suppresses hepatocellular carcinoma growth and metastasis via FOXM1‐regulated Wnt/β‐catenin pathway. J. Cell. Mol. Med. 2024 28 3 e18072 10.1111/jcmm.18072 38063438
    [Google Scholar]
  66. Zhang W. Saif M.W. Dutschman G.E. Li X. Lam W. Bussom S. Jiang Z. Ye M. Chu E. Cheng Y.C. Identification of chemicals and their metabolites from PHY906, a Chinese medicine formulation, in the plasma of a patient treated with irinotecan and PHY906 using liquid chromatography/tandem mass spectrometry (LC/MS/MS). J. Chromatogr. A 2010 1217 37 5785 5793 10.1016/j.chroma.2010.07.045 20696432
    [Google Scholar]
  67. Ismail B.B. Pu Y. Guo M. Ma X. Liu D. LC-MS/QTOF identification of phytochemicals and the effects of solvents on phenolic constituents and antioxidant activity of baobab (Adansonia digitata) fruit pulp. Food Chem. 2019 277 279 288 10.1016/j.foodchem.2018.10.056 30502146
    [Google Scholar]
  68. Phuyal N. Jha P.K. Raturi P.P. Rajbhandary S. Total phenolic, flavonoid contents, and antioxidant activities of fruit, seed, and bark extracts of Zanthoxylum armatum DC. ScientificWorldJournal 2020 2020 1 7 10.1155/2020/8780704 32256249
    [Google Scholar]
  69. Khodaie L. Bamdad S. Delazar A. Nazemiyeh H. Antioxidant, total phenol and flavonoid contents of two pedicularis L. Species from eastern azerbaijan, iran. Bioimpacts 2012 2 1 43 57 23678441
    [Google Scholar]
  70. Maimaiti A. Aili A. Kuerban H. Li X. VDAC1 mediated anticancer activity of gallic acid in human lung adenocarcinoma a549 cells. Anticancer. Agents Med. Chem. 2018 18 2 255 262 10.2174/1871520617666170912115441 28901260
    [Google Scholar]
  71. Maimaiti A. Xingliang L. Shi L. In vitro and in vivo anti-lung cancer activity of emodin: A RNA-seq transcriptome analysis. Curr. Med. Chem. 2022 29 1 9 10.2174/0929867329666220921120314
    [Google Scholar]
  72. Maimaiti A. Xu J. Shi L. An RNA-seq transcriptome analysis for investigating the anti-lung cancer activity of medicinal Cuscuta chinensis Lam plant. Br. J. Nutr. 2023 130 5 737 749 10.1017/S0007114522003865 36468438
    [Google Scholar]
  73. Herzog S.K. Fuqua S.A.W. ESR1 mutations and therapeutic resistance in metastatic breast cancer: Progress and remaining challenges. Br. J. Cancer 2022 126 2 174 186 10.1038/s41416‑021‑01564‑x 34621045
    [Google Scholar]
  74. Lung D.K. Reese R.M. Alarid E.T. Intrinsic and extrinsic factors governing the transcriptional regulation of ESR1. Horm. Cancer 2020 11 3-4 129 147 10.1007/s12672‑020‑00388‑0 32592004
    [Google Scholar]
  75. Tian Y. Sun L.M. Liu X.Q. Li B. Wang Q. Dong J.X. Anti-HBV active flavone glucosides from Euphorbia humifusa Willd. Fitoterapia 2010 81 7 799 802 10.1016/j.fitote.2010.04.012 20450964
    [Google Scholar]
  76. liu C. Yin Z. Feng T. Zhang M. Zhou Z. Zhou Y. An integrated network pharmacology and RNA-Seq approach for exploring the preventive effect of Lonicerae japonicae flos on LPS-induced acute lung injury. J. Ethnopharmacol. 2021 264 113364 10.1016/j.jep.2020.113364 32916233
    [Google Scholar]
  77. Saleh-e-In M.M. Roy A. Al-Mansur M.A. Hasan M.C. Rahim M.M. Sultana N. Ahmed S. Islam M.R. Staden V.J. Isolation and in silico prediction of potential drug-like compounds from Anethum sowa L. root extracts targeted towards cancer therapy. Comput. Biol. Chem. 2019 78 242 259 10.1016/j.compbiolchem.2018.11.025 30584950
    [Google Scholar]
  78. Maimaiti A. Abudoukeremu K. Tie L. Pan Y. Li X. MicroRNA expression profiling and functional annotation analysis of their targets associated with the malignant transformation of oral leukoplakia. Gene 2015 558 2 271 277 10.1016/j.gene.2015.01.004 25576219
    [Google Scholar]
  79. Sandhu S. Moore C.M. Chiong E. Beltran H. Bristow R.G. Williams S.G. Prostate cancer. Lancet 2021 398 10305 1075 1090 10.1016/S0140‑6736(21)00950‑8 34370973
    [Google Scholar]
  80. Ardura J.A. Álvarez-Carrión L. Gutiérrez-Rojas I. Alonso V. Role of calcium signaling in prostate cancer progression: Effects on cancer hallmarks and bone metastatic mechanisms. Cancers 2020 12 5 1071 10.3390/cancers12051071 32344908
    [Google Scholar]
  81. Tsai Y.C. Zeng T. Abou-Kheir W. Yeh H.L. Yin J.J. Lee Y.C. Chen W.Y. Liu Y.N. Disruption of ETV6 leads to TWIST1-dependent progression and resistance to epidermal growth factor receptor tyrosine kinase inhibitors in prostate cancer. Mol. Cancer 2018 17 1 42 10.1186/s12943‑018‑0785‑1 29455655
    [Google Scholar]
  82. Fontana F. Limonta P. Dissecting the hormonal signaling landscape in castration-resistant prostate cancer. Cells 2021 10 5 1133 10.3390/cells10051133 34067217
    [Google Scholar]
  83. Bennett L. Jaiswal P.K. Harkless R.V. Long T.M. Gao N. Vandenburg B. Selman P. Durdana I. Lastra R.R. Griend V.D. Adelaiye-Ogala R. Szmulewitz R.Z. Conzen S.D. Glucocorticoid receptor (GR) activation is associated with increased camp/pka signaling in castration-resistant prostate cancer. Mol. Cancer Ther. 2024 23 4 552 563 10.1158/1535‑7163.MCT‑22‑0479 38030378
    [Google Scholar]
  84. Lin S.R. Mokgautsi N. Liu Y.N. Ras and wnt interaction contribute in prostate cancer bone metastasis. Molecules 2020 25 10 2380 10.3390/molecules25102380 32443915
    [Google Scholar]
  85. Atmaca H. Pulat C.Ç. Ilhan S. Kalyoncu F. Hericium erinaceus extract induces apoptosis via PI3K/AKT and RAS/MAPK signaling pathways in prostate cancer cells. Chem. Biodivers. 2024 21 12 e202400905 10.1002/cbdv.202400905 39183463
    [Google Scholar]
  86. You X. Qiu J. Li Q. Zhang Q. Sheng W. Cao Y. Fu W. Astragaloside IV-PESV inhibits prostate cancer tumor growth by restoring gut microbiota and microbial metabolic homeostasis via the AGE-RAGE pathway. BMC Cancer 2024 24 1 472 10.1186/s12885‑024‑12167‑z 38622523
    [Google Scholar]
  87. Edwards I.J. Proteoglycans in prostate cancer. Nat. Rev. Urol. 2012 9 4 196 206 10.1038/nrurol.2012.19 22349653
    [Google Scholar]
  88. Imran M. Rauf A. Abu-Izneid T. Nadeem M. Khan I.A. Luteolin, a flavonoid, as an anticancer agent: A review. Biomed. Pharmacother. 2019 112 108612 10.1016/j.biopha.2019.108612
    [Google Scholar]
  89. Sakurai M.A. Ozaki Y. Okuzaki D. Naito Y. Sasakura T. Okamoto A. Tabara H. Inoue T. Hagiyama M. Ito A. Yabuta N. Nojima H. Gefitinib and luteolin cause growth arrest of human prostate cancer PC-3 cells via inhibition of cyclin G-associated kinase and induction of miR-630. PLoS One 2014 9 6 e100124 10.1371/journal.pone.0100124 24971999
    [Google Scholar]
  90. Zhou Q. Yan B. Hu X. Li X.B. Zhang J. Fang J. Luteolin inhibits invasion of prostate cancer PC3 cells through E-cadherin. Mol. Cancer Ther. 2009 8 6 1684 1691 10.1158/1535‑7163.MCT‑09‑0191 19509250
    [Google Scholar]
  91. Chiu F.L. Lin J.K. Downregulation of androgen receptor expression by luteolin causes inhibition of cell proliferation and induction of apoptosis in human prostate cancer cells and xenografts. Prostate 2008 68 1 61 71 10.1002/pros.20690 18008333
    [Google Scholar]
  92. Mamouni K. Zhang S. Li X. Chen Y. Yang Y. Kim J. Bartlett M.G. Coleman I.M. Nelson P.S. Kucuk O. Wu D. A novel flavonoid composition targets androgen receptor signaling and inhibits prostate cancer growth in preclinical models. Neoplasia 2018 20 8 789 799 10.1016/j.neo.2018.06.003 29981500
    [Google Scholar]
  93. Naiki-Ito A. Naiki T. Kato H. Iida K. Etani T. Nagayasu Y. Suzuki S. Yamashita Y. Inaguma S. Onishi M. Tanaka Y. Yasui T. Takahashi S. Recruitment of miR-8080 by luteolin inhibits androgen receptor splice variant 7 expression in castration-resistant prostate cancer. Carcinogenesis 2020 41 8 1145 1157 10.1093/carcin/bgz193 31805186
    [Google Scholar]
  94. Ghafouri-Fard S. Shabestari F.A. Vaezi S. Abak A. Shoorei H. Karimi A. Taheri M. Basiri A. Emerging impact of quercetin in the treatment of prostate cancer. Biomed. Pharmacother. 2021 138 111548 10.1016/j.biopha.2021.111548 34311541
    [Google Scholar]
  95. Tang S.M. Deng X.T. Zhou J. Li Q.P. Ge X.X. Miao L. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomed. Pharmacother. 2020 121 109604 10.1016/j.biopha.2019.109604 31733570
    [Google Scholar]
  96. Chen D. Chou F.J. Chen Y. Huang C.P. Tian H. Wang Y. Niu Y. You B. Yeh S. Xing N. Chang C. Targeting the radiation-induced ARv7-mediated circNHS/miR-512-5p/XRCC5 signaling with Quercetin increases prostate cancer radiosensitivity. J. Exp. Clin. Cancer Res. 2022 41 1 235 10.1186/s13046‑022‑02287‑4 35918767
    [Google Scholar]
  97. Crocetto F. Zazzo D.E. Buonerba C. Aveta A. Pandolfo S.D. Barone B. Trama F. Caputo V.F. Scafuri L. Ferro M. Cosimato V. Fusco F. Imbimbo C. Lorenzo D.G. Kaempferol, myricetin and fisetin in prostate and bladder cancer: A systematic review of the literature. Nutrients 2021 13 11 3750 10.3390/nu13113750 34836005
    [Google Scholar]
  98. Da J. Xu M. Wang Y. Li W. Lu M. Wang Z. Kaempferol promotes apoptosis while inhibiting cell proliferation via androgen-dependent pathway and suppressing vasculogenic mimicry and invasion in prostate cancer. Anal. Cell. Pathol. (Amst.) 2019 2019 1 10 10.1155/2019/1907698 31871879
    [Google Scholar]
  99. Wang X. Zhu J. Yan H. Shi M. Zheng Q. Wang Y. Zhu Y. Miao L. Gao X. Kaempferol inhibits benign prostatic hyperplasia by resisting the action of androgen. Eur. J. Pharmacol. 2021 907 174251 10.1016/j.ejphar.2021.174251 34129879
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096359255250420022821
Loading
/content/journals/ccdt/10.2174/0115680096359255250420022821
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test