Skip to content
2000
image of Migrasomes: A Novel Target for Cancer Treatment

Abstract

Protrusion and adhesion occur at the foremost point of cells during cell migration, while contraction and detachment occur at the rear of the cells. The combined action of cytoskeletal dynamics, vesicular trafficking, and signaling networks initiates this multi-step process. The development of a novel exosome-like organelle called migrasomes, which may play roles in intercellular signaling, and which originate from retraction fibers at the back of migrating cells. Migrasomes are a particular kind of extracellular vesicle that is placed by a special mechanism and left behind by migrating cells. The proteins called integrins, which connect cells to the extracellular matrix (ECM), regulate the mobilization of migrasome. The function of migrasomes is to preserve cellular homeostasis and communication between cells. By observing this literature, we attempted to ascertain the potential role that migrasomes will play in the future in illnesses involving migrating cells, like immune system problems, tumor metastasis, and other disorders.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096359140250324085405
2025-07-22
2025-08-14
Loading full text...

Full text loading...

References

  1. da Rocha-Azevedo B. Schmid S.L. Migrasomes: A new organelle of migrating cells. Cell Res. 2015 25 1 1 2 10.1038/cr.2014.146 25378181
    [Google Scholar]
  2. Ridley A.J. Schwartz M.A. Burridge K. Firtel R.A. Ginsberg M.H. Borisy G. Parsons J.T. Horwitz A.R. Cell migration: Integrating signals from front to back. Science 2003 302 5651 1704 1709 10.1126/science.1092053 14657486
    [Google Scholar]
  3. Ulrich F. Heisenberg C.P. Trafficking and cell migration. Traffic 2009 10 7 811 818 10.1111/j.1600‑0854.2009.00929.x 19490534
    [Google Scholar]
  4. Lauffenburger D.A. Horwitz A.F. Cell migration: A physically integrated molecular process. Cell 1996 84 3 359 369 10.1016/S0092‑8674(00)81280‑5 8608589
    [Google Scholar]
  5. Friedl P. Wolf K. Plasticity of cell migration: A multiscale tuning model. J. Cell Biol. 2010 188 1 11 19 10.1083/jcb.200909003 19951899
    [Google Scholar]
  6. Webb D.J. Parsons J.T. Horwitz A.F. Adhesion assembly, disassembly and turnover in migrating cells – over and over and over again. Nat. Cell Biol. 2002 4 4 E97 E100 10.1038/ncb0402‑e97 11944043
    [Google Scholar]
  7. Palecek S.P. Schmidt C.E. Lauffenburger D.A. Horwitz A.F. Integrin dynamics on the tail region of migrating fibroblasts. J. Cell Sci. 1996 109 5 941 952 10.1242/jcs.109.5.941 8743941
    [Google Scholar]
  8. Yamada M. Mugnai G. Serada S. Yagi Y. Naka T. Sekiguchi K. Substrate-attached materials are enriched with tetraspanins and are analogous to the structures associated with rear-end retraction in migrating cells. Cell Adhes. Migr. 2013 7 3 304 314 10.4161/cam.25041 23676281
    [Google Scholar]
  9. Mayer C. Maaser K. Daryab N. Zänker K.S. Bröcker E.B. Friedl P. Release of cell fragments by invading melanoma cells. Eur. J. Cell Biol. 2004 83 11-12 709 715 10.1078/0171‑9335‑00394 15679115
    [Google Scholar]
  10. Ma L. Li Y. Peng J. Wu D. Zhao X. Cui Y. Chen L. Yan X. Du Y. Yu L. Discovery of the migrasome, an organelle mediating release of cytoplasmic contents during cell migration. Cell Res. 2015 25 1 24 38 10.1038/cr.2014.135 25342562
    [Google Scholar]
  11. Tan X. He S. Wang F. Li L. Wang W. Migrasome, a novel organelle, differs from exosomes. Biochem. Biophys. Rep. 2023 35 101500 10.1016/j.bbrep.2023.101500 37601457
    [Google Scholar]
  12. Ardalan M. Hosseiniyan Khatibi S.M. Rahbar Saadat Y. Bastami M. Nariman-Saleh-Fam Z. Abediazar S. Khalilov R. Zununi Vahed S. Migrasomes and exosomes; different types of messaging vesicles in podocytes. Cell Biol. Int. 2022 46 1 52 62 10.1002/cbin.11711 34647672
    [Google Scholar]
  13. Jiang D. Jiang Z. Lu D. Wang X. Liang H. Zhang J. Meng Y. Li Y. Wu D. Huang Y. Chen Y. Deng H. Wu Q. Xiong J. Meng A. Yu L. Migrasomes provide regional cues for organ morphogenesis during zebrafish gastrulation. Nat. Cell Biol. 2019 21 8 966 977 10.1038/s41556‑019‑0358‑6 31371827
    [Google Scholar]
  14. Jiao H. Jiang D. Hu X. Du W. Ji L. Yang Y. Li X. Sho T. Wang X. Li Y. Wu Y.T. Wei Y.H. Hu X. Yu L. Mitocytosis, a migrasome-mediated mitochondrial quality-control process. Cell 2021 184 11 2896 2910.e13 10.1016/j.cell.2021.04.027 34048705
    [Google Scholar]
  15. Liu Y. Li S. Rong W. Zeng C. Zhu X. Chen Q. Li L. Liu Z.H. Zen K. Podocyte released migrasomes in urine serve as an indicator for early podocyte injury. Kidney Dis. 2020 6 6 422 433 10.1159/000511504 33313063
    [Google Scholar]
  16. Koupenova M. Corkrey H.A. Vitseva O. Tanriverdi K. Somasundaran M. Liu P. Soofi S. Bhandari R. Godwin M. Parsi K.M. Cousineau A. Maehr R. Wang J.P. Cameron S.J. Rade J. Finberg R.W. Freedman J.E. SARS-CoV-2 initiates programmed cell death in platelets. Circ. Res. 2021 129 6 631 646 10.1161/CIRCRESAHA.121.319117 34293929
    [Google Scholar]
  17. Lampiasi N. Russo R. Kireev I. Strelkova O. Zhironkina O. Zito F. Osteoclasts differentiation from murine RAW 264.7 cells stimulated by RANKL: Timing and behavior. Biology 2021 10 2 117 10.3390/biology10020117 33557437
    [Google Scholar]
  18. Mikołajczyk K. Spyt D. Zielińska W. Żuryń A. Faisal I. Qamar M. Świniarski P. Grzanka A. Gagat M. The important role of endothelium and extracellular vesicles in the cellular mechanism of aortic aneurysm formation. Int. J. Mol. Sci. 2021 22 23 13157 10.3390/ijms222313157 34884962
    [Google Scholar]
  19. Zhang Y. Wang J. Ding Y. Zhang J. Xu Y. Xu J. Zheng S. Yang H. Migrasome and tetraspanins in vascular homeostasis: Concept, present, and future. Front. Cell Dev. Biol. 2020 8 438 10.3389/fcell.2020.00438 32612990
    [Google Scholar]
  20. Zhang X. Yao L. Meng Y. Li B. Yang Y. Gao F. Migrasome: A new functional extracellular vesicle. Cell Death Discov. 2023 9 1 381 10.1038/s41420‑023‑01673‑x 37852963
    [Google Scholar]
  21. Tang H. Huang Z. Wang M. Luan X. Deng Z. Xu J. Fan W. He D. Zhou C. Wang L. Li J. Zeng F. Li D. Zhou J. Research progress of migrasomes: From genesis to formation, physiology to pathology. Front. Cell Dev. Biol. 2024 12 1420413 10.3389/fcell.2024.1420413 39206093
    [Google Scholar]
  22. Yu S. Yu L. Migrasome biogenesis and functions. FEBS J. 2022 289 22 7246 7254 10.1111/febs.16183 34492154
    [Google Scholar]
  23. Wu D. Xu Y. Ding T. Zu Y. Yang C. Yu L. Pairing of integrins with ECM proteins determines migrasome formation. Cell Res. 2017 27 11 1397 1400 10.1038/cr.2017.108 28829047
    [Google Scholar]
  24. Wehrle-Haller B. Structure and function of focal adhesions. Curr. Opin. Cell Biol. 2012 24 1 116 124 10.1016/j.ceb.2011.11.001 22138388
    [Google Scholar]
  25. Horton E.R. Byron A. Askari J.A. Ng D.H.J. Millon-Frémillon A. Robertson J. Koper E.J. Paul N.R. Warwood S. Knight D. Humphries J.D. Humphries M.J. Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly. Nat. Cell Biol. 2015 17 12 1577 1587 10.1038/ncb3257 26479319
    [Google Scholar]
  26. Zhao X. Lei Y. Zheng J. Peng J. Li Y. Yu L. Chen Y. Identification of markers for migrasome detection. Cell Discov. 2019 5 1 27 10.1038/s41421‑019‑0093‑y 31123599
    [Google Scholar]
  27. Jiang Y. Liu X. Ye J. Ma Y. Mao J. Feng D. Wang X. Migrasomes, a new mode of intercellular communication. Cell Commun. Signal. 2023 21 1 105 10.1186/s12964‑023‑01121‑4 37158915
    [Google Scholar]
  28. Zhang C. Li T. Yin S. Gao M. He H. Li Y. Jiang D. Shi M. Wang J. Yu L. Monocytes deposit migrasomes to promote embryonic angiogenesis. Nat. Cell Biol. 2022 24 12 1726 1738 10.1038/s41556‑022‑01026‑3 36443426
    [Google Scholar]
  29. Deniz I.A. Karbanová J. Wobus M. Bornhäuser M. Wimberger P. Kuhlmann J.D. Corbeil D. Mesenchymal stromal cell-associated migrasomes: A new source of chemoattractant for cells of hematopoietic origin. Cell Commun. Signal. 2023 21 1 36 10.1186/s12964‑022‑01028‑6 36788616
    [Google Scholar]
  30. Cai C. Shen J. The roles of migrasomes in immunity, barriers, and diseases. Acta Biomater. 2024 189 88 102 10.1016/j.actbio.2024.09.013 39284502
    [Google Scholar]
  31. Zhang F. Liu W. Mao Y. Yang Y. Ling C. Liu Y. Yao F. Zhen Y. Wang X. Zou M. Migrasome, a migration-dependent organelle. Front. Cell Dev. Biol. 2024 12 1417242 10.3389/fcell.2024.1417242 38903534
    [Google Scholar]
  32. Novikov N.M. Zolotaryova S.Y. Gautreau A.M. Denisov E.V. Mutational drivers of cancer cell migration and invasion. Br. J. Cancer 2021 124 1 102 114 10.1038/s41416‑020‑01149‑0 33204027
    [Google Scholar]
  33. Fan C Shi X Zhao K Li H Ji B Cell migration orchestrates migrasome formation by shaping retraction fibers. J. cell. bio. 2022 221 4 e202109168
    [Google Scholar]
  34. Dharan R. Huang Y. Cheppali S.K. Goren S. Shendrik P. Wang W. Qiao J. Kozlov M.M. Yu L. Sorkin R. Tetraspanin 4 stabilizes membrane swellings and facilitates their maturation into migrasomes. Nat. Commun. 2023 14 1 1037 10.1038/s41467‑023‑36596‑9 36823145
    [Google Scholar]
  35. Schmidt-Pogoda A. Strecker J.K. Liebmann M. Massoth C. Beuker C. Hansen U. König S. Albrecht S. Bock S. Breuer J. Sommer C. Schwab N. Wiendl H. Klotz L. Minnerup J. Dietary salt promotes ischemic brain injury and is associated with parenchymal migrasome formation. PLoS One 2018 13 12 e0209871 10.1371/journal.pone.0209871 30589884
    [Google Scholar]
  36. Zuidscherwoude M. Göttfert F. Dunlock V.M.E. Figdor C.G. van den Bogaart G. Spriel A.B. The tetraspanin web revisited by super-resolution microscopy. Sci. Rep. 2015 5 1 12201 10.1038/srep12201 26183063
    [Google Scholar]
  37. Chen Y. Li Y. Ma L. Yu L. Detection of migrasomes. Methods Mol. Biol. 2018 1749 43 49 10.1007/978‑1‑4939‑7701‑7_5 29525989
    [Google Scholar]
  38. Aheget H. Mazini L. Martin F. Belqat B. Marchal J.A. Benabdellah K. Exosomes: Their role in pathogenesis, diagnosis and treatment of diseases. Cancers 2020 13 1 84 10.3390/cancers13010084 33396739
    [Google Scholar]
  39. Liu Q. Li S. Dupuy A. Mai H. Sailliet N. Logé C. Robert J.M.H. Brouard S. Exosomes as new biomarkers and drug delivery tools for the prevention and treatment of various diseases: Current perspectives. Int. J. Mol. Sci. 2021 22 15 7763 10.3390/ijms22157763 34360530
    [Google Scholar]
  40. Heath N. Grant L. De Oliveira T.M. Rowlinson R. Osteikoetxea X. Dekker N. Overman R. Rapid isolation and enrichment of extracellular vesicle preparations using anion exchange chromatography. Sci. Rep. 2018 8 1 5730 10.1038/s41598‑018‑24163‑y 29636530
    [Google Scholar]
  41. Xu R. Greening D.W. Zhu H.J. Takahashi N. Simpson R.J. Extracellular vesicle isolation and characterization: Toward clinical application. J. Clin. Invest. 2016 126 4 1152 1162 10.1172/JCI81129 27035807
    [Google Scholar]
  42. Wu M. Ouyang Y. Wang Z. Zhang R. Huang P.H. Chen C. Li H. Li P. Quinn D. Dao M. Suresh S. Sadovsky Y. Huang T.J. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proc. Natl. Acad. Sci. USA 2017 114 40 10584 10589 10.1073/pnas.1709210114 28923936
    [Google Scholar]
  43. Li P. Kaslan M. Lee S.H. Yao J. Gao Z. Progress in exosome isolation techniques. Theranostics 2017 7 3 789 804 10.7150/thno.18133 28255367
    [Google Scholar]
  44. Chen Y. Zhu Q. Cheng L. Wang Y. Li M. Yang Q. Hu L. Lou D. Li J. Dong X. Lee L.P. Liu F. Exosome detection via the ultrafast-isolation system: EXODUS. Nat. Methods 2021 18 2 212 218 10.1038/s41592‑020‑01034‑x 33432243
    [Google Scholar]
  45. Nam G. Choi Y. Kim G. Kim S. Kim S. Kim I. Emerging prospects of exosomes for cancer treatment: From conventional therapy to immunotherapy. Adv Mater. 2020 32 51 e2002440 10.1002/adma.202002440
    [Google Scholar]
  46. Zhang Y. Guo W. Bi M. Migrasomes: From biogenesis, release, uptake, rupture to homeostasis and diseases. Oxid. Med. Cell. Longev. 2022 2022 4525778 10.1155/2022/4525778
    [Google Scholar]
  47. Zhu M. Zou Q. Huang R. Li Y. Xing X. Fang J. Ma L. Li L. Yang X. Yu L. Lateral transfer of mRNA and protein by migrasomes modifies the recipient cells. Cell Res. 2021 31 2 237 240 10.1038/s41422‑020‑00415‑3 32994478
    [Google Scholar]
  48. Savukaitytė A. Gudoitytė G. Bartnykaitė A. Ugenskienė R. Juozaitytė E. siRNA knockdown of REDD1 facilitates aspirin-mediated dephosphorylation of mTORC1 target 4EBP1 in MDA-MB-468 human breast cancer cell line. Cancer Manag. Res. 2021 13 1123 1133 10.2147/CMAR.S264414 33574709
    [Google Scholar]
  49. Flynn P. Wong M. Zavar M. Dean N.M. Stokoe D. Inhibition of PDK-1 activity causes a reduction in cell proliferation and survival. Curr. Biol. 2000 10 22 1439 1442 10.1016/S0960‑9822(00)00801‑0 11102805
    [Google Scholar]
  50. McMenamin M.E. Soung P. Perera S. Kaplan I. Loda M. Sellers W.R. Loss of PTEN expression in paraffin-embedded primary prostate cancer correlates with high Gleason score and advanced stage. Cancer Res. 1999 59 17 4291 4296 10485474
    [Google Scholar]
  51. Vlietstra R.J. van Alewijk D.C. Hermans K.G. van Steenbrugge G.J. Trapman J. Frequent inactivation of PTEN in prostate cancer cell lines and xenografts. Cancer Res. 1998 58 13 2720 2723 9661880
    [Google Scholar]
  52. Zhang Z. Zhang T. Zhang R. Zhang Z. Tan S. Migrasomes and tetraspanins in hepatocellular carcinoma: Current status and future prospects. Future Sci. OA 2023 9 9 FSO890 10.2144/fsoa‑2023‑0086 37752917
    [Google Scholar]
  53. Huang Y Li Y. Tetraspanin-enriched microdomains: The building blocks of migrasome. Cell Insight. 2022 5 1 100003 10.1016/j.cellin.2021.100003
    [Google Scholar]
  54. Dharan R. Sorkin R. Biophysical aspects of migrasome organelle formation and their diverse cellular functions. BioEssays 2024 46 8 2400051 10.1002/bies.202400051 38922978
    [Google Scholar]
  55. Huang Y. Zucker B. Zhang S. Elias S. Zhu Y. Chen H. Ding T. Li Y. Sun Y. Lou J. Kozlov M.M. Yu L. Migrasome formation is mediated by assembly of micron-scale tetraspanin macrodomains. Nat. Cell Biol. 2019 21 8 991 1002 10.1038/s41556‑019‑0367‑5 31371828
    [Google Scholar]
  56. Qin Y. Yang J. Liang C. Liu J. Deng Z. Yan B. Fu Y. Luo Y. Li X. Wei X. Li W. Pan-cancer analysis identifies migrasome-related genes as a potential immunotherapeutic target: A bulk omics research and single cell sequencing validation. Front. Immunol. 2022 13 994828 10.3389/fimmu.2022.994828 36405728
    [Google Scholar]
  57. Yu L. Migrasomes: The knowns, the known unknowns and the unknown unknowns: A personal perspective. Sci. China Life Sci. 2021 64 1 162 166 10.1007/s11427‑020‑1827‑8 33190174
    [Google Scholar]
  58. Ehrlich M. DNA methylation in cancer: Too much, but also too little. Oncogene 2002 21 35 5400 5413 10.1038/sj.onc.1205651 12154403
    [Google Scholar]
  59. Zhu H. Wang G. Zhu H. Xu A. ITGA5 is a prognostic biomarker and correlated with immune infiltration in gastrointestinal tumors. BMC Cancer 2021 21 1 269 10.1186/s12885‑021‑07996‑1 33711961
    [Google Scholar]
  60. Zhou C. Shen Y. Wei Z. Shen Z. Tang M. Shen Y. Deng H. ITGA5 is an independent prognostic biomarker and potential therapeutic target for laryngeal squamous cell carcinoma. J. Clin. Lab. Anal. 2022 36 2 e24228 10.1002/jcla.24228 34994984
    [Google Scholar]
  61. Li D. Liu S. Xu J. Chen L. Xu C. Chen F. Xu Z. Zhang Y. Xia S. Shao Y. Wang Y. Ferroptosis‐related gene CHAC1 is a valid indicator for the poor prognosis of kidney renal clear cell carcinoma. J. Cell. Mol. Med. 2021 25 7 3610 3621 10.1111/jcmm.16458 33728749
    [Google Scholar]
  62. Zheng J. Son D.J. Gu S.M. Woo J.R. Ham Y.W. Lee H.P. Kim W.J. Jung J.K. Hong J.T. Piperlongumine inhibits lung tumor growth via inhibition of nuclear factor kappa B signaling pathway. Sci. Rep. 2016 6 1 26357 10.1038/srep26357 27198178
    [Google Scholar]
  63. Randhawa H. Kibble K. Zeng H. Moyer M.P. Reindl K.M. Activation of ERK signaling and induction of colon cancer cell death by piperlongumine. Toxicol. in vitro 2013 27 6 1626 1633 10.1016/j.tiv.2013.04.006 23603476
    [Google Scholar]
  64. Raj L. Ide T. Gurkar A.U. Foley M. Schenone M. Li X. Tolliday N.J. Golub T.R. Carr S.A. Shamji A.F. Stern A.M. Mandinova A. Schreiber S.L. Lee S.W. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 2011 475 7355 231 234 10.1038/nature10167 21753854
    [Google Scholar]
  65. Duan C. Zhang B. Deng C. Cao Y. Zhou F. Wu L. Chen M. Shen S. Xu G. Zhang S. Duan G. Yan H. Zou X. Piperlongumine induces gastric cancer cell apoptosis and G2/M cell cycle arrest both in vitro and in vivo. Tumour Biol. 2016 37 8 10793 10804 10.1007/s13277‑016‑4792‑9 26874726
    [Google Scholar]
  66. Duffy M.J. Crown J. Biomarkers for predicting response to immunotherapy with immune checkpoint inhibitors in cancer patients. Clin. Chem. 2019 65 10 1228 1238 10.1373/clinchem.2019.303644 31315901
    [Google Scholar]
  67. Topalian SL Taube JM Pardoll DM Neoadjuvant checkpoint blockade for cancer immunotherapy. Science 2020 367 eaax0182 10.1126/science.aax0182
    [Google Scholar]
  68. Zhang R. Liu Q. Peng J. Wang M. Li T. Liu J. Cui M. Zhang X. Gao X. Liao Q. Zhao Y. CXCL5 overexpression predicts a poor prognosis in pancreatic ductal adenocarcinoma and is correlated with immune cell infiltration. J. Cancer 2020 11 9 2371 2381 10.7150/jca.40517 32201508
    [Google Scholar]
  69. Deng S Wu Y Huang S Yang X Novel insights into the roles of migrasome in cancer. Discov Oncol. 2024 15 1 166 10.1007/s12672‑024‑00942‑0
    [Google Scholar]
  70. Jiao H. Yu L. Migrasomes: Biogenesis, physiological roles, and therapeutic potentials. J. Cell Biol. 2024 223 11 e202403051 10.1083/jcb.202403051 39400310
    [Google Scholar]
  71. Jiao L. Luo X. Xu Y. Sun T. Lei X. Song X. Ying B. Emerging concepts of migrasome: An up‐and‐coming organelle from biology to the clinic. FASEB J. 2024 38 14 e23811 10.1096/fj.202400503RR 39031505
    [Google Scholar]
  72. Zhu X. Zhao Y. Liu Y. Shi W. Yang J. Liu Z. Zhang X. Macrophages release IL11-containing filopodial tip vesicles and contribute to renal interstitial inflammation. Cell Commun. Signal. 2023 21 1 293 10.1186/s12964‑023‑01327‑6 37853428
    [Google Scholar]
  73. Mei J. Cao X. Zhou B. Zhu W. Wang M. Migrasomes: Emerging organelles for unveiling physiopathology and advancing clinical implications. Life Sci. 2024 358 123152 10.1016/j.lfs.2024.123152 39454990
    [Google Scholar]
  74. Wu L. Yang S. Li H. Zhang Y. Feng L. Zhang C. Wei J. Gu X. Xu G. Wang Z. Wang F. TSPAN4-positive migrasome derived from retinal pigmented epithelium cells contributes to the development of proliferative vitreoretinopathy. J. Nanobiotechnology 2022 20 1 519 10.1186/s12951‑022‑01732‑y 36494806
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096359140250324085405
Loading
/content/journals/ccdt/10.2174/0115680096359140250324085405
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: retraction fibers ; immune systems ; tumors ; detachment ; Contraction ; migrasomes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test