Skip to content
2000
image of Trimethylamine N-oxide Impairs Oocyte Maturation and Embryogenesis via NF-κB/NLRP3 Pathway Modulation

Abstract

Background

The role of Trimethylamine N-oxide (TMAO) in oocyte maturation and embryogenesis remains unclear, particularly its impact on ovarian granulosa cells (OGCs) and its underlying mechanisms.

Methods

This study examined the effects of TMAO (100-400 µmol/L) on oocyte maturation, cumulus cell expansion, mitochondrial distribution, and embryonic development and in a BALB/c mouse model. The involvement of the NF-κB/NLRP3 signaling pathway in TMAO-induced ovarian dysfunction was assessed using Western blotting and gene expression analyses. The potential therapeutic effect of miRNA-146, an NF-κB inhibitor, was also explored.

Results

Western blotting confirmed that TMAO activates the NF-κB signaling pathway and induces the synthesis of caspase 3 and NLRP3 complexes. However, pretreatment with miRNA-146, an NF-κB inhibitor, significantly reduced inflammation and inflammatory gene expression during TMAO therapy. Additionally, miRNA-146 pretreatment promoted oocyte maturation by suppressing NF-κB/NLRP3 activation, OGCs apoptotic inflammatory factor expression, and the gene expression of NF-κB, caspase 3, and NLRP3.

Conclusion

Findings demonstrate that TMAO disrupts oocyte development through NF-κB/NLRP3 activation, contributing to ovarian dysfunction. Notably, targeting TMAO and its downstream signaling could serve as a novel therapeutic strategy for premature ovarian insufficiency (POI).

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096364675250419135908
2025-05-22
2025-09-13
Loading full text...

Full text loading...

References

  1. Costa G.P.O. Ferreira-Filho E.S. Simoes R.S. Soares-Junior J.M. Baracat E.C. Maciel G.A.R. Impact of hormone therapy on the bone density of women with premature ovarian insufficiency: A systematic review. Maturitas 2023 167 105 112 10.1016/j.maturitas.2022.09.011 36368093
    [Google Scholar]
  2. Zhang X. Lu Y. Wu S. Zhao X. Li S. Zhang S. Tan J. Estimates of global research productivity in primary ovarian insufficiency from 2000 to 2021: Bibliometric analysis. Front. Endocrinol. 2022 13 959905 10.3389/fendo.2022.959905 36387882
    [Google Scholar]
  3. de Clercq N.C. Frissen M.N. Groen A.K. Nieuwdorp M. Gut microbiota and the gut-brain axis: New insights in the pathophysiology of metabolic syndrome. Psychosom. Med. 2017 79 8 874 879 10.1097/PSY.0000000000000495 28557822
    [Google Scholar]
  4. Mukherjee A.G. Wanjari U.R. Kannampuzha S. Murali R. Namachivayam A. Ganesan R. Dey A. Babu A. Renu K. Vellingiri B. Ramanathan G. Priya Doss C G. Elsherbiny N. Elsherbini A.M. Alsamman A.M. Zayed H. Gopalakrishnan A.V. The implication of mechanistic approaches and the role of the microbiome in polycystic ovary syndrome (PCOS): A review. Metabolites 2023 13 1 129 10.3390/metabo13010129 36677054
    [Google Scholar]
  5. Qi X. Yun C. Pang Y. Qiao J. The impact of the gut microbiota on the reproductive and metabolic endocrine system. Gut Microbes 2021 13 1 1894070 10.1080/19490976.2021.1894070 33722164
    [Google Scholar]
  6. He F. Liu Y. Li T. Ma Q. Yongmei Z. He P. Xiong C. MicroRNA-146 attenuates lipopolysaccharide induced ovarian dysfunction by inhibiting the TLR4/NF- κB signaling pathway. Bioengineered 2022 13 5 11611 11623 10.1080/21655979.2022.2070584 35531876
    [Google Scholar]
  7. Hu R. Wang M. Ni S. Wang M. Liu L. You H. Wu X. Wang Y. Lu L. Wei L. Salidroside ameliorates endothelial inflammation and oxidative stress by regulating the AMPK/NF-κB/NLRP3 signaling pathway in AGEs-induced HUVECs. Eur. J. Pharmacol. 2020 867 172797 10.1016/j.ejphar.2019.172797 31747547
    [Google Scholar]
  8. Xiang Y. Wang H. Ding H. Xu T. Liu X. Huang Z. Wu H. Ge H. Hyperandrogenism drives ovarian inflammation and pyroptosis: A possible pathogenesis of PCOS follicular dysplasia. Int. Immunopharmacol. 2023 125 Pt A 111141 10.1016/j.intimp.2023.111141 37918087
    [Google Scholar]
  9. Moustakli E. Stavros S. Katopodis P. Skentou C. Potiris A. Panagopoulos P. Domali E. Arkoulis I. Karampitsakos T. Sarafi E. Michaelidis T.M. Zachariou A. Zikopoulos A. Oxidative stress and the NLRP3 inflammasome: Focus on female fertility and reproductive health. Cells 2025 14 1 36 10.3390/cells14010036 39791737
    [Google Scholar]
  10. Mitchell J.P. Carmody R.J. NF-κB and the transcriptional control of inflammation. Int. Rev. Cell Mol. Biol. 2018 335 41 84 10.1016/bs.ircmb.2017.07.007 29305014
    [Google Scholar]
  11. Lingappan K. NF-κB in oxidative stress. Curr. Opin. Toxicol. 2018 7 81 86 10.1016/j.cotox.2017.11.002 29862377
    [Google Scholar]
  12. Kaltschmidt C. Greiner J.F.W. Kaltschmidt B. The transcription factor NF-κB in stem cells and development. Cells 2021 10 8 2042 10.3390/cells10082042 34440811
    [Google Scholar]
  13. Faria S.S. Costantini S. de Lima V.C.C. de Andrade V.P. Rialland M. Cedric R. Budillon A. Magalhães K.G. NLRP3 inflammasome-mediated cytokine production and pyroptosis cell death in breast cancer. J. Biomed. Sci. 2021 28 1 26 10.1186/s12929‑021‑00724‑8 33840390
    [Google Scholar]
  14. Berkel C. Inducers and inhibitors of pyroptotic death of granulosa cells in models of premature ovarian insufficiency and polycystic ovary syndrome. Reprod. Sci. 2024 31 10 2972 2992 10.1007/s43032‑024‑01643‑3 39026050
    [Google Scholar]
  15. Kimura I. Free fatty acid receptors in health and disease. Physiol. Rev. 2019 100 1 171 210 10.1152/physrev.00041.2018 31487233
    [Google Scholar]
  16. Zhang X. Li Y. Yang P. Liu X. Lu L. Chen Y. Zhong X. Li Z. Liu H. Ou C. Yan J. Chen M. Trimethylamine-N-oxide promotes vascular calcification through activation of NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3) inflammasome and NF-κB (nuclear factor κB) signals. Arterioscler. Thromb. Vasc. Biol. 2020 40 3 751 765 10.1161/ATVBAHA.119.313414 31941382
    [Google Scholar]
  17. Coutinho-Wolino K.S. Almeida P.P. Mafra D. Stockler-Pinto M.B. Bioactive compounds modulating Toll-like 4 receptor (TLR4)-mediated inflammation: Pathways involved and future perspectives. Nutr. Res. 2022 107 96 116 10.1016/j.nutres.2022.09.001 36209684
    [Google Scholar]
  18. Nagy R.A. Homminga I. Jia C. Liu F. Anderson J.L.C. Hoek A. Tietge U.J.F. Trimethylamine-N-oxide is present in human follicular fluid and is a negative predictor of embryo quality. Hum. Reprod. 2020 35 1 81 88 10.1093/humrep/dez224 31916569
    [Google Scholar]
  19. Zhou Y. Zhang Y. Jin S. Lv J. Li M. Feng N. The gut microbiota derived metabolite trimethylamine N-oxide: Its important role in cancer and other diseases. Biomed. Pharmacother. 2024 177 117031 10.1016/j.biopha.2024.117031 38925016
    [Google Scholar]
  20. Benson T.W. Conrad K.A. Li X.S. Wang Z. Helsley R.N. Schugar R.C. Coughlin T.M. Wadding-Lee C. Fleifil S. Russell H.M. Stone T. Brooks M. Buffa J.A. Mani K. Björck M. Wanhainen A. Sangwan N. Biddinger S. Bhandari R. Ademoya A. Pascual C. Tang W.H.W. Tranter M. Cameron S.J. Brown J.M. Hazen S.L. Owens A.P. III Gut microbiota–derived trimethylamine N-oxide contributes to abdominal aortic aneurysm through inflammatory and apoptotic mechanisms. Circulation 2023 147 14 1079 1096 10.1161/CIRCULATIONAHA.122.060573 37011073
    [Google Scholar]
  21. Bradley J. Swann K. Mitochondria and lipid metabolism in mammalian oocytes and early embryos. Int J Dev Biol. 2019 63 3-4-5 93 103 10.1387/ijdb.180355ks 31058306
    [Google Scholar]
  22. Arias A. Quiroz A. Santander N. Morselli E. Busso D. Implications of high-density cholesterol metabolism for oocyte biology and female fertility. Front. Cell Dev. Biol. 2022 10 941539 10.3389/fcell.2022.941539 36187480
    [Google Scholar]
  23. Oliveira C.S. Feuchard V.L.S. Marques S.C.S. Saraiva N.Z. Modulation of lipid metabolism through multiple pathways during oocyte maturation and embryo culture in bovine. Zygote 2022 30 2 258 266 10.1017/S0967199421000629 34405786
    [Google Scholar]
  24. Li Y. Zhang L. Ren P. Yang Y. Li S. Qin X. Zhang M. Zhou M. Liu W. Qing-Xue-Xiao-Zhi formula attenuates atherosclerosis by inhibiting macrophage lipid accumulation and inflammatory response via TLR4/MyD88/NF-κB pathway regulation. Phytomedicine 2021 93 153812 10.1016/j.phymed.2021.153812 34753029
    [Google Scholar]
  25. Li Z. Wu Z. Yan J. Liu H. Liu Q. Deng Y. Ou C. Chen M. Gut microbe-derived metabolite trimethylamine N-oxide induces cardiac hypertrophy and fibrosis. Lab. Invest. 2019 99 3 346 357 10.1038/s41374‑018‑0091‑y 30068915
    [Google Scholar]
  26. Chen C.Y. Leu H.B. Wang S.C. Tsai S.H. Chou R.H. Lu Y.W. Tsai Y.L. Kuo C.S. Huang P.H. Chen J.W. Lin S.J. Inhibition of trimethylamine N-oxide attenuates neointimal formation through reduction of inflammasome and oxidative stress in a mouse model of carotid artery ligation. Antioxid. Redox Signal. 2023 38 1-3 215 233 10.1089/ars.2021.0115 35713239
    [Google Scholar]
  27. Lei D. Yu W. Liu Y. Jiang Y. Li X. Lv J. Li Y. Trimethylamine N-oxide (TMAO) inducing endothelial injury: UPLC-MS/MS-based quantification and the activation of Cathepsin B-mediated NLRP3 inflammasome. Molecules 2023 28 9 3817 10.3390/molecules28093817 37175227
    [Google Scholar]
  28. Bordoni L. Malinowska A.M. Petracci I. Szwengiel A. Gabbianelli R. Chmurzynska A. Diet, trimethylamine metabolism, and mitochondrial DNA: An observational study. Mol. Nutr. Food Res. 2022 66 13 2200003 10.1002/mnfr.202200003 35490412
    [Google Scholar]
  29. Wang Y. Luo F.Q. He Y.H. Yang Z.X. Wang X. Li C.R. Cai B.Q. Chen L.J. Wang Z.B. Zhang C.L. Guan Y.C. Zhang D. Oocytes could rearrange immunoglobulin production to survive over adverse environmental stimuli. Front. Immunol. 2022 13 990077 10.3389/fimmu.2022.990077 36405746
    [Google Scholar]
  30. Yamochi T. Hashimoto S. Morimoto Y. Mural granulosa cells support to maintain the viability of growing porcine oocytes and its developmental competence after insemination. J. Assist. Reprod. Genet. 2021 38 10 2591 2599 10.1007/s10815‑021‑02212‑2 33970370
    [Google Scholar]
  31. Shibahara H. Ishiguro A. Inoue Y. Koumei S. Kuwayama T. Iwata H. Mechanism of palmitic acid-induced deterioration of in vitro development of porcine oocytes and granulosa cells. Theriogenology 2020 141 54 61 10.1016/j.theriogenology.2019.09.006 31518729
    [Google Scholar]
  32. Constantino-Jonapa L.A. Espinoza-Palacios Y. Escalona-Montaño A.R. Hernández-Ruiz P. Amezcua-Guerra L.M. Amedei A. Aguirre-García M.M. Contribution of trimethylamine N-oxide (TMAO) to chronic inflammatory and degenerative diseases. Biomedicines 2023 11 2 431 10.3390/biomedicines11020431 36830968
    [Google Scholar]
  33. Chamanara S. Hozouri V. Irandoost E. Inhibition of NLRP3 inflammasome—A potential mechanistic therapeutic for treatment of polycystic ovary syndrome? J. Biochem. Mol. Toxicol. 2024 38 1 e23592 10.1002/jbt.23592 38054794
    [Google Scholar]
  34. Wang X. Tong Y. Zhang H. Zou Y. Ding Y. Liu B. Zhou W. Shan J. Ji J. Su W. Liu Y. ZHou H. Bushen Zhuyun decoction improves endometrial receptivity by inhibiting NF-κB/NLRP3 signaling pathway. Comb. Chem. High Throughput Screen. 2024 27 10.2174/0113862073309790240711110744 39021185
    [Google Scholar]
  35. Su C.M. Wang L. Yoo D. Activation of NF-κB and induction of proinflammatory cytokine expressions mediated by ORF7a protein of SARS-CoV-2. Sci. Rep. 2021 11 1 13464 10.1038/s41598‑021‑92941‑2 34188167
    [Google Scholar]
  36. Lliberos C. Liew S.H. Mansell A. Hutt K.J. The inflammasome contributes to depletion of the ovarian reserve during aging in mice. Front. Cell Dev. Biol. 2021 8 628473 10.3389/fcell.2020.628473 33644037
    [Google Scholar]
  37. Liu J. Zhao Y. Ge W. Zhang P. Liu X. Zhang W. Hao Y. Yu S. Li L. Chu M. Min L. Zhang H. Shen W. Oocyte exposure to ZnO nanoparticles inhibits early embryonic development through the γ-H2AX and NF-κB signaling pathways. Oncotarget 2017 8 26 42673 42692 10.18632/oncotarget.17349 28487501
    [Google Scholar]
  38. Zhan X. Fletcher L. Huyben D. Cai H. Dingle S. Qi N. Huber L.A. Wang B. Li J. Choline supplementation regulates gut microbiome diversity, gut epithelial activity, and the cytokine gene expression in gilts. Front. Nutr. 2023 10 1101519 10.3389/fnut.2023.1101519 36819695
    [Google Scholar]
  39. Liu Y. Liu J. Xiong F. Sun Y. Luo J. He P. He F. Clinical significance of serum miRNA-146, OX-LDL and ROS expression in patients with primary ovarian insufficiency. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2022 39 11 1211 1215 36317205
    [Google Scholar]
  40. Zhang W. Shao M. He X. Wang B. Li Y. Guo X. Overexpression of microRNA-146 protects against oxygen-glucose deprivation/recovery-induced cardiomyocyte apoptosis by inhibiting the NF-κB/TNF-α signaling pathway. Mol. Med. Rep. 2018 17 1 1913 1918 29257202
    [Google Scholar]
  41. Li L. Chen B. Zhu R. Li R. Tian Y. Liu C. Jia Q. Wang L. Tang J. Zhao D. Mo F. Liu Y. Li Y. Orekhov A.N. Brömme D. Zhang D. Gao S. Fructus Ligustri Lucidi preserves bone quality through the regulation of gut microbiota diversity, oxidative stress, TMAO and Sirt6 levels in aging mice. Aging 2019 11 21 9348 9368 10.18632/aging.102376 31715585
    [Google Scholar]
  42. Wang X. Li C. Wang Y. Li L. Han Z. Wang G. UFL1 alleviates LPS-induced apoptosis by regulating the NF-κB signaling pathway in bovine ovarian granulosa cells. Biomolecules 2020 10 2 260 10.3390/biom10020260 32050508
    [Google Scholar]
  43. Xue L. Huang L. Tian Y. Cao X. Song Y. Trimethylamine‐N‐oxide promotes high‐glucose‐induced dysfunction and NLRP3 inflammasome activation in retinal microvascular endothelial cells. J. Ophthalmol. 2023 2023 1 8224752 10.1155/2023/8224752 36895266
    [Google Scholar]
  44. Li J. Trimethylamine oxide induces pyroptosis of vascular endothelial cells through ALDH2/ROS/NLRP3/GSDMD pathway. J Cent South Univ Med Sci. 2022 47 9 1171 1181 10.11817/j.issn.1672‑7347.2022.220086 36411700
    [Google Scholar]
  45. Sun M.X. Qiao F.X. Xu Z.R. Liu Y.C. Xu C.L. Wang H.L. Qi Z.Q. Liu Y. Aristolochic acid I exposure triggers ovarian dysfunction by activating NLRP3 inflammasome and affecting mitochondrial homeostasis. Free Radic. Biol. Med. 2023 204 313 324 10.1016/j.freeradbiomed.2023.05.009 37201634
    [Google Scholar]
  46. Fu Y.X. Ji J. Shan F. Li J. Hu R. Human mesenchymal stem cell treatment of premature ovarian failure: New challenges and opportunities. Stem Cell Res. Ther. 2021 12 1 161 10.1186/s13287‑021‑02212‑0 33658073
    [Google Scholar]
  47. Thomas M.S. Fernandez M.L. Trimethylamine N-oxide (TMAO), diet and cardiovascular disease. Curr. Atheroscler. Rep. 2021 23 4 12 10.1007/s11883‑021‑00910‑x 33594574
    [Google Scholar]
  48. Gatarek P. Kaluzna-Czaplinska J. Trimethylamine N-oxide (TMAO) in human health. EXCLI J. 2021 20 301 319 33746664
    [Google Scholar]
  49. Lombardo M. Aulisa G. Marcon D. Rizzo G. The influence of animal-or plant-based diets on blood and urine trimethylamine-N-oxide (TMAO) levels in humans. Curr. Nutr. Rep. 2022 11 1 56 68 10.1007/s13668‑021‑00387‑9 34990005
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096364675250419135908
Loading
/content/journals/ccdt/10.2174/0115680096364675250419135908
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test