Full text loading...
Sex-determining region Y-box 9 (SOX9) is a transcription factor frequently overexpressed in breast cancer, playing a critical role in tumor initiation, progression, and therapeutic resistance. While its oncogenic potential is recognized, the underlying molecular mechanisms remain incompletely elucidated. This study aimed to investigate the functional role of SOX9 in breast cancer, specifically focusing on its interaction with the EGFR/STAT3 signaling pathway.
The study integrated bioinformatics analyses with functional assays in breast cancer cell lines to determine the effects of SOX9 modulation on cell proliferation, migration, and invasion, and to elucidate its connection with the EGFR/STAT3 signaling axis.
Our findings demonstrate that SOX9 promotes breast cancer cell proliferation, migration, and invasion. Mechanistically, this occurs through the activation of the EGFR/STAT3 signaling axis. Furthermore, targeting SOX9 effectively attenuated these oncogenic phenotypes in vitro.
The elucidation of SOX9’s role in activating the EGFR/STAT3 pathway significantly advances our understanding of its oncogenic mechanisms in breast cancer. These findings are consistent with existing literature on SOX9’s pro-tumorigenic impact and the established role of EGFR/STAT3 signaling in cancer progression, highlighting a crucial regulatory link. This newly identified SOX9-EGFR/STAT3 axis not only reinforces SOX9’s prognostic value but also strongly supports its exploration as a novel therapeutic target.
These findings identify SOX9 as a key regulator of the EGFR/STAT3 signaling pathway in breast cancer. This highlights the potential of SOX9 as both a prognostic biomarker and a promising target for drug therapy in breast cancer.