Skip to content
2000
image of Extracellular Vesicles-Associated tRFs as Emerging Biomarkers in Breast Cancer

Abstract

Breast cancer (BC) remains a leading cause of cancer-related mortality among women worldwide, underscoring the urgent need for sensitive, non-invasive biomarkers to improve diagnosis, prognosis, and treatment monitoring. Traditional biomarkers like ER, PR, and HER2 offer limited efficacy, particularly for heterogeneous subtypes such as triple-negative breast cancer (TNBC). Extracellular vesicles (EVs), including exosomes and microvesicles, have emerged as promising biomarker carriers due to their stability and ability to encapsulate diverse bioactive molecules reflective of the parental cell’s state. Among EV cargoes, tRNA-derived fragments (tRFs), which are small non-coding RNAs produced by precise cleavage of tRNAs, have gained increasing attention. Once considered mere degradation products, tRFs are now recognized for their roles in gene regulation, translation control, apoptosis modulation, and immune response. Recent studies have revealed the selective enrichment of tRFs within EVs, highlighting their role in intercellular communication in breast cancer. Differential expression of EV-associated tRFs correlates with BC subtype, stage, and patient prognosis, highlighting their potential as minimally invasive biomarkers. Specifically, altered levels of certain 5′- and 3′-tRFs in patient sera and tumor tissues have been associated with poor survival, metastasis, and therapeutic resistance. Despite these promising findings, gaps remain regarding the mechanisms of tRF sorting into EVs and their functional impact on the tumor microenvironment. This review systematically examines the current understanding of EV-associated tRFs in breast cancer, emphasizing their clinical relevance, detection strategies, and translational potential. By addressing existing challenges, we aim to provide insights into the utility of EV-tRFs as novel biomarkers and therapeutic targets in BC.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096388071250527074008
2025-06-02
2025-09-13
Loading full text...

Full text loading...

References

  1. Filho A.M. Laversanne M. Ferlay J. Colombet M. Piñeros M. Znaor A. Parkin D.M. Soerjomataram I. Bray F. The GLOBOCAN 2022 cancer estimates: Data sources, methods, and a snapshot of the cancer burden worldwide. Int. J. Cancer 2025 156 7 1336 1346 10.1002/ijc.35278 39688499
    [Google Scholar]
  2. Khan Y. Rizvi S. Raza A. Khan A. Hussain S. Khan N.U. Alshammari S.O. Alshammari Q.A. Alshammari A. Ellakwa D.E.S. Tailored therapies for triple-negative breast cancer: Current landscape and future perceptions. Naunyn Schmiedebergs Arch. Pharmacol. 2025 10.1007/s00210‑025‑03896‑4 40029385
    [Google Scholar]
  3. Deepak K.G.K. Vempati R. Nagaraju G.P. Dasari V.R. S N. Rao D.N. Malla R.R. Tumor microenvironment: Challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacol. Res. 2020 153 104683 10.1016/j.phrs.2020.104683 32050092
    [Google Scholar]
  4. Chaudhary P.K. Kim S. Kim S. Shedding light on the cell biology of platelet-derived extracellular vesicles and their biomedical applications. Life 2023 13 6 1403 10.3390/life13061403 37374185
    [Google Scholar]
  5. Jang S.C. Economides K.D. Moniz R.J. Sia C.L. Lewis N. McCoy C. Zi T. Zhang K. Harrison R.A. Lim J. Dey J. Grenley M. Kirwin K. Ross N.L. Bourdeau R. Villiger-Oberbek A. Estes S. Xu K. Sanchez-Salazar J. Dooley K. Dahlberg W.K. Williams D.E. Sathyanarayanan S. ExoSTING, an extracellular vesicle loaded with STING agonists, promotes tumor immune surveillance. Commun. Biol. 2021 4 1 497 10.1038/s42003‑021‑02004‑5 33888863
    [Google Scholar]
  6. Sadique Hussain M Gupta G Ghaboura N Moglad E Hassan Almalki W Alzarea SI Exosomal ncRNAs in liquid biopsies for lung cancer. Clin Chim Acta 2025 565 119983 10.1016/j.cca.2024.119983 39368685
    [Google Scholar]
  7. Kalluri R. LeBleu V.S. The biology , function , and biomedical applications of exosomes. Science 2020 367 6478 eaau6977 10.1126/science.aau6977 32029601
    [Google Scholar]
  8. Yu D. Wu Y. Shen H. Lv M. Chen W. Zhang X. Zhong S. Tang J. Zhao J. Exosomes in development, metastasis and drug resistance of breast cancer. Cancer Sci. 2015 106 8 959 964 10.1111/cas.12715 26052865
    [Google Scholar]
  9. O’Brien K. Breyne K. Ughetto S. Laurent L.C. Breakefield X.O. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat. Rev. Mol. Cell Biol. 2020 21 10 585 606 10.1038/s41580‑020‑0251‑y 32457507
    [Google Scholar]
  10. Shigematsu M. Kirino Y. tRNA-derived short non-coding RNA as interacting partners of argonaute proteins. Gene Regul. Syst. Bio. 2015 9 GRSB.S29411 10.4137/GRSB.S29411 26401098
    [Google Scholar]
  11. Goodarzi H. Liu X. Nguyen H.C.B. Zhang S. Fish L. Tavazoie S.F. Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement. Cell 2015 161 4 790 802 10.1016/j.cell.2015.02.053 25957686
    [Google Scholar]
  12. Kumar P. Kuscu C. Dutta A. Biogenesis and function of transfer RNA-related fragments (tRFs). Trends Biochem. Sci. 2016 41 8 679 689 10.1016/j.tibs.2016.05.004 27263052
    [Google Scholar]
  13. Anderson P. Ivanov P. tRNA fragments in human health and disease. FEBS Lett. 2014 588 23 4297 4304 10.1016/j.febslet.2014.09.001 25220675
    [Google Scholar]
  14. Dhahbi J.M. 5′ tRNA halves: The next generation of immune signaling molecules. Front. Immunol. 2015 6 74 10.3389/fimmu.2015.00074 25745425
    [Google Scholar]
  15. Lee Y. Ni J. Beretov J. Wasinger V.C. Graham P. Li Y. Recent advances of small extracellular vesicle biomarkers in breast cancer diagnosis and prognosis. Mol. Cancer 2023 22 1 33 10.1186/s12943‑023‑01741‑x 36797736
    [Google Scholar]
  16. Sun C. Fu Z. Wang S. Li J. Li Y. Zhang Y. Yang F. Chu J. Wu H. Huang X. Li W. Yin Y. Roles of tRNA-derived fragments in human cancers. Cancer Lett. 2018 414 16 25 10.1016/j.canlet.2017.10.031 29107107
    [Google Scholar]
  17. Valadi H. Ekström K. Bossios A. Sjöstrand M. Lee J.J. Lötvall J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007 9 6 654 659 10.1038/ncb1596 17486113
    [Google Scholar]
  18. Zhang Z. Liu Z. Zhao W. Zhao X. Tao Y. tRF-19-W4PU732S promotes breast cancer cell malignant activity by targeting inhibition of RPL27A (ribosomal protein-L27A). Bioengineered 2022 13 2 2087 2098 10.1080/21655979.2021.2023796 35030975
    [Google Scholar]
  19. Feng W. Li Y. Chu J. Li J. Zhang Y. Ding X. Fu Z. Li W. Huang X. Yin Y. Identification of tRNA ‐derived small noncoding RNA s as potential biomarkers for prediction of recurrence in triple‐negative breast cancer. Cancer Med. 2018 7 10 5130 5144 10.1002/cam4.1761 30239174
    [Google Scholar]
  20. Kosaka N. Yoshioka Y. Fujita Y. Ochiya T. Versatile roles of extracellular vesicles in cancer. J. Clin. Invest. 2016 126 4 1163 1172 10.1172/JCI81130 26974161
    [Google Scholar]
  21. Mir R. Baba S.K. Elfaki I. Algehainy N. Alanazi M.A. Altemani F.H. Tayeb F.J. Barnawi J. Husain E. Bedaiwi R.I. Albalawi I.A. Alhujaily M. Mir M.M. Almotairi R. Alatwi H.E. Albalawi A.D. Unlocking the secrets of extracellular vesicles: Orchestrating tumor microenvironment dynamics in metastasis, drug resistance, and immune evasion. J. Cancer 2024 15 19 6383 6415 10.7150/jca.98426 39513123
    [Google Scholar]
  22. Yang H. Yao Z. Zhou X. Zhang W. Zhang X. Zhang F. Immune-related adverse events of checkpoint inhibitors: Insights into immunological dysregulation. Clin. Immunol. 2020 213 108377 10.1016/j.clim.2020.108377 32135278
    [Google Scholar]
  23. Kim M.S. Haney M.J. Zhao Y. Mahajan V. Deygen I. Klyachko N.L. Inskoe E. Piroyan A. Sokolsky M. Okolie O. Hingtgen S.D. Kabanov A.V. Batrakova E.V. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine 2016 12 3 655 664 10.1016/j.nano.2015.10.012 26586551
    [Google Scholar]
  24. Ha D. Yang N. Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: Current perspectives and future challenges. Acta Pharm. Sin. B 2016 6 4 287 296 10.1016/j.apsb.2016.02.001 27471669
    [Google Scholar]
  25. O’Brien K.P. Khan S. Gilligan K.E. Zafar H. Lalor P. Glynn C. O’Flatharta C. Ingoldsby H. Dockery P. De Bhulbh A. Schweber J.R. St John K. Leahy M. Murphy J.M. Gallagher W.M. O’Brien T. Kerin M.J. Dwyer R.M. Employing mesenchymal stem cells to support tumor-targeted delivery of extracellular vesicle (EV)-encapsulated microRNA-379. Oncogene 2018 37 16 2137 2149 10.1038/s41388‑017‑0116‑9 29367765
    [Google Scholar]
  26. Escudier B. Dorval T. Chaput N. André F. Caby M.P. Novault S. Flament C. Leboulaire C. Borg C. Amigorena S. Boccaccio C. Bonnerot C. Dhellin O. Movassagh M. Piperno S. Robert C. Serra V. Valente N. Le Pecq J.B. Spatz A. Lantz O. Tursz T. Angevin E. Zitvogel L. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: Results of thefirst phase I clinical trial. J. Transl. Med. 2005 3 1 10 10.1186/1479‑5876‑3‑10 15740633
    [Google Scholar]
  27. Zeng Y. Qiu Y. Jiang W. Shen J. Yao X. He X. Li L. Fu B. Liu X. Biological features of extracellular vesicles and challenges. Front. Cell Dev. Biol. 2022 10 816698 10.3389/fcell.2022.816698 35813192
    [Google Scholar]
  28. Han Y. Jones T.W. Dutta S. Zhu Y. Wang X. Narayanan S.P. Fagan S.C. Zhang D. Overview and update on methods for cargo loading into extracellular vesicles. Processes 2021 9 2 356 10.3390/pr9020356 33954091
    [Google Scholar]
  29. Gurrieri E D'Agostino VG Strategies to functionalize extracellular vesicles against HER2 for anticancer activity. Extracell Vesicles Circ Nucl Acids 2022 3 2 93 101 10.20517/evcna.2022.07 39698443
    [Google Scholar]
  30. Di Fazio A. Schlackow M. Pong S.K. Alagia A. Gullerova M. Dicer dependent tRNA derived small RNAs promote nascent RNA silencing. Nucleic Acids Res. 2022 50 3 1734 1752 10.1093/nar/gkac022 35048990
    [Google Scholar]
  31. Kalantari R. Chiang C.M. Corey D.R. Regulation of mammalian transcription and splicing by Nuclear RNAi. Nucleic Acids Res. 2016 44 2 524 537 10.1093/nar/gkv1305 26612865
    [Google Scholar]
  32. Gagnon K.T. Li L. Chu Y. Janowski B.A. Corey D.R. RNAi factors are present and active in human cell nuclei. Cell Rep. 2014 6 1 211 221 10.1016/j.celrep.2013.12.013 24388755
    [Google Scholar]
  33. Pekarsky Y. Balatti V. Palamarchuk A. Rizzotto L. Veneziano D. Nigita G. Rassenti L.Z. Pass H.I. Kipps T.J. Liu C. Croce C.M. Dysregulation of a family of short noncoding RNAs, tsRNAs, in human cancer. Proc. Natl. Acad. Sci. USA 2016 113 18 5071 5076 10.1073/pnas.1604266113 27071132
    [Google Scholar]
  34. Genzor P. Cordts S.C. Bokil N.V. Haase A.D. Aberrant expression of select piRNA-pathway genes does not reactivate piRNA silencing in cancer cells. Proc. Natl. Acad. Sci. USA 2019 116 23 11111 11112 10.1073/pnas.1904498116 31110013
    [Google Scholar]
  35. Zhang X He X Liu C Liu J Hu Q Pan T IL-4 inhibits the biogenesis of an epigenetically suppressive PIWI-interacting RNA To upregulate CD1a molecules on monocytes/dendritic cells. J Immunol. 2016 196 4 1591 603 10.4049/jimmunol.1500805 26755820
    [Google Scholar]
  36. Chen Q. Yan M. Cao Z. Li X. Zhang Y. Shi J. Feng G. Peng H. Zhang X. Zhang Y. Qian J. Duan E. Zhai Q. Zhou Q. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 2016 351 6271 397 400 10.1126/science.aad7977 26721680
    [Google Scholar]
  37. Karaiskos S. Naqvi A.S. Swanson K.E. Grigoriev A. Age-driven modulation of tRNA-derived fragments in Drosophila and their potential targets. Biol. Direct 2015 10 1 51 10.1186/s13062‑015‑0081‑6 26374501
    [Google Scholar]
  38. Kumar P. Anaya J. Mudunuri S.B. Dutta A. Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets. BMC Biol. 2014 12 1 78 10.1186/s12915‑014‑0078‑0 25270025
    [Google Scholar]
  39. Wang J.Z. Zhu H. You P. Liu H. Wang W.K. Fan X. Yang Y. Xu K. Zhu Y. Li Q. Wu P. Peng C. Wong C.C.L. Li K. Shi Y. Zhang N. Wang X. Zeng R. Huang Y. Yang L. Wang Z. Hui J. Upregulated YB-1 protein promotes glioblastoma growth through a YB-1/CCT4/mLST8/mTOR pathway. J. Clin. Invest. 2022 132 8 e146536 10.1172/JCI146536 35239512
    [Google Scholar]
  40. Budkina K. El Hage K. Clément M.J. Desforges B. Bouhss A. Joshi V. Maucuer A. Hamon L. Ovchinnikov L.P. Lyabin D.N. Pastré D. YB-1 unwinds mRNA secondary structures in vitro and negatively regulates stress granule assembly in HeLa cells. Nucleic Acids Res. 2021 49 17 10061 10081 10.1093/nar/gkab748 34469566
    [Google Scholar]
  41. Krishna S. Yim D.G.R. Lakshmanan V. Tirumalai V. Koh J.L.Y. Park J.E. Cheong J.K. Low J.L. Lim M.J.S. Sze S.K. Shivaprasad P. Gulyani A. Raghavan S. Palakodeti D. DasGupta R. Dynamic expression of tRNA‐derived small RNAs define cellular states. EMBO Rep. 2019 20 7 e47789 10.15252/embr.201947789 31267708
    [Google Scholar]
  42. Ivanov P. Emara M.M. Villen J. Gygi S.P. Anderson P. Angiogenin-induced tRNA fragments inhibit translation initiation. Mol. Cell 2011 43 4 613 623 10.1016/j.molcel.2011.06.022 21855800
    [Google Scholar]
  43. Ivanov P. O’Day E. Emara M.M. Wagner G. Lieberman J. Anderson P. G-quadruplex structures contribute to the neuroprotective effects of angiogenin-induced tRNA fragments. Proc. Natl. Acad. Sci. USA 2014 111 51 18201 18206 10.1073/pnas.1407361111 25404306
    [Google Scholar]
  44. Lyons S.M. Gudanis D. Coyne S.M. Gdaniec Z. Ivanov P. Author Correction: Identification of functional tetramolecular RNA G-quadruplexes derived from transfer RNAs. Nat. Commun. 2017 8 1 2020 10.1038/s41467‑017‑02140‑9 29209051
    [Google Scholar]
  45. Blanco S. Dietmann S. Flores J.V. Hussain S. Kutter C. Humphreys P. Lukk M. Lombard P. Treps L. Popis M. Kellner S. Hölter S.M. Garrett L. Wurst W. Becker L. Klopstock T. Fuchs H. Gailus-Durner V. Hrabĕ de Angelis M. Káradóttir R.T. Helm M. Ule J. Gleeson J.G. Odom D.T. Frye M. Aberrant methylation of t RNA s links cellular stress to neuro‐developmental disorders. EMBO J. 2014 33 18 2020 2039 10.15252/embj.201489282 25063673
    [Google Scholar]
  46. Guzzi N. Cieśla M. Ngoc P.C.T. Lang S. Arora S. Dimitriou M. Pimková K. Sommarin M.N.E. Munita R. Lubas M. Lim Y. Okuyama K. Soneji S. Karlsson G. Hansson J. Jönsson G. Lund A.H. Sigvardsson M. Hellström-Lindberg E. Hsieh A.C. Bellodi C. Pseudouridylation of tRNA-derived fragments steers translational control in stem cells. Cell 2018 173 5 1204 1216.e26 10.1016/j.cell.2018.03.008 29628141
    [Google Scholar]
  47. Kim H.K. Fuchs G. Wang S. Wei W. Zhang Y. Park H. Roy-Chaudhuri B. Li P. Xu J. Chu K. Zhang F. Chua M.S. So S. Zhang Q.C. Sarnow P. Kay M.A. A transfer-RNA-derived small RNA regulates ribosome biogenesis. Nature 2017 552 7683 57 62 10.1038/nature25005 29186115
    [Google Scholar]
  48. Kim H.K. Xu J. Chu K. Park H. Jang H. Li P. Valdmanis P.N. Zhang Q.C. Kay M.A. A tRNA-derived small rna regulates ribosomal protein S28 protein levels after translation initiation in humans and mice. Cell Rep. 2019 29 12 3816 3824.e4 10.1016/j.celrep.2019.11.062 31851915
    [Google Scholar]
  49. Saikia M. Jobava R. Parisien M. Putnam A. Krokowski D. Gao X.H. Guan B.J. Yuan Y. Jankowsky E. Feng Z. Hu G. Pusztai-Carey M. Gorla M. Sepuri N.B.V. Pan T. Hatzoglou M. Angiogenin-cleaved tRNA halves interact with cytochrome c, protecting cells from apoptosis during osmotic stress. Mol. Cell. Biol. 2014 34 13 2450 2463 10.1128/MCB.00136‑14 24752898
    [Google Scholar]
  50. Schorn A.J. Gutbrod M.J. LeBlanc C. Martienssen R. LTR-retrotransposon control by tRNA-derived small RNAs. Cell 2017 170 1 61 71.e11 10.1016/j.cell.2017.06.013 28666125
    [Google Scholar]
  51. Yeung M.L. Bennasser Y. Watashi K. Le S.Y. Houzet L. Jeang K.T. Pyrosequencing of small non-coding RNAs in HIV-1 infected cells: Evidence for the processing of a viral-cellular double-stranded RNA hybrid. Nucleic Acids Res. 2009 37 19 6575 6586 10.1093/nar/gkp707 19729508
    [Google Scholar]
  52. Ruggero K. Guffanti A. Corradin A. Sharma V.K. De Bellis G. Corti G. Grassi A. Zanovello P. Bronte V. Ciminale V. D’Agostino D.M. Small noncoding RNAs in cells transformed by human T-cell leukemia virus type 1: A role for a tRNA fragment as a primer for reverse transcriptase. J. Virol. 2014 88 7 3612 3622 10.1128/JVI.02823‑13 24403582
    [Google Scholar]
  53. Sharma U. Conine C.C. Shea J.M. Boskovic A. Derr A.G. Bing X.Y. Belleannee C. Kucukural A. Serra R.W. Sun F. Song L. Carone B.R. Ricci E.P. Li X.Z. Fauquier L. Moore M.J. Sullivan R. Mello C.C. Garber M. Rando O.J. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 2016 351 6271 391 396 10.1126/science.aad6780 26721685
    [Google Scholar]
  54. Boskovic A. Bing X.Y. Kaymak E. Rando O.J. Corrigendum: Control of noncoding RNA production and histone levels by a 5′ tRNA fragment. Genes Dev. 2020 34 5-6 462 10.1101/gad.336958.120 32122968
    [Google Scholar]
  55. Pliatsika V. Loher P. Magee R. Telonis A.G. Londin E. Shigematsu M. Kirino Y. Rigoutsos I. MINTbase v2.0: A comprehensive database for tRNA-derived fragments that includes nuclear and mitochondrial fragments from all the cancer genome atlas projects. Nucleic Acids Res. 2018 46 D1 D152 D159 10.1093/nar/gkx1075 29186503
    [Google Scholar]
  56. Telonis A.G. Loher P. Honda S. Jing Y. Palazzo J. Kirino Y. Rigoutsos I. Dissecting tRNA-derived fragment complexities using personalized transcriptomes reveals novel fragment classes and unexpected dependencies. Oncotarget 2015 6 28 24797 24822 10.18632/oncotarget.4695 26325506
    [Google Scholar]
  57. Magee R.G. Telonis A.G. Loher P. Londin E. Rigoutsos I. Profiles of miRNA isoforms and tRNA fragments in prostate cancer. Sci. Rep. 2018 8 1 5314 10.1038/s41598‑018‑22488‑2 29593348
    [Google Scholar]
  58. Telonis A.G. Rigoutsos I. Race disparities in the contribution of miRNA isoforms and tRNA-derived fragments to triple-negative breast cancer. Cancer Res. 2018 78 5 1140 1154 10.1158/0008‑5472.CAN‑17‑1947 29229607
    [Google Scholar]
  59. Telonis A.G. Loher P. Magee R. Pliatsika V. Londin E. Kirino Y. Rigoutsos I. tRNA fragments show intertwining with mRNAs of specific repeat content and have links to disparities. Cancer Res. 2019 79 12 3034 3049 10.1158/0008‑5472.CAN‑19‑0789 30996049
    [Google Scholar]
  60. Koi Y. Tsutani Y. Nishiyama Y. Ueda D. Ibuki Y. Sasada S. Akita T. Masumoto N. Kadoya T. Yamamoto Y. Takahashi R. Tanaka J. Okada M. Tahara H. Predicting the presence of breast cancer using circulating small RNAs, including those in the extracellular vesicles. Cancer Sci. 2020 111 6 2104 2115 10.1111/cas.14393 32215990
    [Google Scholar]
  61. Tosar J.P. Gámbaro F. Sanguinetti J. Bonilla B. Witwer K.W. Cayota A. Assessment of small RNA sorting into different extracellular fractions revealed by high-throughput sequencing of breast cell lines. Nucleic Acids Res. 2015 43 11 5601 5616 10.1093/nar/gkv432 25940616
    [Google Scholar]
  62. Guzman N. Agarwal K. Asthagiri D. Yu L. Saji M. Ringel M.D. Paulaitis M.E. Breast cancer–specific miR signature unique to extracellular vesicles includes “microRNA-like” tRNA fragments. Mol. Cancer Res. 2015 13 5 891 901 10.1158/1541‑7786.MCR‑14‑0533 25722304
    [Google Scholar]
  63. Gámbaro F. Li Calzi M. Fagúndez P. Costa B. Greif G. Mallick E. Lyons S. Ivanov P. Witwer K. Cayota A. Tosar J.P. Stable tRNA halves can be sorted into extracellular vesicles and delivered to recipient cells in a concentration-dependent manner. RNA Biol. 2020 17 8 1168 1182 10.1080/15476286.2019.1708548 31885318
    [Google Scholar]
  64. Honda S. Loher P. Shigematsu M. Palazzo J.P. Suzuki R. Imoto I. Rigoutsos I. Kirino Y. Sex hormone-dependent tRNA halves enhance cell proliferation in breast and prostate cancers. Proc. Natl. Acad. Sci. USA 2015 112 29 E3816 E3825 10.1073/pnas.1510077112 26124144
    [Google Scholar]
  65. Liu X. Mei W. Padmanaban V. Alwaseem H. Molina H. Passarelli M.C. Tavora B. Tavazoie S.F. A pro-metastatic tRNA fragment drives Nucleolin oligomerization and stabilization of its bound metabolic mRNAs. Mol. Cell 2022 82 14 2604 2617.e8 10.1016/j.molcel.2022.05.008 35654044
    [Google Scholar]
  66. Shan N. Li N. Dai Q. Hou L. Yan X. Amei A. Lu L. Wang Z. Interplay of tRNA-derived fragments and T cell activation in breast cancer patient survival. Cancers 2020 12 8 2230 10.3390/cancers12082230 32785169
    [Google Scholar]
  67. Wang X. Yang Y. Tan X. Mao X. Wei D. Yao Y. Jiang P. Mo D. Wang T. Yan F. Identification of tRNA-derived fragments expression profile in breast cancer tissues. Curr. Genomics 2019 20 3 199 213 10.2174/1389202920666190326145459 31929727
    [Google Scholar]
  68. Zhou J. Wan F. Wang Y. Long J. Zhu X. Small RNA sequencing reveals a novel tsRNA-26576 mediating tumorigenesis of breast cancer. Cancer Manag. Res. 2019 11 3945 3956 10.2147/CMAR.S199281 31118807
    [Google Scholar]
  69. Wang J. Ma G. Ge H. Han X. Mao X. Wang X. Veeramootoo J.S. Xia T. Liu X. Wang S. Circulating tRNA-derived small RNAs (tsRNAs) signature for the diagnosis and prognosis of breast cancer. NPJ Breast Cancer 2021 7 1 4 10.1038/s41523‑020‑00211‑7 33402674
    [Google Scholar]
  70. Mo D. Jiang P. Yang Y. Mao X. Tan X. Tang X. Wei D. Li B. Wang X. Tang L. Yan F. A tRNA fragment, 5′-tiRNA Val , suppresses the Wnt/β-catenin signaling pathway by targeting FZD3 in breast cancer. Cancer Lett. 2019 457 60 73 10.1016/j.canlet.2019.05.007 31078732
    [Google Scholar]
  71. Mo D. He F. Zheng J. Chen H. Tang L. Yan F. tRNA-derived fragment tRF-17-79MP9PP attenuates cell invasion and migration via THBS1/TGF-β1/Smad3 axis in breast cancer. Front. Oncol. 2021 11 656078 10.3389/fonc.2021.656078 33912465
    [Google Scholar]
  72. Zhang Y. Bi Z. Dong X. Yu M. Wang K. Song X. Xie L. Song X. tRNA‐derived fragments: tRF‐Gly‐CCC ‐046, tRF‐Tyr‐GTA ‐010 and tRF‐Pro‐TGG ‐001 as novel diagnostic biomarkers for breast cancer. Thorac. Cancer 2021 12 17 2314 2323 10.1111/1759‑7714.14072 34254739
    [Google Scholar]
  73. Huang Y. Ge H. Zheng M. Cui Y. Fu Z. Wu X. Xia Y. Chen L. Wang Z. Wang S. Xie H. Serum tRNA‐derived fragments (tRFs) as potential candidates for diagnosis of nontriple negative breast cancer. J. Cell. Physiol. 2020 235 3 2809 2824 10.1002/jcp.29185 31535382
    [Google Scholar]
  74. Falconi M. Giangrossi M. Zabaleta M.E. Wang J. Gambini V. Tilio M. Bencardino D. Occhipinti S. Belletti B. Laudadio E. Galeazzi R. Marchini C. Amici A. A novel 3′‐tRNA Glu ‐derived fragment acts as a tumor suppressor in breast cancer by targeting nucleolin. FASEB J. 2019 33 12 13228 13240 10.1096/fj.201900382RR 31560576
    [Google Scholar]
  75. Hussain S.A. Deepak K.V. Nanjappa D.P. Sherigar V. Nandan N. Suresh P.S. Venkatesh T. Comparative expression analysis of tRF-3001a and tRF-1003 with corresponding miRNAs (miR-1260a and miR-4521) and their network analysis with breast cancer biomarkers. Mol. Biol. Rep. 2021 48 11 7313 7324 10.1007/s11033‑021‑06732‑z 34661810
    [Google Scholar]
  76. Wang J. Ma G. Li M. Han X. Xu J. Liang M. Mao X. Chen X. Xia T. Liu X. Wang S. Plasma tRNA fragments derived from 5′ ends as novel diagnostic biomarkers for early-stage breast cancer. Mol. Ther. Nucleic Acids 2020 21 954 964 10.1016/j.omtn.2020.07.026 32814252
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096388071250527074008
Loading
/content/journals/ccdt/10.2174/0115680096388071250527074008
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test