Skip to content
2000
image of Comprehensive Pan-cancer Analysis and Experimental Verification of EGLN Family: Potential Biomarkers in Cervical Cancer
This item has no full text

Abstract

Background

Hypoxia plays a crucial role in malignant tumor formation, primarily mediated by hypoxia-inducible factors (HIFs). Despite extensive research, the complexities and prognostic implications of the EGLN gene family (EGLN1, EGLN2, EGLN3) in cancers remain unclear.

Methods

Utilizing public databases (TCGA, GTEx, TARGET, GEO) and bioinformatics tools, a comprehensive analysis of EGLN genes across various cancer types was conducted. Gene expression, mutation data, stemness scores, and clinical information were integrated to evaluate the mutation landscape, expression levels, and prognostic values of EGLNs. Enrichment and pathway analyses explored EGLN-associated biological processes and functional networks. ssGSEA constructed EGLN scores for prognostic evaluation. Colocalization analysis combined eQTL and GWAS data to investigate genetic variations in cervical cancer. Immunohistochemistry validated EGLN expression in cervical cancer tissues.

Results

EGLN genes showed differential expression across cancer types. EGLN1 overexpression was associated with worse survival in cervical squamous cell carcinoma (CESC), pancreatic adenocarcinoma (PAAD), and neuroblastoma (NB), while EGLN3 was linked to poor survival in CESC, lung adenocarcinoma (LUAD), and kidney cancers. EGLNs also demonstrated varied roles in modulating tumor immune activity and heterogeneity.

Conclusion

This study provides new insights into EGLN biology and identifies EGLN1 as a potential biomarker for cervical cancer.

Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096362252250527060004
2025-06-03
2025-09-13
Loading full text...

Full text loading...

/deliver/fulltext/ccdt/10.2174/0115680096362252250527060004/BMS-CCDT-2024-HT43-6155-13.html?itemId=/content/journals/ccdt/10.2174/0115680096362252250527060004&mimeType=html&fmt=ahah

References

  1. Ginsburg O. Bray F. Coleman M.P. Vanderpuye V. Eniu A. Kotha S.R. Sarker M. Huong T.T. Allemani C. Dvaladze A. Gralow J. Yeates K. Taylor C. Oomman N. Krishnan S. Sullivan R. Kombe D. Blas M.M. Parham G. Kassami N. Conteh L. The global burden of women’s cancers: A grand challenge in global health. Lancet 2017 389 10071 847 860 10.1016/S0140‑6736(16)31392‑7 27814965
    [Google Scholar]
  2. Abu-Rustum N.R. Yashar C.M. Arend R. Barber E. Bradley K. Brooks R. Campos S.M. Chino J. Chon H.S. Crispens M.A. Damast S. Fisher C.M. Frederick P. Gaffney D.K. Gaillard S. Giuntoli R. Glaser S. Holmes J. Howitt B.E. Lea J. Mantia-Smaldone G. Mariani A. Mutch D. Nagel C. Nekhlyudov L. Podoll M. Rodabaugh K. Salani R. Schorge J. Siedel J. Sisodia R. Soliman P. Ueda S. Urban R. Wyse E. McMillian N.R. Aggarwal S. Espinosa S. NCCN Guidelines® Insights: Cervical Cancer, Version 1.2024. J. Natl. Compr. Canc. Netw. 2023 21 12 1224 1233 10.6004/jnccn.2023.0062 38081139
    [Google Scholar]
  3. Xia C. Basu P. Kramer B.S. Li H. Qu C. Yu X.Q. Canfell K. Qiao Y. Armstrong B.K. Chen W. Cancer screening in China: A steep road from evidence to implementation. Lancet Public Health 2023 8 12 e996 e1005 10.1016/S2468‑2667(23)00186‑X 38000379
    [Google Scholar]
  4. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  5. Liontos M. Kyriazoglou A. Dimitriadis I. Dimopoulos M.A. Bamias A. Systemic therapy in cervical cancer: 30 years in review. Crit. Rev. Oncol. Hematol. 2019 137 9 17 [J]. 31014518
    [Google Scholar]
  6. Bruni L. Serrano B. Roura E. Alemany L. Cowan M. Herrero R. Poljak M. Murillo R. Broutet N. Riley L.M. de Sanjose S. Cervical cancer screening programmes and age-specific coverage estimates for 202 countries and territories worldwide: A review and synthetic analysis. Lancet Glob. Health 2022 10 8 e1115 e1127 10.1016/S2214‑109X(22)00241‑8 35839811
    [Google Scholar]
  7. Moore D.H. Cervical Cancer. Obstet. Gynecol. 2006 107 5 1152 1161 10.1097/01.AOG.0000215986.48590.79 16648423
    [Google Scholar]
  8. Cohen P.A. Jhingran A. Oaknin A. Denny L. Cervical cancer. Lancet 2019 393 10167 169 182 10.1016/S0140‑6736(18)32470‑X 30638582
    [Google Scholar]
  9. Partridge E.E. Abu-Rustum N. Campos S. Fahey P.J. Greer B.E. Lele S.M. Lieberman R.W. Lipscomb G.H. Morgan M. Nava M.E. Reynolds R.K. Singh D.K. Smith-McCune K. Teng N. Trimble C.L. Valea F. Wilczynski S. Cervical cancer screening. J. Natl. Compr. Canc. Netw. 2008 6 1 58 82 [J]. 18267060
    [Google Scholar]
  10. Sharma S. Deep A. Sharma A.K. Current treatment for cervical cancer: An update. Anticancer. Agents Med. Chem. 2020 20 15 1768 1779 10.2174/1871520620666200224093301 32091347
    [Google Scholar]
  11. Freeman R.S. Hasbani D.M. Lipscomb E.A. Straub J.A. Xie L. SM-20, EGL-9, and the EGLN family of hypoxia-inducible factor prolyl hydroxylases. Mol. Cells 2003 16 1 1 12 10.1016/S1016‑8478(23)13758‑7 14503838
    [Google Scholar]
  12. Strocchi S. Reggiani F. Gobbi G. Ciarrocchi A. Sancisi V. The multifaceted role of EGLN family prolyl hydroxylases in cancer: Going beyond HIF regulation. Oncogene 2022 41 29 3665 3679 10.1038/s41388‑022‑02378‑8 35705735
    [Google Scholar]
  13. Kaelin W.G. Jr Cancer and altered metabolism: Potential importance of hypoxia-inducible factor and 2-oxoglutarate-dependent dioxygenases. Cold Spring Harb. Symp. Quant. Biol. 2011 76 0 335 345 10.1101/sqb.2011.76.010975 22089927
    [Google Scholar]
  14. Liao C. Zhang Q. Understanding the oxygen-sensing pathway and its therapeutic implications in diseases. Am. J. Pathol. 2020 190 8 1584 1595 10.1016/j.ajpath.2020.04.003 32339495
    [Google Scholar]
  15. Madsen C.D. Pedersen J.T. Venning F.A. Singh L.B. Moeendarbary E. Charras G. Cox T.R. Sahai E. Erler J.T. Hypoxia and loss of PHD 2 inactivate stromal fibroblasts to decrease tumour stiffness and metastasis. EMBO Rep. 2015 16 10 1394 1408 10.15252/embr.201540107 26323721
    [Google Scholar]
  16. Kuchnio A. Moens S. Bruning U. Kuchnio K. Cruys B. Thienpont B. Broux M. Ungureanu A.A. Leite de Oliveira R. Bruyère F. Cuervo H. Manderveld A. Carton A. Hernandez-Fernaud J.R. Zanivan S. Bartic C. Foidart J.M. Noel A. Vinckier S. Lambrechts D. Dewerchin M. Mazzone M. Carmeliet P. The cancer cell oxygen sensor PHD2 promotes metastasis via activation of cancer-associated fibroblasts. Cell Rep. 2015 12 6 992 1005 10.1016/j.celrep.2015.07.010 26235614
    [Google Scholar]
  17. Toledo R.A. Jimenez C. Armaiz-Pena G. Arenillas C. Capdevila J. Dahia P.L.M. Hypoxia-inducible factor 2 alpha (HIF2α) inhibitors: Targeting genetically driven tumor hypoxia. Endocr. Rev. 2023 44 2 312 322 10.1210/endrev/bnac025 36301191
    [Google Scholar]
  18. Ivan M. Kaelin W.G. Jr The EGLN-HIF O 2 -Sensing system: Multiple inputs and feedbacks. Mol. Cell 2017 66 6 772 779 10.1016/j.molcel.2017.06.002 28622522
    [Google Scholar]
  19. Fujimoto T.N. Colbert L.E. Huang Y. Molkentine J.M. Deorukhkar A. Baseler L. de la Cruz Bonilla M. Yu M. Lin D. Gupta S. Cabeceiras P.K. Kingsley C.V. Tailor R.C. Sawakuchi G.O. Koay E.J. Piwnica-Worms H. Maitra A. Taniguchi C.M. Selective EGLN inhibition enables ablative radiotherapy and improves survival in unresectable pancreatic cancer. Cancer Res. 2019 79 9 2327 2338 10.1158/0008‑5472.CAN‑18‑1785 31043430
    [Google Scholar]
  20. McShane L.M. Altman D.G. Sauerbrei W. Taube S.E. Gion M. Clark G.M. REporting recommendations for tumour MARKer prognostic studies (REMARK). Eur. J. Cancer 2005 41 12 1690 1696 10.1016/j.ejca.2005.03.032 16043346
    [Google Scholar]
  21. Cerami E. Gao J. Dogrusoz U. Gross B.E. Sumer S.O. Aksoy B.A. Jacobsen A. Byrne C.J. Heuer M.L. Larsson E. Antipin Y. Reva B. Goldberg A.P. Sander C. Schultz N. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 2 5 401 404 10.1158/2159‑8290.CD‑12‑0095 22588877
    [Google Scholar]
  22. Mayakonda A. Lin D.C. Assenov Y. Plass C. Koeffler H.P. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 2018 28 11 1747 1756 10.1101/gr.239244.118 30341162
    [Google Scholar]
  23. Mermel C.H. Schumacher S.E. Hill B. Meyerson M.L. Beroukhim R. Getz G. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 2011 12 4 R41 10.1186/gb‑2011‑12‑4‑r41 21527027
    [Google Scholar]
  24. Hänzelmann S. Castelo R. Guinney J. GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics 2013 14 1 7 10.1186/1471‑2105‑14‑7 23323831
    [Google Scholar]
  25. Beroukhim R. Mermel C.H. Porter D. Wei G. Raychaudhuri S. Donovan J. Barretina J. Boehm J.S. Dobson J. Urashima M. Mc Henry K.T. Pinchback R.M. Ligon A.H. Cho Y.J. Haery L. Greulich H. Reich M. Winckler W. Lawrence M.S. Weir B.A. Tanaka K.E. Chiang D.Y. Bass A.J. Loo A. Hoffman C. Prensner J. Liefeld T. Gao Q. Yecies D. Signoretti S. Maher E. Kaye F.J. Sasaki H. Tepper J.E. Fletcher J.A. Tabernero J. Baselga J. Tsao M.S. Demichelis F. Rubin M.A. Janne P.A. Daly M.J. Nucera C. Levine R.L. Ebert B.L. Gabriel S. Rustgi A.K. Antonescu C.R. Ladanyi M. Letai A. Garraway L.A. Loda M. Beer D.G. True L.D. Okamoto A. Pomeroy S.L. Singer S. Golub T.R. Lander E.S. Getz G. Sellers W.R. Meyerson M. The landscape of somatic copy-number alteration across human cancers. Nature 2010 463 7283 899 905 [J]. 20164920
    [Google Scholar]
  26. Diboun I. Wernisch L. Orengo C.A. Koltzenburg M. Microarray analysis after RNA amplification can detect pronounced differences in gene expression using limma. BMC Genomics 2006 7 252 10.1186/1471‑2164‑7‑252 17029630
    [Google Scholar]
  27. Bonneville R. Krook M. A. Kautto E. A. Miya J. Wing M. R. Chen H. Z. Reeser J. W. Yu L. Roychowdhury S. Landscape of microsatellite instability across 39 cancer types. JCO Precis Oncol 2017 2017 PO.17.00073 10.1200/PO.17.00073 29850653
    [Google Scholar]
  28. Hwang B. Lee J.H. Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp. Mol. Med. 2018 50 8 1 14 10.1038/s12276‑018‑0071‑8 30089861
    [Google Scholar]
  29. Sun D. Wang J. Han Y. Dong X. Ge J. Zheng R. Shi X. Wang B. Li Z. Ren P. Sun L. Yan Y. Zhang P. Zhang F. Li T. Wang C. TISCH: A comprehensive web resource enabling interactive single-cell transcriptome visualization of tumor microenvironment. Nucleic Acids Res. 2021 49 D1 D1420 D1430 10.1093/nar/gkaa1020 33179754
    [Google Scholar]
  30. Akbani R. Ng P.K. Werner H.M. Shahmoradgoli M. Zhang F. Ju Z. Liu W. Yang J.Y. Yoshihara K. Li J. Ling S. Seviour E.G. Ram P.T. Minna J.D. Diao L. Tong P. Heymach J.V. Hill S.M. Dondelinger F. Städler N. Byers L.A. Meric-Bernstam F. Weinstein J.N. Broom B.M. Verhaak R.G. Liang H. Mukherjee S. Lu Y. Mills G.B. A pan-cancer proteomic perspective on The Cancer Genome Atlas. Nat. Commun. 2014 5 3887 10.1038/ncomms4887 24871328
    [Google Scholar]
  31. Franz M. Rodriguez H. Lopes C. Zuberi K. Montojo J. Bader G.D. Morris Q. GeneMANIA update 2018. Nucleic Acids Res. 2018 46 W1 W60 W64 10.1093/nar/gky311 29912392
    [Google Scholar]
  32. Bartha Á. Győrffy B. Comprehensive outline of whole exome sequencing data analysis tools available in clinical oncology. Cancers 2019 11 11 1725 10.3390/cancers11111725 31690036
    [Google Scholar]
  33. Qian Y. Gong Y. Fan Z. Luo G. Huang Q. Deng S. Cheng H. Jin K. Ni Q. Yu X. Liu C. Molecular alterations and targeted therapy in pancreatic ductal adenocarcinoma. J. Hematol. Oncol. 2020 13 1 130 [J]. 33008426
    [Google Scholar]
  34. Batlle E. Clevers H. Cancer stem cells revisited. Nat. Med. 2017 23 10 1124 1134 10.1038/nm.4409 28985214
    [Google Scholar]
  35. Datta A. West C. O’Connor J.P.B. Choudhury A. Hoskin P. Impact of hypoxia on cervical cancer outcomes. Int. J. Gynecol. Cancer 2021 31 11 1459 1470 10.1136/ijgc‑2021‑002806 34593564
    [Google Scholar]
  36. Kaelin W.G. Jr Von Hippel–Lindau disease: Insights into oxygen sensing, protein degradation, and cancer. J. Clin. Invest. 2022 132 18 e162480 10.1172/JCI162480 36106637
    [Google Scholar]
  37. Wei G.Z. Saraswat Ohri S. Khattar N.K. Listerman A.W. Doyle C.H. Andres K.R. Karuppagounder S.S. Ratan R.R. Whittemore S.R. Hetman M. Hypoxia-inducible factor prolyl hydroxylase domain (PHD) inhibition after contusive spinal cord injury does not improve locomotor recovery. PLoS One 2021 16 4 e0249591 10.1371/journal.pone.0249591 33819286
    [Google Scholar]
  38. Liberti M.V. Locasale J.W. The warburg effect: How does it benefit cancer cells? Trends Biochem. Sci. 2016 41 3 211 218 10.1016/j.tibs.2015.12.001 26778478
    [Google Scholar]
  39. Albadari N. Deng S. Li W. The transcriptional factors HIF-1 and HIF-2 and their novel inhibitors in cancer therapy. Expert Opin. Drug Discov. 2019 14 7 667 682 10.1080/17460441.2019.1613370 31070059
    [Google Scholar]
  40. Hulley P.A. Bishop T. Vernet A. Schneider J.E. Edwards J.R. Athanasou N.A. Knowles H.J. Hypoxia-inducible factor 1-alpha does not regulate osteoclastogenesis but enhances bone resorption activity via prolyl-4-hydroxylase 2. J. Pathol. 2017 242 3 322 333 10.1002/path.4906 28418093
    [Google Scholar]
  41. Jokilehto T. Rantanen K. Luukkaa M. Heikkinen P. Grenman R. Minn H. Kronqvist P. Jaakkola P.M. Overexpression and nuclear translocation of hypoxia-inducible factor prolyl hydroxylase PHD2 in head and neck squamous cell carcinoma is associated with tumor aggressiveness. Clin. Cancer Res. 2006 12 4 1080 1087 10.1158/1078‑0432.CCR‑05‑2022 16489060
    [Google Scholar]
  42. Zhang J. Zheng X. Zhang Q. EglN2 positively regulates mitochondrial function in breast cancer. Mol. Cell. Oncol. 2016 3 2 e1120845 10.1080/23723556.2015.1120845 27308620
    [Google Scholar]
  43. Zhang J. Wang C. Chen X. Takada M. Fan C. Zheng X. Wen H. Liu Y. Wang C. Pestell R.G. Aird K.M. Kaelin W.G. Jr Liu X.S. Zhang Q. EglN2 associates with the NRF1-PGC1α complex and controls mitochondrial function in breast cancer. EMBO J. 2015 34 23 2953 2970 10.15252/embj.201591437 26492917
    [Google Scholar]
  44. Kim W.Y. Kaelin W.G. Role of VHL gene mutation in human cancer. J. Clin. Oncol. 2004 22 24 4991 5004 10.1200/JCO.2004.05.061 15611513
    [Google Scholar]
  45. Jin Y. Pan Y. Zheng S. Liu Y. Xu J. Peng Y. Zhang Z. Wang Y. Xiong Y. Xu L. Mu K. Chen S. Zheng F. Yuan Y. Fu J. Inactivation of EGLN3 hydroxylase facilitates Erk3 degradation via autophagy and impedes lung cancer growth. Oncogene 2022 41 12 1752 1766 10.1038/s41388‑022‑02203‑2 35124697
    [Google Scholar]
  46. Fu J. Menzies K. Freeman R.S. Taubman M.B. EGLN3 prolyl hydroxylase regulates skeletal muscle differentiation and myogenin protein stability. J. Biol. Chem. 2007 282 17 12410 12418 10.1074/jbc.M608748200 17344222
    [Google Scholar]
  47. Huang Y. Lin D. Taniguchi C.M. Hypoxia inducible factor (HIF) in the tumor microenvironment: Friend or foe? Sci. China Life Sci. 2017 60 10 1114 1124 10.1007/s11427‑017‑9178‑y 29039125
    [Google Scholar]
  48. Kim W. Kaelin W.G. Jr The von Hippel–Lindau tumor suppressor protein: New insights into oxygen sensing and cancer. Curr. Opin. Genet. Dev. 2003 13 1 55 60 10.1016/S0959‑437X(02)00010‑2 12573436
    [Google Scholar]
  49. Jiang Y. Mao C. Yang R. Yan B. Shi Y. Liu X. Lai W. Liu Y. Wang X. Xiao D. Zhou H. Cheng Y. Yu F. Cao Y. Liu S. Yan Q. Tao Y. EGLN1/c-Myc induced lymphoid-specific helicase inhibits ferroptosis through lipid metabolic gene expression changes. Theranostics 2017 7 13 3293 3305 10.7150/thno.19988 28900510
    [Google Scholar]
  50. Erez N. Milyavsky M. Eilam R. Shats I. Goldfinger N. Rotter V. Expression of prolyl-hydroxylase-1 (PHD1/EGLN2) suppresses hypoxia inducible factor-1alpha activation and inhibits tumor growth. Cancer Res. 2003 63 24 8777 8783 14695194
    [Google Scholar]
  51. Zhang R. Lai L. He J. Chen C. You D. Duan W. Dong X. Zhu Y. Lin L. Shen S. Guo Y. Su L. Shafer A. Moran S. Fleischer T. Bjaanæs M.M. Karlsson A. Planck M. Staaf J. Helland Å. Esteller M. Wei Y. Chen F. Christiani D.C. EGLN2 DNA methylation and expression interact with HIF1A to affect survival of early-stage NSCLC. Epigenetics 2019 14 2 118 129 10.1080/15592294.2019.1573066 30665327
    [Google Scholar]
  52. Oehme F. Ellinghaus P. Kolkhof P. Smith T.J. Ramakrishnan S. Hütter J. Schramm M. Flamme I. Overexpression of PH-4, a novel putative proline 4-hydroxylase, modulates activity of hypoxia-inducible transcription factors. Biochem. Biophys. Res. Commun. 2002 296 2 343 349 10.1016/S0006‑291X(02)00862‑8 12163023
    [Google Scholar]
  53. Kaelin W.G. Jr Proline hydroxylation and gene expression. Annu. Rev. Biochem. 2005 74 1 115 128 10.1146/annurev.biochem.74.082803.133142 15952883
    [Google Scholar]
  54. Jucht A.E. Scholz C.C. PHD1-3 oxygen sensors in vivo—lessons learned from gene deletions. Pflugers Arch. 2024 476 9 1307 1337 10.1007/s00424‑024‑02944‑x 38509356
    [Google Scholar]
  55. Wang S. Sun J. Chen K. Ma P. Lei Q. Xing S. Cao Z. Sun S. Yu Z. Liu Y. Li N. Perspectives of tumor-infiltrating lymphocyte treatment in solid tumors. BMC Med. 2021 19 1 140 10.1186/s12916‑021‑02006‑4 34112147
    [Google Scholar]
  56. Zhao G. Jiang Y. Wang Y. Wang S. Li N. Comprehensive characterization of cell disulfidptosis in human cancers: An integrated pan-cancer analysis. Genes Dis. 2024 11 4 101095 10.1016/j.gendis.2023.101095 38362043
    [Google Scholar]
  57. Stanton S.E. Disis M.L. Clinical significance of tumor-infiltrating lymphocytes in breast cancer. J. Immunother. Cancer 2016 4 1 59 10.1186/s40425‑016‑0165‑6 27777769
    [Google Scholar]
  58. Moen I. Stuhr L.E.B. Hyperbaric oxygen therapy and cancer—a review. Target. Oncol. 2012 7 4 233 242 10.1007/s11523‑012‑0233‑x 23054400
    [Google Scholar]
  59. Abudoukerimu A. Hasimu A. Abudoukerimu A. Tuerxuntuoheti G. Huang Y. Wei J. Yu T. Ma H. Yimiti D. HIF-1α regulates the progression of cervical cancer by targeting YAP/TAZ. J. Oncol. 2022 2022 1 12 10.1155/2022/3814809 35664561
    [Google Scholar]
  60. Zhang L. Chen Q. Hu J. Chen Y. Liu C. Xu C. Expression of HIF-2α and VEGF in cervical squamous cell carcinoma and its clinical significance. BioMed Res. Int. 2016 2016 5631935 10.1155/2016/5631935 27413748
    [Google Scholar]
  61. Gao Q. Ren Z. Jiao S. Guo J. Miao X. Wang J. Liu J. HIF-3α-Induced miR-630 expression promotes cancer hallmarks in cervical cancer cells by forming a positive feedback loop. J. Immunol. Res. 2022 2022 1 19 10.1155/2022/5262963 36277475
    [Google Scholar]
  62. Yan B. Ma Q.F. Tan W.F. Cai H.N. Li Y.L. Zhou Z.G. Dai X. Zhu F.X. Xiong Y.J. Xu M. Guo Y.L. Gao H. Hu J.B. Wu X.F. Expression of HIF‑1α is a predictive marker of the efficacy of neoadjuvant chemotherapy for locally advanced cervical cancer. Oncol. Lett. 2020 20 1 841 849 10.3892/ol.2020.11596 32566011
    [Google Scholar]
  63. Li Z. Wei R. Yao S. Meng F. Kong L. HIF-1A as a prognostic biomarker related to invasion, migration and immunosuppression of cervical cancer. Heliyon 2024 10 2 e24664 10.1016/j.heliyon.2024.e24664 38298716
    [Google Scholar]
  64. Yee G.P. de Souza P. Khachigian L.M. Current and potential treatments for cervical cancer. Curr. Cancer Drug Targets 2013 13 2 205 220 10.2174/1568009611313020009 23259831
    [Google Scholar]
  65. Shao J. Gao Y. Current cancer drug development strategies. Curr. Cancer Drug Targets 2019 19 4 243 244 10.2174/156800961904190321125849 30968768
    [Google Scholar]
  66. Kumar B. Singh S. Skvortsova I. Kumar V. Promising targets in anti-cancer drug development: Recent updates. Curr. Med. Chem. 2017 24 42 4729 4752 10.2174/0929867324666170331123648 28393696
    [Google Scholar]
  67. Newell D.R. How to develop a successful cancer drug – Molecules to medicines or targets to treatments? Eur. J. Cancer 2005 41 5 676 682 10.1016/j.ejca.2004.12.024 15763642
    [Google Scholar]
  68. Dar K.B. Bhat A.H. Amin S. Anjum S. Reshi B.A. Zargar M.A. Masood A. Ganie S.A. Exploring proteomic drug targets, therapeutic strategies and protein - Protein interactions in cancer: Mechanistic view. Curr. Cancer Drug Targets 2019 19 6 430 448 10.2174/1568009618666180803104631 30073927
    [Google Scholar]
  69. Würth R. Thellung S. Bajetto A. Mazzanti M. Florio T. Barbieri F. Drug-repositioning opportunities for cancer therapy: Novel molecular targets for known compounds. Drug Discov. Today 2016 21 1 190 199 10.1016/j.drudis.2015.09.017 26456577
    [Google Scholar]
  70. Vainonen J.P. Momeny M. Westermarck J. Druggable cancer phosphatases. Sci. Transl. Med. 2021 13 588 eabe2967 10.1126/scitranslmed.abe2967 33827975
    [Google Scholar]
  71. Roti G. Stegmaier K. Genetic and proteomic approaches to identify cancer drug targets. Br. J. Cancer 2012 106 2 254 261 10.1038/bjc.2011.543 22166799
    [Google Scholar]
  72. Workman P. New drug targets for genomic cancer therapy: Successes, limitations, opportunities and future challenges. Curr. Cancer Drug Targets 2001 1 1 33 47 10.2174/1568009013334269 12188890
    [Google Scholar]
  73. Wesselinova D. Current major cancer targets for nanoparticle systems. Curr. Cancer Drug Targets 2011 11 2 164 183 10.2174/156800911794328484 21158716
    [Google Scholar]
  74. Zhao G. Wang Y. Zhou J. Ma P. Wang S. Li N. Pan-cancer analysis of polo-like kinase family genes reveals polo-like kinase 1 as a novel oncogene in kidney renal papillary cell carcinoma. Heliyon 2024 10 8 e29373 10.1016/j.heliyon.2024.e29373 38644836
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096362252250527060004
Loading
/content/journals/ccdt/10.2174/0115680096362252250527060004
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: biomarker discovery ; Hypoxia ; EGLN family ; bioinformatics analysis ; pan-cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test