Skip to content
2000
image of CircRNAs Regulate Senescence-Associated miRNAs in Gastric Cancer

Abstract

Gastric cancer is closely associated with the aging process, with its incidence and mortality rates significantly increasing with age, peaking around 85 years. Despite advancements in treatment modalities, current diagnostic and therapeutic approaches remain insufficient, resulting in persistently low five-year survival rates among patients. The expanding global population and the intensifying aging process are anticipated to exacerbate the global burden of gastric cancer further, underscoring the urgency of exploring novel therapeutic strategies. A complex relationship exists between gastric cancer and cellular senescence, although the precise mechanisms remain incompletely understood. Cellular senescence is prevalent in gastric cancer treatment, typically serving as a natural anti-tumor barrier by inhibiting the uncontrolled proliferation and malignant transformation of cancer cells. However, prolonged cellular senescence may trigger the secretion of pro-inflammatory factors, thereby promoting tumorigenesis and progression. A systematic analysis of existing research data has revealed significant intersections between therapeutic targets for gastric cancer and senescence-associated signaling pathways, suggesting that modulating these critical nodes may constitute a pivotal mechanism for exploring novel therapeutic strategies bridging gastric cancer treatment and senescence. Circular RNAs (circRNAs) have garnered considerable attention with the advancement of bioinformatics and high-throughput sequencing technologies. As key regulatory factors, circRNAs can modulate microRNAs (miRNAs) through a “sponge adsorption” mechanism, thereby influencing the post-transcriptional modification of critical genes. Given their high structural stability and widespread distribution in vivo, circRNAs have emerged as ideal candidate molecules for biomarkers and therapeutic targets in gastric cancer. This review focuses on the mechanisms by which circRNAs, through sponging miRNAs, regulate key nodes in therapeutic targets and senescence signaling pathways in gastric cancer.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096365738250618201121
2025-07-01
2025-09-13
Loading full text...

Full text loading...

References

  1. Thrift A.P. Wenker T.N. El-Serag H.B. Global burden of gastric cancer: Epidemiological trends, risk factors, screening and prevention. Nat. Rev. Clin. Oncol. 2023 20 5 338 349 10.1038/s41571‑023‑00747‑0 36959359
    [Google Scholar]
  2. Xiao S. Qin D. Hou, X Cellular senescence: A double-edged sword in cancer therapy. Front. Oncol. 13 1189015 10.3389/fonc.2023.1189015
    [Google Scholar]
  3. Ou H.L. Hoffmann R. González-López C. Doherty G.J. Korkola J.E. Muñoz-Espín D. Cellular senescence in cancer: From mechanisms to detection. Mol. Oncol. 2021 15 10 2634 2671 10.1002/1878‑0261.12807 32981205
    [Google Scholar]
  4. Collado M. Blasco M.A. Serrano M. Cellular senescence in cancer and aging. Cell 2007 130 2 223 233 10.1016/j.cell.2007.07.003 17662938
    [Google Scholar]
  5. Rodier F. Campisi J. Four faces of cellular senescence. J. Cell Biol. 2011 192 4 547 556 10.1083/jcb.201009094 21321098
    [Google Scholar]
  6. Tacutu R. Budovsky A. Yanai H. Fraifeld V.E. Molecular links between cellular senescence, longevity and age-related diseases – a systems biology perspective. Aging (Albany NY) 2011 3 12 1178 1191 10.18632/aging.100413 22184282
    [Google Scholar]
  7. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  8. Morgan E. Arnold M. Camargo M.C. Gini A. Kunzmann A.T. Matsuda T. Meheus F. Verhoeven R.H.A. Vignat J. Laversanne M. Ferlay J. Soerjomataram I. The current and future incidence and mortality of gastric cancer in 185 countries, 2020–40: A population-based modelling study. EClinicalMedicine 2022 47 101404 10.1016/j.eclinm.2022.101404 35497064
    [Google Scholar]
  9. Laconi E. Marongiu F. DeGregori J. Cancer as a disease of old age: Changing mutational and microenvironmental landscapes. Br. J. Cancer 2020 122 7 943 952 10.1038/s41416‑019‑0721‑1 32042067
    [Google Scholar]
  10. Nordling C.O. A new theory on cancer-inducing mechanism. Br. J. Cancer 1953 7 1 68 72 10.1038/bjc.1953.8 13051507
    [Google Scholar]
  11. Boveri T. Concerning the origin of malignant tumours by theodor boveri. translated and annotated by henry harris. J. Cell Sci. 2008 121 Suppl. 1 1 84 10.1242/jcs.025742 18089652
    [Google Scholar]
  12. Knudson A.G. Jr Mutation and cancer: Statistical study of retinoblastoma. Proc. Natl. Acad. Sci. USA 1971 68 4 820 823 10.1073/pnas.68.4.820 5279523
    [Google Scholar]
  13. Armitage P. Doll R. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br. J. Cancer 2004 91 12 1983 1989 10.1038/sj.bjc.6602297 15599380
    [Google Scholar]
  14. López-Otín C. Pietrocola F. Roiz-Valle D. Galluzzi L. Kroemer G. Meta-hallmarks of aging and cancer. Cell Metab. 2023 35 1 12 35 10.1016/j.cmet.2022.11.001 36599298
    [Google Scholar]
  15. Wang L. Lankhorst L. Bernards R. Exploiting senescence for the treatment of cancer. Nat. Rev. Cancer 2022 22 6 340 355 10.1038/s41568‑022‑00450‑9 35241831
    [Google Scholar]
  16. Campisi J. Cellular senescence: Putting the paradoxes in perspective. Curr. Opin. Genet. Dev. 2011 21 1 107 112 10.1016/j.gde.2010.10.005
    [Google Scholar]
  17. Nakamura A.J. Chiang Y.J. Hathcock K.S. Horikawa I. Sedelnikova O.A. Hodes R.J. Bonner W.M. Both telomeric and non-telomeric DNA damage are determinants of mammalian cellular senescence. Epigenetics Chromatin 2008 1 1 6 10.1186/1756‑8935‑1‑6 19014415
    [Google Scholar]
  18. Krizhanovsky V. Yon M. Dickins R.A. Hearn S. Simon J. Miething C. Yee H. Zender L. Lowe S.W. Senescence of activated stellate cells limits liver fibrosis. Cell 2008 134 4 657 667 10.1016/j.cell.2008.06.049 18724938
    [Google Scholar]
  19. Sagiv A. Krizhanovsky V. Immunosurveillance of senescent cells: The bright side of the senescence program. Biogerontology 2013 14 6 617 628 10.1007/s10522‑013‑9473‑0 24114507
    [Google Scholar]
  20. Lujambio A. Akkari L. Simon J. Grace D. Tschaharganeh D.F. Bolden J.E. Zhao Z. Thapar V. Joyce J.A. Krizhanovsky V. Lowe S.W. Non-cell-autonomous tumor suppression by p53. Cell 2013 153 2 449 460 10.1016/j.cell.2013.03.020 23562644
    [Google Scholar]
  21. Soriani A. Zingoni A. Cerboni C. Iannitto M.L. Ricciardi M.R. Gialleonardo D.V. Cippitelli M. Fionda C. Petrucci M.T. Guarini A. Foà R. Santoni A. ATM-ATR–dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood 2009 113 15 3503 3511 10.1182/blood‑2008‑08‑173914 19098271
    [Google Scholar]
  22. Xue W. Zender L. Miething C. Dickins R.A. Hernando E. Krizhanovsky V. Cordon-Cardo C. Lowe S.W. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 2007 445 7128 656 660 10.1038/nature05529 17251933
    [Google Scholar]
  23. Kang T.W. Yevsa T. Woller N. Hoenicke L. Wuestefeld T. Dauch D. Hohmeyer A. Gereke M. Rudalska R. Potapova A. Iken M. Vucur M. Weiss S. Heikenwalder M. Khan S. Gil J. Bruder D. Manns M. Schirmacher P. Tacke F. Ott M. Luedde T. Longerich T. Kubicka S. Zender L. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 2011 479 7374 547 551 10.1038/nature10599 22080947
    [Google Scholar]
  24. Coppé J.P. Patil C.K. Rodier F. Sun Y. Muñoz D.P. Goldstein J. Nelson P.S. Desprez P.Y. Campisi J. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008 6 12 e301 10.1371/journal.pbio.0060301 19053174
    [Google Scholar]
  25. Kuilman T. Michaloglou C. Vredeveld L.C.W. Douma S. Doorn V.R. Desmet C.J. Aarden L.A. Mooi W.J. Peeper D.S. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 2008 133 6 1019 1031 10.1016/j.cell.2008.03.039 18555778
    [Google Scholar]
  26. Acosta J.C. O’Loghlen A. Banito A. Guijarro M.V. Augert A. Raguz S. Fumagalli M. Costa D.M. Brown C. Popov N. Takatsu Y. Melamed J. Fagagna D.D.F. Bernard D. Hernando E. Gil J. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 2008 133 6 1006 1018 10.1016/j.cell.2008.03.038 18555777
    [Google Scholar]
  27. Demaria M. Ohtani N. Youssef S.A. Rodier F. Toussaint W. Mitchell J.R. Laberge R.M. Vijg J. Steeg V.H. Dollé M.E.T. Hoeijmakers J.H.J. Bruin D.A. Hara E. Campisi J. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 2014 31 6 722 733 10.1016/j.devcel.2014.11.012 25499914
    [Google Scholar]
  28. Ancrile B. Lim K.H. Counter C.M. Oncogenic Ras-induced secretion of IL6 is required for tumorigenesis. Genes Dev. 2007 21 14 1714 1719 10.1101/gad.1549407 17639077
    [Google Scholar]
  29. Ortiz-Montero P. Londoño-Vallejo A. Vernot J.P. Senescence-associated IL-6 and IL-8 cytokines induce a self- and cross-reinforced senescence/inflammatory milieu strengthening tumorigenic capabilities in the MCF-7 breast cancer cell line. Cell Commun. Signal. 2017 15 1 17 10.1186/s12964‑017‑0172‑3 28472950
    [Google Scholar]
  30. Liu D. Hornsby P.J. Senescent human fibroblasts increase the early growth of xenograft tumors via matrix metalloproteinase secretion. Cancer Res. 2007 67 7 3117 3126 10.1158/0008‑5472.CAN‑06‑3452 17409418
    [Google Scholar]
  31. Eyman D. Damodarasamy M. Plymate S.R. Reed M.J. CCL5 secreted by senescent aged fibroblasts induces proliferation of prostate epithelial cells and expression of genes that modulate angiogenesis. J. Cell. Physiol. 2009 220 2 376 381 10.1002/jcp.21776 19360811
    [Google Scholar]
  32. Aldinucci D. Colombatti A. The inflammatory chemokine CCL5 and cancer progression. Mediators Inflamm. 2014 2014 1 12 10.1155/2014/292376 24523569
    [Google Scholar]
  33. Milanovic M. Fan D.N.Y. Belenki D. Däbritz J.H.M. Zhao Z. Yu Y. Dörr J.R. Dimitrova L. Lenze D. Barbosa M.I.A. Mendoza-Parra M.A. Kanashova T. Metzner M. Pardon K. Reimann M. Trumpp A. Dörken B. Zuber J. Gronemeyer H. Hummel M. Dittmar G. Lee S. Schmitt C.A. Senescence-associated reprogramming promotes cancer stemness. Nature 2018 553 7686 96 100 10.1038/nature25167 29258294
    [Google Scholar]
  34. Saleh T. Tyutyunyk-Massey L. Gewirtz D.A. Tumor cell escape from therapy-induced senescence as a model of disease recurrence after dormancy. Cancer Res. 2019 79 6 1044 1046 10.1158/0008‑5472.CAN‑18‑3437 30803994
    [Google Scholar]
  35. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014 513 7517 202 209 10.1038/nature13480 25079317
    [Google Scholar]
  36. Deeks E.D. Disitamab Vedotin: First Approval. Drugs 2021 81 16 1929 1935 10.1007/s40265‑021‑01614‑x 34661865
    [Google Scholar]
  37. Alcorta D.A. Xiong Y. Phelps D. Hannon G. Beach D. Barrett J.C. Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc. Natl. Acad. Sci. USA 1996 93 24 13742 13747 10.1073/pnas.93.24.13742 8943005
    [Google Scholar]
  38. Takahashi A. Ohtani N. Yamakoshi K. Iida S. Tahara H. Nakayama K. Nakayama K.I. Ide T. Saya H. Hara E. Mitogenic signalling and the p16INK4a–Rb pathway cooperate to enforce irreversible cellular senescence. Nat. Cell Biol. 2006 8 11 1291 1297 10.1038/ncb1491 17028578
    [Google Scholar]
  39. Beauséjour C.M. Krtolica A. Galimi F. Narita M. Lowe S.W. Yaswen P. Campisi J. Reversal of human cellular senescence: Roles of the p53 and p16 pathways. EMBO J. 2003 22 16 4212 4222 10.1093/emboj/cdg417 12912919
    [Google Scholar]
  40. Shaulian E. Schreiber M. Piu F. Beeche M. Wagner E.F. Karin M. The mammalian UV response: C-Jun induction is required for exit from p53-imposed growth arrest. Cell 2000 103 6 897 908 10.1016/S0092‑8674(00)00193‑8 11136975
    [Google Scholar]
  41. Webley K. Bond J.A. Jones C.J. Blaydes J.P. Craig A. Hupp T. Wynford-Thomas D. Posttranslational modifications of p53 in replicative senescence overlapping but distinct from those induced by DNA damage. Mol. Cell. Biol. 2000 20 8 2803 2808 10.1128/MCB.20.8.2803‑2808.2000 10733583
    [Google Scholar]
  42. Ge H. Ni S. Wang X. Xu N. Liu Y. Wang X. Wang L. Song D. Song Y. Bai C. Dexamethasone reduces sensitivity to cisplatin by blunting p53-dependent cellular senescence in non-small cell lung cancer. PLoS One 2012 7 12 e51821 10.1371/journal.pone.0051821 23272171
    [Google Scholar]
  43. Maejima Y. Adachi S. Ito H. Hirao K. Isobe M. Induction of premature senescence in cardiomyocytes by doxorubicin as a novel mechanism of myocardial damage. Aging Cell 2008 7 2 125 136 10.1111/j.1474‑9726.2007.00358.x 18031568
    [Google Scholar]
  44. Micco D.R. Fumagalli M. Cicalese A. Piccinin S. Gasparini P. Luise C. Schurra C. Garre’ M. Nuciforo G.P. Bensimon A. Maestro R. Pelicci G.P. Fagagna D.D.F. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 2006 444 7119 638 642 10.1038/nature05327 17136094
    [Google Scholar]
  45. Falck J. Mailand N. Syljuåsen R.G. Bartek J. Lukas J. The ATM–Chk2–Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 2001 410 6830 842 847 10.1038/35071124 11298456
    [Google Scholar]
  46. Shih C. Weinberg R.A. Isolation of a transforming sequence from a human bladder carcinoma cell line. Cell 1982 29 1 161 169 10.1016/0092‑8674(82)90100‑3 6286138
    [Google Scholar]
  47. Land H. Parada L.F. Weinberg R.A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 1983 304 5927 596 602 10.1038/304596a0 6308472
    [Google Scholar]
  48. Bardeesy N. DePinho R.A. Pancreatic cancer biology and genetics. Nat. Rev. Cancer 2002 2 12 897 909 10.1038/nrc949 12459728
    [Google Scholar]
  49. Jing H. Lee S. NF-κB in cellular senescence and cancer treatment. Mol. Cells 2014 37 3 189 195 10.14348/molcells.2014.2353 24608805
    [Google Scholar]
  50. Chien Y. Scuoppo C. Wang X. Fang X. Balgley B. Bolden J.E. Premsrirut P. Luo W. Chicas A. Lee C.S. Kogan S.C. Lowe S.W. Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity. Genes Dev. 2011 25 20 2125 2136 10.1101/gad.17276711 21979375
    [Google Scholar]
  51. Gosselin K. Abbadie C. Involvement of Rel/NF-κB transcription factors in senescence. Exp. Gerontol. 2003 38 11-12 1271 1283 10.1016/j.exger.2003.09.007 14698807
    [Google Scholar]
  52. Mikuła-Pietrasik J. Rutecki S. Książek K. The functional multipotency of transforming growth factor β signaling at the intersection of senescence and cancer. Cell. Mol. Life Sci. 2022 79 4 196 10.1007/s00018‑022‑04236‑y 35305149
    [Google Scholar]
  53. Senturk S. Mumcuoglu M. Gursoy-Yuzugullu O. Cingoz B. Akcali K.C. Ozturk M. Transforming growth factor-beta induces senescence in hepatocellular carcinoma cells and inhibits tumor growth. Hepatology 2010 52 3 966 974 10.1002/hep.23769 20583212
    [Google Scholar]
  54. Acosta J.C. Banito A. Wuestefeld T. Georgilis A. Janich P. Morton J.P. Athineos D. Kang T.W. Lasitschka F. Andrulis M. Pascual G. Morris K.J. Khan S. Jin H. Dharmalingam G. Snijders A.P. Carroll T. Capper D. Pritchard C. Inman G.J. Longerich T. Sansom O.J. Benitah S.A. Zender L. Gil J. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 2013 15 8 978 990 10.1038/ncb2784 23770676
    [Google Scholar]
  55. Nelson G. Wordsworth J. Wang C. Jurk D. Lawless C. Martin-Ruiz C. Zglinicki V.T. A senescent cell bystander effect: Senescence‐induced senescence. Aging Cell 2012 11 2 345 349 10.1111/j.1474‑9726.2012.00795.x 22321662
    [Google Scholar]
  56. Palazzo A.F. Lee E.S. Non-coding RNA: What is functional and what is junk? Front. Genet. 2015 6 2 10.3389/fgene.2015.00002 25674102
    [Google Scholar]
  57. Deveson I.W. Hardwick S.A. Mercer T.R. Mattick J.S. The dimensions, dynamics, and relevance of the mammalian noncoding transcriptome. Trends Genet. 2017 33 7 464 478 10.1016/j.tig.2017.04.004 28535931
    [Google Scholar]
  58. Esposito R. Bosch N. Lanzós A. Polidori T. Pulido-Quetglas C. Johnson R. Hacking the cancer genome: Profiling therapeutically actionable long non-coding RNAS using CRISPR-Cas9 Screening. Cancer Cell 2019 35 4 545 557 10.1016/j.ccell.2019.01.019 30827888
    [Google Scholar]
  59. Campbell L.I. Rota-Stabelli O. Edgecombe G.D. Marchioro T. Longhorn S.J. Telford M.J. Philippe H. Rebecchi L. Peterson K.J. Pisani D. MicroRNAs and phylogenomics resolve the relationships of Tardigrada and suggest that velvet worms are the sister group of Arthropoda. Proc. Natl. Acad. Sci. USA 2011 108 38 15920 15924 10.1073/pnas.1105499108 21896763
    [Google Scholar]
  60. Ransohoff J.D. Wei Y. Khavari P.A. The functions and unique features of long intergenic non-coding RNA. Nat. Rev. Mol. Cell Biol. 2018 19 3 143 157 10.1038/nrm.2017.104 29138516
    [Google Scholar]
  61. Cocquerelle C. Mascrez B. Hétuin D. Bailleul B. Mis-splicing yields circular RNA molecules. FASEB J. 1993 7 1 155 160 10.1096/fasebj.7.1.7678559 7678559
    [Google Scholar]
  62. Goodall G.J. Wickramasinghe V.O. RNA in cancer. Nat. Rev. Cancer 2021 21 1 22 36 10.1038/s41568‑020‑00306‑0 33082563
    [Google Scholar]
  63. Xie J. Ning Y. Zhang L. Lin Y. Guo R. Wang S. Overexpression of hsa_circ_0006470 inhibits the malignant behavior of gastric cancer cells via regulation of miR-1234/TP53I11 axis. Eur. J. Histochem. 2022 66 4 3477 10.4081/ejh.2022.3477 36190397
    [Google Scholar]
  64. Deng G. Mou T. He J. Chen D. Lv D. Liu H. Yu J. Wang S. Li G. Circular RNA circRHOBTB3 acts as a sponge for miR-654-3p inhibiting gastric cancer growth. J. Exp. Clin. Cancer Res. 2020 39 1 1 10.1186/s13046‑019‑1487‑2 31928527
    [Google Scholar]
  65. Wang Y. Liu X. Wang L. Zhang Z. Li Z. Li M. Circ_PGPEP1 Serves as a Sponge of miR-1297 to Promote Gastric Cancer Progression via Regulating E2F3. Dig. Dis. Sci. 2021 66 12 4302 4313 10.1007/s10620‑020‑06783‑5 33386518
    [Google Scholar]
  66. Rottenberg S. Disler C. Perego P. The rediscovery of platinum-based cancer therapy. Nat. Rev. Cancer 2021 21 1 37 50 10.1038/s41568‑020‑00308‑y 33128031
    [Google Scholar]
  67. Dasari S. Tchounwou B.P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014 740 364 378 10.1016/j.ejphar.2014.07.025 25058905
    [Google Scholar]
  68. Wu Q. Wang H. Liu L. Zhu K. Yu W. Guo J. Hsa_circ_0001546 acts as a miRNA-421 sponge to inhibit the chemoresistance of gastric cancer cells via ATM/Chk2/p53-dependent pathway. Biochem. Biophys. Res. Commun. 2020 521 2 303 309 10.1016/j.bbrc.2019.10.117 31668372
    [Google Scholar]
  69. Lin G.R. Chen W.R. Zheng P.H. Chen W.S. Cai G.Y. Circular RNA circ_0006089 promotes the progression of gastric cancer by regulating the MIR ‐143‐3p/PTBP3 axis and PI3K / AKT signaling pathway. J. Dig. Dis. 2022 23 7 376 387 10.1111/1751‑2980.13116 35844201
    [Google Scholar]
  70. Zhang X. Wang S. Wang H. Cao J. Huang X. Chen Z. Xu P. Sun G. Xu J. Lv J. Xu Z. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol. Cancer 2019 18 1 20 10.1186/s12943‑018‑0935‑5 30717751
    [Google Scholar]
  71. Wang X. Zhang Y. Li W. Liu X. Knockdown of cir_RNA PVT1 Elevates Gastric Cancer Cisplatin Sensitivity via Sponging miR-152-3p. J. Surg. Res. 2021 261 185 195 10.1016/j.jss.2020.12.013 33444948
    [Google Scholar]
  72. Sun B. Sun H. Wang Q. Wang X. Quan J. Dong D. Lun Y. Circular RNA circMAN2B2 promotes growth and migration of gastric cancer cells by down‐regulation of miR‐145. J. Clin. Lab. Anal. 2020 34 6 e23215 10.1002/jcla.23215 32020674
    [Google Scholar]
  73. Fan H.N. Zhao X.Y. Liang R. Chen X.Y. Zhang J. Chen N.W. Zhu J.S. CircPTK2 inhibits the tumorigenesis and metastasis of gastric cancer by sponging miR-134-5p and activating CELF2/PTEN signaling. Pathol. Res. Pract. 2021 227 153615 10.1016/j.prp.2021.153615 34562827
    [Google Scholar]
  74. Quan J. Dong D. Lun Y. Sun B. Sun H. Wang Q. Yuan G. Circular RNA circHIAT1 inhibits proliferation and epithelial‐mesenchymal transition of gastric cancer cell lines through downregulation of miR‐21. J. Biochem. Mol. Toxicol. 2020 34 4 e22458 10.1002/jbt.22458 32020707
    [Google Scholar]
  75. Li Z. Xie Y. Xiao B. Guo J. The tumor suppressor function of hsa_circ_0006282 in gastric cancer through PTEN/AKT pathway. Int. J. Clin. Oncol. 2022 27 10 1562 1569 10.1007/s10147‑022‑02210‑z 35794253
    [Google Scholar]
  76. Liang X. Qin C. Yu G. Guo X. Cheng A. Zhang H. Wang Z. Circular RNA circRAB31 acts as a miR-885-5p sponge to suppress gastric cancer progression via the PTEN/PI3K/AKT pathway. Mol. Ther. Oncolytics 2021 23 501 514 10.1016/j.omto.2021.11.002 34901392
    [Google Scholar]
  77. Duan X. Yu X. Li Z. Circular RNA hsa_circ_0001658 regulates apoptosis and autophagy in gastric cancer through microRNA-182/Ras-related protein Rab-10 signaling axis. Bioengineered 2022 13 2 2387 2397 10.1080/21655979.2021.2024637 35030981
    [Google Scholar]
  78. Sun H. Wang Q. Yuan G. Quan J. Dong D. Lun Y. Sun B. Hsa_circ_0001649 restrains gastric carcinoma growth and metastasis by downregulation of miR‐20a. J. Clin. Lab. Anal. 2020 34 6 e23235 10.1002/jcla.23235 32212290
    [Google Scholar]
  79. Ma S. Xu Y. Qin X. Tao M. Gu X. Shen L. Chen Y. Zheng M. Qin S. Wu G. Ju S. RUNX1, FUS, and ELAVL1-induced circPTPN22 promote gastric cancer cell proliferation, migration, and invasion through miR-6788-5p/PAK1 axis-mediated autophagy. Cell. Mol. Biol. Lett. 2024 29 1 95 10.1186/s11658‑024‑00610‑9 38956466
    [Google Scholar]
  80. Jin Y. Che X. Qu X. Li X. Lu W. Wu J. Wang Y. Hou K. Li C. Zhang X. Zhou J. Liu Y. CircHIPK3 Promotes Metastasis of Gastric Cancer via miR-653-5p/miR-338-3p-NRP1 Axis Under a Long-Term Hypoxic Microenvironment. Front. Oncol. 2020 10 1612 10.3389/fonc.2020.01612 32903845
    [Google Scholar]
  81. Qiu S. Li B. Xia Y. Xuan Z. Li Z. Xie L. Gu C. Lv J. Lu C. Jiang T. Fang L. Xu P. Yang J. Li Y. Chen Z. Zhang L. Wang L. Zhang D. Xu H. Wang W. Xu Z. CircTHBS1 drives gastric cancer progression by increasing INHBA mRNA expression and stability in a ceRNA- and RBP-dependent manner. Cell Death Dis. 2022 13 3 266 10.1038/s41419‑022‑04720‑0 35338119
    [Google Scholar]
  82. Zhou Y. Zhang Q. Liao B. Qiu X. Hu S. Xu Q. circ_0006089 promotes gastric cancer growth, metastasis, glycolysis, and angiogenesis by regulating miR‐361‐3p/TGFB1. Cancer Sci. 2022 113 6 2044 2055 10.1111/cas.15351 35347818
    [Google Scholar]
  83. Zhang L. Song X. Chen X. Wang Q. Zheng X. Wu C. Jiang J. Circular RNA circcactin promotes gastric cancer progression by sponging MiR-331-3p and regulating TGFBR1 expression. Int. J. Biol. Sci. 2019 15 5 1091 1103 10.7150/ijbs.31533 31182928
    [Google Scholar]
  84. Dai T. Qiu S. Gao X. Zhao C. Ge Z. Yang Y. Tang C. Feng S. Circular RNA CIRCWNK1 inhibits the progression of gastric cancer via regulating the MIR ‐21‐3p/ SMAD7 axis. Cancer Sci. 2024 115 3 974 988 10.1111/cas.16067 38287200
    [Google Scholar]
  85. Wu J. Chen Z. Song Y. Zhu Y. Dou G. Shen X. Zhou Y. Jiang H. Li J. Peng Y. CircRNA_0005075 suppresses carcinogenesis via regulating miR‐431/p53/epithelial‐mesenchymal transition axis in gastric cancer. Cell Biochem. Funct. 2020 38 7 932 942 10.1002/cbf.3519 32133664
    [Google Scholar]
  86. Tang J. Zhu H. Lin J. Wang H. Knockdown of circ_0081143 mitigates hypoxia-induced migration, invasion, and emt in gastric cancer cells through the miR-497-5p/EGFR axis. Cancer Biother. Radiopharm. 2021 36 4 333 346 10.1089/cbr.2019.3512 32678674
    [Google Scholar]
  87. Xie M. Yu T. Jing X. Ma L. Fan Y. Yang F. Ma P. Jiang H. Wu X. Shu Y. Xu T. Exosomal circSHKBP1 promotes gastric cancer progression via regulating the miR-582-3p/HUR/VEGF axis and suppressing HSP90 degradation. Mol. Cancer 2020 19 1 112 10.1186/s12943‑020‑01208‑3 32600329
    [Google Scholar]
  88. Li S. Li J. Zhang H. Zhang Y. Wang X. Yang H. Zhou Z. Hao X. Ying G. Ba Y. Gastric cancer derived exosomes mediate the delivery of circRNA to promote angiogenesis by targeting miR-29a/VEGF axis in endothelial cells. Biochem. Biophys. Res. Commun. 2021 560 37 44 10.1016/j.bbrc.2021.04.099 33965787
    [Google Scholar]
  89. Lu J. Wang Y. Yoon C. Huang X. Xu Y. Xie J. Wang J. Lin J. Chen Q. Cao L. Zheng C. Li P. Huang C. Circular RNA circ-RanGAP1 regulates VEGFA expression by targeting miR-877–3p to facilitate gastric cancer invasion and metastasis. Cancer Lett. 2020 471 38 48 10.1016/j.canlet.2019.11.038 31811909
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096365738250618201121
Loading
/content/journals/ccdt/10.2174/0115680096365738250618201121
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: ceRNA ; miRNAs ; gastric cancer ; senescence signaling pathways ; circRNAs ; Senescence
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test