Skip to content
2000
image of To Combat Abnormal Cell Signaling Mediated Gastrointestinal Cancer by Therapeutic Modulation of Gut Microbiota Utilizing Prebiotics, Postbiotics, and Synbiotics

Abstract

Background

Gastrointestinal (GI) cancer, a multifactorial disease, encompasses a group of malignancies that affect the gastrointestinal system. Being the second leading contributor to cancer-related deaths, GI cancer has become the burning issue of human health. Despite advances in treatment, the diverse nature of GI cancer indicates that a one-size-fits-all solution is not applicable.

Introduction

The gut microbiome can be therapeutically modulated by utilizing prebiotics, postbiotics, and synbiotics. Fermentation of prebiotics produces postbiotic compounds. Together the prebiotics and probiotics combination can be used as synbiotics which will be more beneficial.

Methods

PubMed and Google scholar search engine tools have been utilized to access references about the idea of this review to demonstrate the therapeutic modulation of microbiota, residing in the gut, which utilizes postbiotics, prebiotics and synbiotics for combating GI cancer.

Results

Exploration of prebiotics, postbiotics, and synbiotic compounds has given us detailed information about their contribution to combating GI cancer.

Conclusion

Intake of a combination of prebiotic, postbiotics and synbiotics can inhibit the growth of cancer cells, and activate protective and stress-resistant mechanisms in healthy cellswhich couldbe more beneficial than the administration of prebiotics or postbiotics or synbiotics alone in diminishing the risk of GI cancer.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096373099250709100217
2025-07-23
2025-10-31
Loading full text...

Full text loading...

References

  1. Smet A. Kupcinskas J. Link A. Hold G.L. Bornschein J. The role of microbiota in gastrointestinal cancer and cancer treatment: Chance or curse? Cell. Mol. Gastroenterol. Hepatol. 2022 13 3 857 874 10.1016/j.jcmgh.2021.08.013 34506954
    [Google Scholar]
  2. Louis P. Hold G.L. Flint H.J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 2014 12 10 661 672 10.1038/nrmicro3344 25198138
    [Google Scholar]
  3. Guo Q. Qin H. Liu X. Zhang X. Chen Z. Qin T. Chang L. Zhang W. The emerging roles of human gut microbiota in gastrointestinal cancer. Front. Immunol. 2022 13 915047 10.3389/fimmu.2022.915047 35784372
    [Google Scholar]
  4. Bang Y.J. Van Cutsem E. Feyereislova A. Chung H.C. Shen L. Sawaki A. Lordick F. Ohtsu A. Omuro Y. Satoh T. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastroesophageal junction cancer (ToGA): A phase 3, open-label, randomized controlled trial. Lancet 2010 376 9749 1302 20951892
    [Google Scholar]
  5. Alsina M. Arrazubi V. Diez M. Tabernero J. Current developments in gastric cancer: From molecular profiling to treatment strategy. Nat. Rev. Gastroenterol. Hepatol. 2023 20 3 155 170 10.1038/s41575‑022‑00703‑w 36344677
    [Google Scholar]
  6. Boku N. Yamamoto S. Fukuda H. Shirao K. Doi T. Sawaki A. Koizumi W. Saito H. Yamaguchi K. Takiuchi H. Nasu J. Ohtsu A. Fluorouracil versus combination of irinotecan plus cisplatin versus S-1 in metastatic gastric cancer: A randomised phase 3 study. Lancet Oncol. 2009 10 11 1063 1069 10.1016/S1470‑2045(09)70259‑1 19818685
    [Google Scholar]
  7. Cunningham D. Starling N. Rao S. Iveson T. Nicolson M. Coxon F. Middleton G. Daniel F. Oates J. Norman A.R. Capecitabine and oxaliplatin for advanced esophagogastric cancer. N. Engl. J. Med. 2008 358 1 36 46 10.1056/NEJMoa073149 18172173
    [Google Scholar]
  8. Liu X. Shao L. Liu X. Ji F. Mei Y. Cheng Y. Liu F. Yan C. Li L. Ling Z. Alterations of gastric mucosal microbiota across different stomach microhabitats in a cohort of 276 patients with gastric cancer. EBioMedicine 2019 40 336 348 10.1016/j.ebiom.2018.12.034 30584008
    [Google Scholar]
  9. Arnold M. Abnet C.C. Neale R.E. Vignat J. Giovannucci E.L. McGlynn K.A. Bray F. Global burden of 5 major Types of Gastrointestinal Cancer. Gastroenterology 2020 159 1 335 349.e15 10.1053/j.gastro.2020.02.068 32247694
    [Google Scholar]
  10. Smyth E.C. Nilsson M. Grabsch H.I. van Grieken N.C.T. Lordick F. Gastric cancer. Lancet 2020 396 10251 635 648 10.1016/S0140‑6736(20)31288‑5 32861308
    [Google Scholar]
  11. Kaneko S. Yoshimura T. Time trend analysis of gastric cancer incidence in Japan by histological types, 1975–1989. Br. J. Cancer 2001 84 3 400 405 10.1054/bjoc.2000.1602 11161407
    [Google Scholar]
  12. Capurro M.I. Greenfield L.K. Prashar A. Xia S. Abdullah M. Wong H. Zhong X.Z. Bertaux-Skeirik N. Chakrabarti J. Siddiqui I. O’Brien C. Dong X. Robinson L. Peek R.M. Jr Philpott D.J. Zavros Y. Helmrath M. Jones N.L. VacA generates a protective intracellular reservoir for Helicobacter pylori that is eliminated by activation of the lysosomal calcium channel TRPML1. Nat. Microbiol. 2019 4 8 1411 1423 10.1038/s41564‑019‑0441‑6 31110360
    [Google Scholar]
  13. Foegeding N. Caston R. McClain M. Ohi M. Cover T. An overview of helicobacter pylori VacA toxin biology. Toxins 2016 8 6 173 10.3390/toxins8060173 27271669
    [Google Scholar]
  14. Nasr R. Shamseddine A. Mukherji D. Nassar F. Temraz S. The crosstalk between microbiome and immune response in gastric cancer. Int. J. Mol. Sci. 2020 21 18 6586 10.3390/ijms21186586 32916853
    [Google Scholar]
  15. Maconi G. Manes G. Porro G.B. Role of symptoms in diagnosis and outcome of gastric cancer. World J. Gastroenterol. 2008 14 8 1149 1155 10.3748/wjg.14.1149 18300338
    [Google Scholar]
  16. Banales J.M. Marin J.J.G. Lamarca A. Rodrigues P.M. Khan S.A. Roberts L.R. Cardinale V. Carpino G. Andersen J.B. Braconi C. Calvisi D.F. Perugorria M.J. Fabris L. Boulter L. Macias R.I.R. Gaudio E. Alvaro D. Gradilone S.A. Strazzabosco M. Marzioni M. Coulouarn C. Fouassier L. Raggi C. Invernizzi P. Mertens J.C. Moncsek A. Ilyas S.I. Heimbach J. Koerkamp B.G. Bruix J. Forner A. Bridgewater J. Valle J.W. Gores G.J. Cholangiocarcinoma 2020: The next horizon in mechanisms and management. Nat. Rev. Gastroenterol. Hepatol. 2020 17 9 557 588 10.1038/s41575‑020‑0310‑z 32606456
    [Google Scholar]
  17. Tabibzadeh A. Tameshkel F.S. Moradi Y. Soltani S. Moradi-Lakeh M. Ashrafi G.H. Motamed N. Zamani F. Motevalian S.A. Panahi M. Esghaei M. Ajdarkosh H. Mousavi-Jarrahi A. Niya M.H.K. Signal transduction pathway mutations in gastrointestinal (GI) cancers: A systematic review and meta-analysis. Sci. Rep. 2020 10 1 18713 10.1038/s41598‑020‑73770‑1 33127962
    [Google Scholar]
  18. Brown M.A. Ried T. Shifting the focus of signaling abnormalities in colon cancer. Cancers 2022 14 3 784 10.3390/cancers14030784 35159051
    [Google Scholar]
  19. Lei Z.N. Teng Q.X. Tian Q. Chen W. Xie Y. Wu K. Zeng Q. Zeng L. Pan Y. Chen Z.S. He Y. Signaling pathways and therapeutic interventions in gastric cancer. Signal Transduct. Target. Ther. 2022 7 1 358 10.1038/s41392‑022‑01190‑w 36209270
    [Google Scholar]
  20. Molaei F. Forghanifard M.M. Fahim Y. Abbaszadegan M.R. Molecular signaling in tumorigenesis of gastric cancer. Iran. Biomed. J. 2018 22 4 217 230 10.29252/ibj.22.4.217 29706061
    [Google Scholar]
  21. Baccili Cury Megid T. Farooq A.R. Wang X. Elimova E. Gastric cancer: Molecular mechanisms, novel targets, and immunotherapies: From bench to clinical therapeutics. Cancers 2023 15 20 5075 10.3390/cancers15205075 37894443
    [Google Scholar]
  22. Magnelli L. Schiavone N. Staderini F. Biagioni A. Papucci L. MAP kinases pathways in gastric cancer. Int. J. Mol. Sci. 2020 21 8 2893 10.3390/ijms21082893 32326163
    [Google Scholar]
  23. Kipkeeva F. Muzaffarova T. Korotaeva A. Nikulin M. Grishina K. Mansorunov D. Apanovich P. Karpukhin A. MicroRNA in gastric cancer development: Mechanisms and biomarkers. Diagnostics 2020 10 11 891 10.3390/diagnostics10110891 33142817
    [Google Scholar]
  24. Mitsuda Y. Morita K. Kashiwazaki G. Taniguchi J. Bando T. Obara M. Hirata M. Kataoka T.R. Muto M. Kaneda Y. Nakahata T. Liu P.P. Adachi S. Sugiyama H. Kamikubo Y. RUNX1 positively regulates the ErbB2/HER2 signaling pathway through modulating SOS1 expression in gastric cancer cells. Sci. Rep. 2018 8 1 6423 10.1038/s41598‑018‑24969‑w 29686309
    [Google Scholar]
  25. Rajadurai P. Fatt H.K. Ching F.Y. Prevalence of HER2 positivity and its clinicopathological correlation in locally advanced/metastatic gastric cancer patients in Malaysia. J. Gastrointest. Cancer 2018 49 2 150 157 10.1007/s12029‑017‑9921‑1 28124769
    [Google Scholar]
  26. He Y. Sun M.M. Zhang G.G. Yang J. Chen K.S. Xu W.W. Li B. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct. Target. Ther. 2021 6 1 425 10.1038/s41392‑021‑00828‑5 34916492
    [Google Scholar]
  27. Matsuoka T. Yashiro M. The role of PI3K/Akt/mTOR signaling in gastric carcinoma. Cancers 2014 6 3 1441 1463 10.3390/cancers6031441 25003395
    [Google Scholar]
  28. Polom K. Marrelli D. Roviello G. Pascale V. Voglino C. Vindigni C. Generali D. Roviello F. PIK3CA mutation in gastric cancer and the role of microsatellite instability status in mutations of exons 9 and 20 of the PIK3CA gene. Adv. Clin. Exp. Med. 2018 27 7 963 969 10.17219/acem/70795 29905413
    [Google Scholar]
  29. Fu J. Su X. Li Z. Deng L. Liu X. Feng X. Peng J. HGF/c-MET pathway in cancer: From molecular characterization to clinical evidence. Oncogene 2021 40 28 4625 4651 10.1038/s41388‑021‑01863‑w 34145400
    [Google Scholar]
  30. El Darsa H. El Sayed R. Abdel-Rahman O. MET inhibitors for the treatment of gastric cancer: What’s their potential? J. Exp. Pharmacol. 2020 12 349 361 10.2147/JEP.S242958 33116950
    [Google Scholar]
  31. Faiella A. Riccardi F. Cartenì G. Chiurazzi M. Onofrio L. The emerging role of c-Met in carcinogenesis and clinical implications as a possible therapeutic target. J. Oncol. 2022 2022 1 12 10.1155/2022/5179182 35069735
    [Google Scholar]
  32. Chiurillo M.A. Role of the Wnt/β-catenin pathway in gastric cancer: An in-depth literature review. World J. Exp. Med. 2015 5 2 84 102 10.5493/wjem.v5.i2.84 25992323
    [Google Scholar]
  33. Li Y. Zhao Y. Li Y. Zhang X. Li C. Long N. Chen X. Bao L. Zhou J. Xie Y. Gastrin-17 induces gastric cancer cell epithelial-mesenchymal transition via the Wnt/β-catenin signaling pathway. J. Physiol. Biochem. 2021 77 1 93 104 10.1007/s13105‑020‑00780‑y 33625675
    [Google Scholar]
  34. Wu Y. Hu G. Wu R. Gong N. High expression of miR-135b predicts malignant transformation and poor prognosis of gastric cancer. Life Sci. 2020 257 118133 10.1016/j.lfs.2020.118133 32710946
    [Google Scholar]
  35. Ren Y. Guo T. Xu J. Liu Y. Huang J. The novel target of esophageal squamous cell carcinoma: lncRNA GASL1 regulates cell migration, invasion and cell cycle stagnation by inactivating the Wnt3a/β-catenin signaling. Pathol. Res. Pract. 2021 217 153289 10.1016/j.prp.2020.153289 33248356
    [Google Scholar]
  36. Yu Z. Jiang X. Qin L. Deng H. Wang J. Ren W. Li H. Zhao L. Liu H. Yan H. Shi W. Wang Q. Luo C. Long B. Zhou H. Sun H. Jiao Z. A novel UBE2T inhibitor suppresses Wnt/β-catenin signaling hyperactivation and gastric cancer progression by blocking RACK1 ubiquitination. Oncogene 2021 40 5 1027 1042 10.1038/s41388‑020‑01572‑w 33323973
    [Google Scholar]
  37. Ji L. Qian W. Gui L. Ji Z. Yin P. Lin G.N. Wang Y. Ma B. Gao W.Q. Blockade of β-catenin–induced CCL28 suppresses gastric cancer progression via inhibition of treg cell infiltration. Cancer Res. 2020 80 10 2004 2016 10.1158/0008‑5472.CAN‑19‑3074 32156780
    [Google Scholar]
  38. Hata A. Chen Y.G. TGF-β Signaling from Receptors to Smads. Cold Spring Harb. Perspect. Biol. 2016 8 9 a022061 10.1101/cshperspect.a022061 27449815
    [Google Scholar]
  39. Luo J. Chen X.Q. Li P. The role of TGF-β and its receptors in gastrointestinal cancers. Transl. Oncol. 2019 12 3 475 484 10.1016/j.tranon.2018.11.010 30594036
    [Google Scholar]
  40. Moszak M. Szulińska M. Bogdański P. You are what you eat—the relationship between diet, microbiota, and metabolic disorders—A review. Nutrients 2020 12 4 1096 10.3390/nu12041096 32326604
    [Google Scholar]
  41. Khanna S. Tosh P.K. A clinician’s primer on the role of the microbiome in human health and disease. Mayo Clin. Proc. 2014 89 1 107 114 10.1016/j.mayocp.2013.10.011 24388028
    [Google Scholar]
  42. Guarner F. Malagelada J.R. Gut flora in health and disease. Lancet 2003 361 9356 512 519 10.1016/S0140‑6736(03)12489‑0 12583961
    [Google Scholar]
  43. Sears C.L. A dynamic partnership: Celebrating our gut flora. Anaerobe 2005 11 5 247 251 10.1016/j.anaerobe.2005.05.001 16701579
    [Google Scholar]
  44. Poretsky R. Rodriguez-R L.M. Luo C. Tsementzi D. Konstantinidis K.T. Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLoS One 2014 9 4 e93827 10.1371/journal.pone.0093827 24714158
    [Google Scholar]
  45. Mizrahi-Man O. Davenport E.R. Gilad Y. Taxonomic classification of bacterial 16S rRNA genes using short sequencing reads: Evaluation of effective study designs. PLoS One 2013 8 1 e53608 10.1371/journal.pone.0053608 23308262
    [Google Scholar]
  46. Schluter J. Foster K.R. The evolution of mutualism in gut microbiota via host epithelial selection. PLoS Biol. 2012 10 11 e1001424 10.1371/journal.pbio.1001424 23185130
    [Google Scholar]
  47. Costello E.K. Lauber C.L. Hamady M. Fierer N. Gordon J.I. Knight R. Bacterial community variation in human body habitats across space and time. Science 2009 326 5960 1694 1697 10.1126/science.1177486 19892944
    [Google Scholar]
  48. Li J. Jia H. Cai X. Zhong H. Feng Q. Sunagawa S. Arumugam M. Kultima J.R. Prifti E. Nielsen T. Juncker A.S. Manichanh C. Chen B. Zhang W. Levenez F. Wang J. Xu X. Xiao L. Liang S. Zhang D. Zhang Z. Chen W. Zhao H. Al-Aama J.Y. Edris S. Yang H. Wang J. Hansen T. Nielsen H.B. Brunak S. Kristiansen K. Guarner F. Pedersen O. Doré J. Ehrlich S.D. Bork P. Wang J. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 2014 32 8 834 841 10.1038/nbt.2942 24997786
    [Google Scholar]
  49. Bhutta Z.A. Black R.E. Global maternal, newborn, and child health--So near and yet so far. N. Engl. J. Med. 2013 369 23 2226 2235 10.1056/NEJMra1111853 24304052
    [Google Scholar]
  50. Wang J. Zheng J. Shi W. Du N. Xu X. Zhang Y. Ji P. Zhang F. Jia Z. Wang Y. Zheng Z. Zhang H. Zhao F. Dysbiosis of maternal and neonatal microbiota associated with gestational diabetes mellitus. Gut 2018 67 9 1614 1625 10.1136/gutjnl‑2018‑315988 29760169
    [Google Scholar]
  51. Bevins C.L. Salzman N.H. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat. Rev. Microbiol. 2011 9 5 356 368 10.1038/nrmicro2546 21423246
    [Google Scholar]
  52. Ehmann D. Wendler J. Koeninger L. Larsen I.S. Klag T. Berger J. Marette A. Schaller M. Stange E.F. Malek N.P. Jensen B.A.H. Wehkamp J. Paneth cell α-defensins HD-5 and HD-6 display differential degradation into active antimicrobial fragments. Proc. Natl. Acad. Sci. USA 2019 116 9 3746 3751 10.1073/pnas.1817376116 30808760
    [Google Scholar]
  53. Carvalho F.A. Koren O. Goodrich J.K. Johansson M.E.V. Nalbantoglu I. Aitken J.D. Su Y. Chassaing B. Walters W.A. González A. Clemente J.C. Cullender T.C. Barnich N. Darfeuille-Michaud A. Vijay-Kumar M. Knight R. Ley R.E. Gewirtz A.T. Transient inability to manage proteobacteria promotes chronic gut inflammation in TLR5-deficient mice. Cell Host Microbe 2012 12 2 139 152 10.1016/j.chom.2012.07.004 22863420
    [Google Scholar]
  54. Vijay-Kumar M. Aitken J.D. Carvalho F.A. Cullender T.C. Mwangi S. Srinivasan S. Sitaraman S.V. Knight R. Ley R.E. Gewirtz A.T. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 2010 328 5975 228 231 10.1126/science.1179721 20203013
    [Google Scholar]
  55. Ağagündüz D. Cocozza E. Cemali Ö. Bayazıt A.D. Nanì M.F. Cerqua I. Morgillo F. Saygılı S.K. Berni Canani R. Amero P. Capasso R. Understanding the role of the gut microbiome in gastrointestinal cancer: A review. Front. Pharmacol. 2023 14 1130562 10.3389/fphar.2023.1130562 36762108
    [Google Scholar]
  56. Tomova A. Bukovsky I. Rembert E. Yonas W. Alwarith J. Barnard N.D. Kahleova H. The effects of vegetarian and vegan diets on gut microbiota. Front. Nutr. 2019 6 47 10.3389/fnut.2019.00047 31058160
    [Google Scholar]
  57. Jandhyala S.M. Talukdar R. Subramanyam C. Vuyyuru H. Sasikala M. Nageshwar Reddy D. Role of the normal gut microbiota. World J. Gastroenterol. 2015 21 29 8787 8803 10.3748/wjg.v21.i29.8787 26269668
    [Google Scholar]
  58. Begley M. Hill C. Gahan C.G.M. Bile salt hydrolase activity in probiotics. Appl. Environ. Microbiol. 2006 72 3 1729 1738 10.1128/AEM.72.3.1729‑1738.2006 16517616
    [Google Scholar]
  59. Repoila F. Le Bohec F. Guérin C. Lacoux C. Tiwari S. Jaiswal A.K. Santana M.P. Kennedy S.P. Quinquis B. Rainteau D. Juillard V. Furlan S. Bouloc P. Nicolas P. Miyoshi A. Azevedo V. Serror P. Adaptation of the gut pathobiont Enterococcus faecalis to deoxycholate and taurocholate bile acids. Sci. Rep. 2022 12 1 8485 10.1038/s41598‑022‑12552‑3 35590028
    [Google Scholar]
  60. Hrncir T. Gut microbiota dysbiosis: Triggers, consequences, diagnostic and therapeutic options. Microorganisms 2022 10 3 578 10.3390/microorganisms10030578 35336153
    [Google Scholar]
  61. DeGruttola A.K. Low D. Mizoguchi A. Mizoguchi E. Current understanding of dysbiosis in disease in human and animal models. Inflamm. Bowel Dis. 2016 22 5 1137 1150 10.1097/MIB.0000000000000750 27070911
    [Google Scholar]
  62. O’Callaghan A. van Sinderen D. Bifidobacteria and their role as members of the human gut microbiota. Front. Microbiol. 2016 7 925 10.3389/fmicb.2016.00925 27379055
    [Google Scholar]
  63. Tojo R. Suárez A. Clemente M.G. de los Reyes-Gavilán C.G. Margolles A. Gueimonde M. Ruas-Madiedo P. Intestinal microbiota in health and disease: Role of bifidobacteria in gut homeostasis. World J. Gastroenterol. 2014 20 41 15163 15176 10.3748/wjg.v20.i41.15163 25386066
    [Google Scholar]
  64. González-Rodríguez I. Ruiz L. Gueimonde M. Margolles A. Sánchez B. Factors involved in the colonization and survival of bifidobacteria in the gastrointestinal tract. FEMS Microbiol. Lett. 2013 340 1 1 10 10.1111/1574‑6968.12056 23181549
    [Google Scholar]
  65. Wei H. Chen L. Lian G. Yang J. Li F. Zou Y. Lu F. Yin Y. Antitumor mechanisms of bifidobacteria. Oncol. Lett. 2018 16 1 3 8 29963126
    [Google Scholar]
  66. Zeng M.Y. Inohara N. Nuñez G. Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Mucosal Immunol. 2017 10 1 18 26 10.1038/mi.2016.75 27554295
    [Google Scholar]
  67. Arrieta M.C. Stiemsma L.T. Amenyogbe N. Brown E.M. Finlay B. The intestinal microbiome in early life: Health and disease. Front. Immunol. 2014 5 427 10.3389/fimmu.2014.00427 25250028
    [Google Scholar]
  68. Baldelli V. Scaldaferri F. Putignani L. Del Chierico F. The role of enterobacteriaceae in gut microbiota dysbiosis in inflammatory bowel diseases. Microorganisms 2021 9 4 697 10.3390/microorganisms9040697 33801755
    [Google Scholar]
  69. Morgan X.C. Tickle T.L. Sokol H. Gevers D. Devaney K.L. Ward D.V. Reyes J.A. Shah S.A. LeLeiko N. Snapper S.B. Bousvaros A. Korzenik J. Sands B.E. Xavier R.J. Huttenhower C. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012 13 9 R79 10.1186/gb‑2012‑13‑9‑r79 23013615
    [Google Scholar]
  70. Qiu P. Ishimoto T. Fu L. Zhang J. Zhang Z. Liu Y. The gut microbiota in inflammatory bowel disease. Front. Cell. Infect. Microbiol. 2022 12 733992 10.3389/fcimb.2022.733992 35273921
    [Google Scholar]
  71. Zaiatz Bittencourt V. Jones F. Doherty G. Ryan E.J. Targeting immune cell metabolism in the treatment of inflammatory bowel disease. Inflamm. Bowel Dis. 2021 27 10 1684 1693 10.1093/ibd/izab024 33693743
    [Google Scholar]
  72. Liu T. Li J. Liu Y. Xiao N. Suo H. Xie K. Yang C. Wu C. Short-chain fatty acids suppress lipopolysaccharide-induced production of nitric oxide and proinflammatory cytokines through inhibition of NF-κB pathway in RAW264.7 cells. Inflammation 2012 35 5 1676 1684 10.1007/s10753‑012‑9484‑z 22669487
    [Google Scholar]
  73. Scales B.S. Dickson R.P. Huffnagle G.B. A tale of two sites: How inflammation can reshape the microbiomes of the gut and lungs. J. Leukoc. Biol. 2016 100 5 943 950 10.1189/jlb.3MR0316‑106R 27365534
    [Google Scholar]
  74. Larsen J.M. Musavian H.S. Butt T.M. Ingvorsen C. Thysen A.H. Brix S. Chronic obstructive pulmonary disease and asthma‐associated Proteobacteria, but not commensal Prevotella spp., promote T oll‐like receptor 2‐independent lung inflammation and pathology. Immunology 2015 144 2 333 342 10.1111/imm.12376 25179236
    [Google Scholar]
  75. Hemmi H. Takeuchi O. Kawai T. Kaisho T. Sato S. Sanjo H. Matsumoto M. Hoshino K. Wagner H. Takeda K. Akira S. A toll-like receptor recognizes bacterial DNA. Nature 2000 408 6813 740 745 10.1038/35047123 11130078
    [Google Scholar]
  76. Martinson J.N.V. Walk S.T. Escherichia coli residency in the gut of healthy human adults. Ecosal Plus 2020 9 1 10.1128/ecosalplus.ESP-0003-2020 10.1128/ecosalplus.esp‑0003‑2020 32978935
    [Google Scholar]
  77. Tomas J. Reygner J. Mayeur C. Ducroc R. Bouet S. Bridonneau C. Cavin J.B. Thomas M. Langella P. Cherbuy C. Early colonizing Esche richia coli elicits remodeling of rat colonic epithelium shifting toward a new homeostatic state. ISME J. 2015 9 1 46 58 10.1038/ismej.2014.111 25012905
    [Google Scholar]
  78. Jiang M. Cao Y. Guo Z.F. Chen M. Chen X. Guo Z. Menaquinone biosynthesis in Escherichia coli: Identification of 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate as a novel intermediate and re-evaluation of MenD activity. Biochemistry 2007 46 38 10979 10989 10.1021/bi700810x 17760421
    [Google Scholar]
  79. Karl J.P. Meydani M. Barnett J.B. Vanegas S.M. Barger K. Fu X. Goldin B. Kane A. Rasmussen H. Vangay P. Knights D. Jonnalagadda S.S. Saltzman E. Roberts S.B. Meydani S.N. Booth S.L. Fecal concentrations of bacterially derived vitamin K forms are associated with gut microbiota composition but not plasma or fecal cytokine concentrations in healthy adults. Am. J. Clin. Nutr. 2017 106 4 1052 1061 10.3945/ajcn.117.155424 28814395
    [Google Scholar]
  80. Fang H. Kang J. Zhang D. Microbial production of vitamin B12: A review and future perspectives. Microb. Cell Fact. 2017 16 1 15 10.1186/s12934‑017‑0631‑y 28137297
    [Google Scholar]
  81. Degnan P.H. Taga M.E. Goodman A.L. Vitamin B12 as a modulator of gut microbial ecology. Cell Metab. 2014 20 5 769 778 25440056
    [Google Scholar]
  82. Ducarmon Q.R. Zwittink R.D. Hornung B.V.H. van Schaik W. Young V.B. Kuijper E.J. Gut microbiota and colonization resistance against bacterial enteric infection. Microbiol. Mol. Biol. Rev. 2019 83 3 e00007-19 10.1128/MMBR.00007‑19 31167904
    [Google Scholar]
  83. Ibrahim S.A. Lactic Acid Bacteria: Lactobacillus spp.: Other Species., Reference Module in Food Science. Elsevier 2016
    [Google Scholar]
  84. Vancamelbeke M. Vermeire S. The intestinal barrier: A fundamental role in health and disease. Expert Rev. Gastroenterol. Hepatol. 2017 11 9 821 834 10.1080/17474124.2017.1343143 28650209
    [Google Scholar]
  85. Plaza-Diaz J. Ruiz-Ojeda F.J. Gil-Campos M. Gil A. Mechanisms of Action of Probiotics. Adv. Nutr. 2019 10 Suppl. 1 S49 S66 10.1093/advances/nmy063 30721959
    [Google Scholar]
  86. Sartor R.B. Probiotic therapy of intestinal inflammation and infections. Curr. Opin. Gastroenterol. 2005 21 1 44 50 15687884
    [Google Scholar]
  87. Panpetch W. Phuengmaung P. Cheibchalard T. Somboonna N. Leelahavanichkul A. Tumwasorn S. Lacticaseibacillus casei Strain T21 attenuates Clostridioides difficile infection in a murine model through reduction of inflammation and gut dysbiosis with decreased toxin lethality and enhanced mucin production. Front. Microbiol. 2021 12 745299 10.3389/fmicb.2021.745299 34925261
    [Google Scholar]
  88. Fernández-Tomé S. Ortega Moreno L. Chaparro M. Gisbert J.P. Gut microbiota and dietary factors as modulators of the mucus layer in inflammatory bowel disease. Int. J. Mol. Sci. 2021 22 19 10224 10.3390/ijms221910224 34638564
    [Google Scholar]
  89. Martín R. Chamignon C. Mhedbi-Hajri N. Chain F. Derrien M. Escribano-Vázquez U. Garault P. Cotillard A. Pham H.P. Chervaux C. Bermúdez-Humarán L.G. Smokvina T. Langella P. The potential probiotic Lactobacillus rhamnosus CNCM I-3690 strain protects the intestinal barrier by stimulating both mucus production and cytoprotective response. Sci. Rep. 2019 9 1 5398 10.1038/s41598‑019‑41738‑5 30931953
    [Google Scholar]
  90. Schlee M. Harder J. Köten B. Stange E.F. Wehkamp J. Fellermann K. Probiotic lactobacilli and VSL#3 induce enterocyte β-defensin 2. Clin. Exp. Immunol. 2008 151 3 528 535 10.1111/j.1365‑2249.2007.03587.x 18190603
    [Google Scholar]
  91. Alakomi H.L. Skyttä E. Saarela M. Mattila-Sandholm T. Latva-Kala K. Helander I.M. Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl. Environ. Microbiol. 2000 66 5 2001 2005 10.1128/AEM.66.5.2001‑2005.2000 10788373
    [Google Scholar]
  92. Atassi F. Servin A.L. Individual and co-operative roles of lactic acid and hydrogen peroxide in the killing activity of enteric strain Lactobacillus johnsonii NCC933 and vaginal strain Lactobacillus gasseri KS120.1 against enteric, uropathogenic and vaginosis-associated pathog. FEMS Microbiol. Lett. 2010 304 1 29 38 10.1111/j.1574‑6968.2009.01887.x 20082639
    [Google Scholar]
  93. Feng Y. Wang Y. Wang P. Huang Y. Wang F. Short-chain fatty acids manifest stimulative and protective effects on intestinal barrier function through the inhibition of NLRP3 inflammasome and autophagy. Cell. Physiol. Biochem. 2018 49 1 190 205 10.1159/000492853 30138914
    [Google Scholar]
  94. Todorov S.D. Bacteriocins from Lactobacillus plantarum production, genetic organization and mode of action: Produção, organização genética e modo de ação. Braz. J. Microbiol. 2009 40 2 209 221 10.1590/S1517‑83822009000200001 24031346
    [Google Scholar]
  95. Ulluwishewa D. Anderson R.C. McNabb W.C. Moughan P.J. Wells J.M. Roy N.C. Regulation of tight junction permeability by intestinal bacteria and dietary components. J. Nutr. 2011 141 5 769 776 10.3945/jn.110.135657 21430248
    [Google Scholar]
  96. Hummel S. Veltman K. Cichon C. Sonnenborn U. Schmidt M.A. Differential targeting of the E-Cadherin/β-Catenin complex by gram-positive probiotic lactobacilli improves epithelial barrier function. Appl. Environ. Microbiol. 2012 78 4 1140 1147 10.1128/AEM.06983‑11 22179242
    [Google Scholar]
  97. Yadav A.K. Tyagi A. Kumar A. Panwar S. Grover S. Saklani A.C. Hemalatha R. Batish V.K. Adhesion of Lactobacilli and their anti-infectivity potential. Crit. Rev. Food Sci. Nutr. 2017 57 10 2042 2056 10.1080/10408398.2014.918533 25879917
    [Google Scholar]
  98. Jensen H. Roos S. Jonsson H. Rud I. Grimmer S. van Pijkeren J.P. Britton R.A. Axelsson L. Role of Lactobacillus reuteri cell and mucus-binding protein A (CmbA) in adhesion to intestinal epithelial cells and mucus in vitro. Microbiology 2014 160 4 671 681 10.1099/mic.0.073551‑0 24473252
    [Google Scholar]
  99. Gibson G.R. Roberfroid M.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 1995 125 6 1401 1412 10.1093/jn/125.6.1401 7782892
    [Google Scholar]
  100. Gibson G.R. Hutkins R. Sanders M.E. Prescott S.L. Reimer R.A. Salminen S.J. Scott K. Stanton C. Swanson K.S. Cani P.D. Verbeke K. Reid G. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017 14 8 491 502 10.1038/nrgastro.2017.75 28611480
    [Google Scholar]
  101. Stinson L.F. Payne M.S. Keelan J.A. Planting the seed: Origins, composition, and postnatal health significance of the fetal gastrointestinal microbiota. Crit. Rev. Microbiol. 2017 43 3 352 369 10.1080/1040841X.2016.1211088 27931152
    [Google Scholar]
  102. Davani-Davari D. Negahdaripour M. Karimzadeh I. Seifan M. Mohkam M. Masoumi S. Berenjian A. Ghasemi Y. Prebiotics: Definition, types, sources, mechanisms, and clinical applications. Foods 2019 8 3 92 10.3390/foods8030092 30857316
    [Google Scholar]
  103. Louis P. Flint H.J. Michel C. How to manipulate the microbiota: Prebiotics. Adv. Exp. Med. Biol. 2016 902 119 142 10.1007/978‑3‑319‑31248‑4_9 27161355
    [Google Scholar]
  104. Gibson G.R. Scott K.P. Rastall R.A. Tuohy K.M. Hotchkiss A. Dubert-Ferrandon A. Gareau M. Murphy E.F. Saulnier D. Loh G. Macfarlane S. Dietary prebiotics: Current status and new definition. Food Sci Technol Bull Funct Foods 2010 7 1 1 19 10.1616/1476‑2137.15880
    [Google Scholar]
  105. Johnson C.R. Thavarajah D. Combs G.F. Jr Thavarajah P. Lentil (Lens culinaris L.): A prebiotic-rich whole food legume. Food Res. Int. 2013 51 1 107 113 10.1016/j.foodres.2012.11.025
    [Google Scholar]
  106. Whelan K. Mechanisms and effectiveness of prebiotics in modifying the gastrointestinal microbiota for the management of digestive disorders. Proc. Nutr. Soc. 2013 72 3 288 298 10.1017/S0029665113001262 23680358
    [Google Scholar]
  107. Fuentes-Zaragoza E. Sánchez-Zapata E. Sendra E. Sayas E. Navarro C. Fernández-López J. Pérez-Alvarez J.A. Resistant starch as prebiotic: A review. Stärke 2011 63 7 406 415 10.1002/star.201000099
    [Google Scholar]
  108. Yoo H.D. Kim D.J. Paek S.H. Oh S-E. Plant cell wall polysaccharides as potential resources for the development of novel prebiotics. Biomol. Ther. 2012 20 4 371 379 10.4062/biomolther.2012.20.4.371 24009823
    [Google Scholar]
  109. Gullón B. Gómez B. Martínez-Sabajanes M. Yáñez R. Parajó J.C. Alonso J.L. Pectic oligosaccharides: Manufacture and functional properties. Trends Food Sci. Technol. 2013 30 2 153 161 10.1016/j.tifs.2013.01.006
    [Google Scholar]
  110. Tzounis X. Rodriguez-Mateos A. Vulevic J. Gibson G.R. Kwik-Uribe C. Spencer J.P.E. Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. Am. J. Clin. Nutr. 2011 93 1 62 72 10.3945/ajcn.110.000075 21068351
    [Google Scholar]
  111. Weijers C.A.G.M. Franssen M.C.R. Visser G.M. Glycosyltransferase-catalyzed synthesis of bioactive oligosaccharides. Biotechnol. Adv. 2008 26 5 436 456 10.1016/j.biotechadv.2008.05.001 18565714
    [Google Scholar]
  112. Priem B. Gilbert M. Wakarchuk W.W. Heyraud A. Samain E. A new fermentation process allows large-scale production of human milk oligosaccharides by metabolically engineered bacteria. Glycobiology 2002 12 4 235 240 10.1093/glycob/12.4.235 12042246
    [Google Scholar]
  113. Benkoulouche M. Fauré R. Remaud-Siméon M. Moulis C. André I. Harnessing glycoenzyme engineering for synthesis of bioactive oligosaccharides. Interface Focus 2019 9 2 20180069 10.1098/rsfs.2018.0069 30842872
    [Google Scholar]
  114. Smaali I. Maugard T. Limam F. Legoy M-D. Marzouki N. Efficient synthesis of gluco-oligosaccharides and alkyl-glucosides by transglycosylation activity of β-glucosidase from Sclerotinia sclerotiorum. World J. Microbiol. Biotechnol. 2007 23 1 145 149 10.1007/s11274‑006‑9185‑6
    [Google Scholar]
  115. Ji E.S. Park N.H. Oh D.K. Galacto-oligosaccharide production by a thermostable recombinant β-galactosidase from Thermotoga maritima. World J. Microbiol. Biotechnol. 2005 21 5 759 764 10.1007/s11274‑004‑5487‑8
    [Google Scholar]
  116. Demain A.L. Vaishnav P. Production of recombinant proteins by microbes and higher organisms. Biotechnol. Adv. 2009 27 3 297 306 10.1016/j.biotechadv.2009.01.008 19500547
    [Google Scholar]
  117. Caicedo L. Silva E. Sánchez O. Semibatch and continuous fructooligosaccharides production by Aspergillus sp. N74 in a mechanically agitated airlift reactor. J. Chem. Technol. Biotechnol. 2009 84 5 650 656 10.1002/jctb.2095
    [Google Scholar]
  118. Sangeetha P.T. Ramesh M.N. Prapulla S.G. Production of fructosyl transferase by Aspergillus oryzae CFR 202 in solid-state fermentation using agricultural by-products. Appl. Microbiol. Biotechnol. 2004 65 5 530 537 10.1007/s00253‑004‑1618‑2 15221221
    [Google Scholar]
  119. Prata M.B. Mussatto S.I. Rodrigues L.R. Teixeira J.A. Fructooligosaccharide production by Penicillium expansum. Biotechnol. Lett. 2010 32 6 837 840 10.1007/s10529‑010‑0231‑y 20213526
    [Google Scholar]
  120. Pekmez C.T. Dragsted L.O. Brahe L.K. Gut microbiota alterations and dietary modulation in childhood malnutrition – The role of short chain fatty acids. Clin. Nutr. 2019 38 2 615 630 10.1016/j.clnu.2018.02.014 29496274
    [Google Scholar]
  121. Munir A. Azam S. Mehmood A. Structure-based pharmacophore modeling, virtual screening and molecular docking for the treatment of ESR1 mutations in breast cancer. Drug Des. 2016 5 3 5 10.4172/2169‑0138.1000137
    [Google Scholar]
  122. Yadav A.K. Saraswat S. Sirohi P. Rani M. Srivastava S. Singh M.P. Singh N.K. Antimicrobial action of methanolic seed extracts of Syzygium cumini Linn. on Bacillus subtilis. AMB Express 2017 7 1 196 10.1186/s13568‑017‑0500‑4 29098477
    [Google Scholar]
  123. Burokas A. Arboleya S. Moloney R.D. Peterson V.L. Murphy K. Clarke G. Stanton C. Dinan T.G. Cryan J.F. Targeting the microbiota-gut-brain axis: Prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biol. Psychiatry 2017 82 7 472 487 10.1016/j.biopsych.2016.12.031 28242013
    [Google Scholar]
  124. Serova L.I. Nwokafor C. Van Bockstaele E.J. Reyes B.A.S. Lin X. Sabban E.L. Single prolonged stress PTSD model triggers progressive severity of anxiety, altered gene expression in locus coeruleus and hypothalamus and effected sensitivity to NPY. Eur. Neuropsychopharmacol. 2019 29 4 482 492 10.1016/j.euroneuro.2019.02.010 30878321
    [Google Scholar]
  125. Szklany K. Wopereis H. de Waard C. van Wageningen T. An R. van Limpt K. Knol J. Garssen J. Knippels L.M.J. Belzer C. Kraneveld A.D. Supplementation of dietary non-digestible oligosaccharides from birth onwards improve social and reduce anxiety-like behaviour in male BALB/c mice. Nutr. Neurosci. 2020 23 11 896 910 10.1080/1028415X.2019.1576362 30871432
    [Google Scholar]
  126. Tomasello G. Mazzola M. Leone A. Sinagra E. Zummo G. Farina F. Damiani P. Cappello F. Gerges Geagea A. Jurjus A. Bou Assi T. Messina M. Carini F. Nutrition, oxidative stress and intestinal dysbiosis: Influence of diet on gut microbiota in inflammatory bowel diseases. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2016 160 4 461 466 10.5507/bp.2016.052 27812084
    [Google Scholar]
  127. Ghoshal U.C. Ghoshal U. Small intestinal bacterial overgrowth and other intestinal disorders. Gastroenterol. Clin. North Am. 2017 46 1 103 120 10.1016/j.gtc.2016.09.008 28164845
    [Google Scholar]
  128. Wang Z. Cui T. Wang Q. Optimization of degradation conditions and analysis of degradation mechanism for nitrite by Bacillus aryabhattai 47. Sci. Total Environ. 2024 921 171096 10.1016/j.scitotenv.2024.171096 38387569
    [Google Scholar]
  129. Newberry S.J. Newberry S.J. Maher A.R. Wang Z. Miles J.N. Shanman R. Johnsen B. Shekelle P.G. Probiotics for the prevention and treatment of antibiotic-associated diarrhea: A systematic review and meta-analysis. JAMA 2012 307 18 1959 1969 10.1001/jama.2012.3507 22570464
    [Google Scholar]
  130. Shukla P. Nguyen H.T. Torian U. Engle R.E. Faulk K. Dalton H.R. Bendall R.P. Keane F.E. Purcell R.H. Emerson S.U. Cross-species infections of cultured cells by hepatitis E virus and discovery of an infectious virus–host recombinant. Proc. Natl. Acad. Sci. USA 2011 108 6 2438 2443 10.1073/pnas.1018878108 21262830
    [Google Scholar]
  131. Agrawal A. Budney A.J. Lynskey M.T. The co‐occurring use and misuse of cannabis and tobacco: A review. Addiction 2012 107 7 1221 1233 10.1111/j.1360‑0443.2012.03837.x 22300456
    [Google Scholar]
  132. Guglielmetti S. Mora D. Gschwender M. Popp K. Randomised clinical trial: Bifidobacterium bifidum MIMBb75 significantly alleviates irritable bowel syndrome and improves quality of life -- A double-blind, placebo-controlled study. Aliment. Pharmacol. Ther. 2011 33 10 1123 1132 10.1111/j.1365‑2036.2011.04633.x 21418261
    [Google Scholar]
  133. Ford A.C. Quigley E.M.M. Lacy B.E. Lembo A.J. Saito Y.A. Schiller L.R. Soffer E.E. Spiegel B.M.R. Moayyedi P. Efficacy of prebiotics, probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation: Systematic review and meta-analysis. Am. J. Gastroenterol. 2014 109 10 1547 1561 10.1038/ajg.2014.202 25070051
    [Google Scholar]
  134. Waitzberg D.L. Logullo L.C. Bittencourt A.F. Torrinhas R.S. Shiroma G.M. Paulino N.P. Teixeira-da-Silva M.L. Effect of synbiotic in constipated adult women – A randomized, double-blind, placebo-controlled study of clinical response. Clin. Nutr. 2013 32 1 27 33 10.1016/j.clnu.2012.08.010 22959620
    [Google Scholar]
  135. Yeun Y. Lee J. Effect of a double-coated probiotic formulation on functional constipation in the elderly: A randomized, double blind, controlled study. Arch. Pharm. Res. 2015 38 7 1345 1350 10.1007/s12272‑014‑0522‑2 25488344
    [Google Scholar]
  136. Tursi A. Scarpignato C. Strate L.L. Lanas A. Kruis W. Lahat A. Danese S. Colonic diverticular disease. Nat. Rev. Dis. Primers 2020 6 1 20 10.1038/s41572‑020‑0153‑5 32218442
    [Google Scholar]
  137. Grüber C. van Stuijvenberg M. Mosca F. Moro G. Chirico G. Braegger C.P. Riedler J. Boehm G. Wahn U. Reduced occurrence of early atopic dermatitis because of immunoactive prebiotics among low-atopy-risk infants. J. Allergy Clin. Immunol. 2010 126 4 791 797 10.1016/j.jaci.2010.07.022 20832848
    [Google Scholar]
  138. Moro G. Arslanoglu S. Stahl B. Jelinek J. Wahn U. Boehm G. A mixture of prebiotic oligosaccharides reduces the incidence of atopic dermatitis during the first six months of age. Arch. Dis. Child. 2006 91 10 814 819 10.1136/adc.2006.098251 16873437
    [Google Scholar]
  139. Adrianna B. Sylwia S. Amin M.K. Krystian M. Health benefits of resistant starch: A review of the literature. J. Funct. Foods 2022 93 105094 10.1016/j.jff.2022.105094
    [Google Scholar]
  140. Clemente J.C. Ursell L.K. Parfrey L.W. Knight R. The impact of the gut microbiota on human health: An integrative view. Cell 2012 148 6 1258 1270 10.1016/j.cell.2012.01.035 22424233
    [Google Scholar]
  141. Ueno N. Fujiya M. Segawa S. Nata T. Moriichi K. Tanabe H. Mizukami Y. Kobayashi N. Ito K. Kohgo Y. Heat-killed body of lactobacillus brevis SBC8803 ameliorates intestinal injury in a murine model of colitis by enhancing the intestinal barrier function. Inflamm. Bowel Dis. 2011 17 11 2235 2250 10.1002/ibd.21597 21987297
    [Google Scholar]
  142. Kim S.J. Kang C.H. Kim G.H. Cho H. Anti-Tumor effects of heat-killed L. reuteri Mg5346 and L. casei Mg4584 against human colorectal carcinoma through caspase-9-dependent apoptosis in xenograft model. Microorganisms 2022 10 3 533 10.3390/microorganisms10030533 35336106
    [Google Scholar]
  143. Salminen S. Collado M.C. Endo A. Hill C. Lebeer S. Quigley E.M.M. Sanders M.E. Shamir R. Swann J.R. Szajewska H. Vinderola G. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021 18 9 649 667 10.1038/s41575‑021‑00440‑6 33948025
    [Google Scholar]
  144. Aguilar-Toalá J.E. Garcia-Varela R. Garcia H.S. Mata-Haro V. González-Córdova A.F. Vallejo-Cordoba B. Hernández-Mendoza A. Postbiotics: An evolving term within the functional foods field. Trends Food Sci. Technol. 2018 75 105 114 10.1016/j.tifs.2018.03.009
    [Google Scholar]
  145. Deshpande G. Athalye-Jape G. Patole S. Para-probiotics for preterm neonates—The next frontier. Nutrients 2018 10 7 871 10.3390/nu10070871 29976885
    [Google Scholar]
  146. Taverniti V. Guglielmetti S. The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: Proposal of paraprobiotic concept). Genes Nutr. 2011 6 3 261 274 10.1007/s12263‑011‑0218‑x 21499799
    [Google Scholar]
  147. Chen Y.T. Hsieh P.S. Ho H.H. Hsieh S.H. Kuo Y.W. Yang S.F. Lin C.W. Antibacterial activity of viable and heat‐killed probiotic strains against oral pathogens. Lett. Appl. Microbiol. 2020 70 4 310 317 10.1111/lam.13275 31955445
    [Google Scholar]
  148. Maeda N. Nakamura R. Hirose Y. Murosaki S. Yamamoto Y. Kase T. Yoshikai Y. Oral administration of heat-killed Lactobacillus plantarum L-137 enhances protection against influenza virus infection by stimulation of type I interferon production in mice. Int. Immunopharmacol. 2009 9 9 1122 1125 10.1016/j.intimp.2009.04.015 19410659
    [Google Scholar]
  149. Żółkiewicz J. Marzec A. Ruszczyński M. Feleszko W. Postbiotics—A step beyond pre- and probiotics. Nutrients 2020 12 8 2189 10.3390/nu12082189 32717965
    [Google Scholar]
  150. Kim Y.J. Yu H.H. Park Y.J. Lee N.K. Paik H.D. Anti-biofilm activity of cell-free supernatant of Saccharomyces cerevisiae against Staphylococcus aureus. J. Microbiol. Biotechnol. 2020 30 12 1854 1861 10.4014/jmb.2008.08053 32958735
    [Google Scholar]
  151. Schwenninger S.M. Lacroix C. Truttmann S. Jans C. Spörndli C. Bigler L. Meile L. Characterization of low-molecular-weight antiyeast metabolites produced by a food-protective Lactobacillus-Propionibacterium coculture. J. Food Prot. 2008 71 12 2481 2487 10.4315/0362‑028X‑71.12.2481 19244902
    [Google Scholar]
  152. Amaretti A. di Nunzio M. Pompei A. Raimondi S. Rossi M. Bordoni A. Antioxidant properties of potentially probiotic bacteria: In vitro and in vivo activities. Appl. Microbiol. Biotechnol. 2013 97 2 809 817 10.1007/s00253‑012‑4241‑7 22790540
    [Google Scholar]
  153. Lee J. Lee J.E. Kim S. Kang D. Yoo H.M. Evaluating cell death using cell-free supernatant of probiotics in three-dimensional spheroid cultures of colorectal cancer cells. J. Vis. Exp. 2020 160 10.3791/61285 32597876
    [Google Scholar]
  154. Pahumunto N. Teanpaisan R. Anti-cancer properties of potential probiotics and their cell-free supernatants for the prevention of colorectal cancer: An in vitro study. Probiotics Antimicrob. Proteins 2023 15 5 1137 1150 10.1007/s12602‑022‑09972‑y 35895217
    [Google Scholar]
  155. Escamilla J. Lane M.A. Maitin V. Cell-free supernatants from probiotic Lactobacillus casei and Lactobacillus rhamnosus GG decrease colon cancer cell invasion in vitro. Nutr. Cancer 2012 64 6 871 878 10.1080/01635581.2012.700758 22830611
    [Google Scholar]
  156. Bahmani S. Azarpira N. Moazamian E. Anti-colon cancer activity of Bifidobacterium metabolites on colon cancer cell line SW742. Turk. J. Gastroenterol. 2019 30 9 835 842 10.5152/tjg.2019.18451 31530527
    [Google Scholar]
  157. Chuah L.O. Foo H.L. Loh T.C. Mohammed Alitheen N.B. Yeap S.K. Abdul Mutalib N.E. Abdul Rahim R. Yusoff K. Postbiotic metabolites produced by Lactobacillus plantarum strains exert selective cytotoxicity effects on cancer cells. BMC Complement. Altern. Med. 2019 19 1 114 10.1186/s12906‑019‑2528‑2 31159791
    [Google Scholar]
  158. Lee K. Kwak J.H. Pyo S. Inhibition of LPS-induced inflammatory mediators by 3-hydroxyanthranilic acid in macrophages through suppression of PI3K/NF-κB signaling pathways. Food Funct. 2016 7 7 3073 3082 10.1039/C6FO00187D 27264984
    [Google Scholar]
  159. Tian Y. Xu Q. Sun L. Ye Y. Ji G. Short-chain fatty acids administration is protective in colitis-associated colorectal cancer development. J. Nutr. Biochem. 2018 57 103 109 10.1016/j.jnutbio.2018.03.007 29694938
    [Google Scholar]
  160. Brown A.J. Goldsworthy S.M. Barnes A.A. Eilert M.M. Tcheang L. Daniels D. Muir A.I. Wigglesworth M.J. Kinghorn I. Fraser N.J. Pike N.B. Strum J.C. Steplewski K.M. Murdock P.R. Holder J.C. Marshall F.H. Szekeres P.G. Wilson S. Ignar D.M. Foord S.M. Wise A. Dowell S.J. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 2003 278 13 11312 11319 10.1074/jbc.M211609200 12496283
    [Google Scholar]
  161. Bultman S.J. Molecular pathways: Gene-environment interactions regulating dietary fiber induction of proliferation and apoptosis via butyrate for cancer prevention. Clin. Cancer Res. 2014 20 4 799 803 10.1158/1078‑0432.CCR‑13‑2483 24270685
    [Google Scholar]
  162. Tan J. McKenzie C. Potamitis M. Thorburn A.N. Mackay C.R. Macia L. The role of short-chain fatty acids in health and disease. Adv. Immunol. 2014 121 91 119 10.1016/B978‑0‑12‑800100‑4.00003‑9 24388214
    [Google Scholar]
  163. Chen J. Vitetta L. Intestinal dysbiosis in celiac disease: Decreased butyrate production may facilitate the onset of the disease. Proc. Natl. Acad. Sci. USA 2021 118 41 e2113655118 10.1073/pnas.2113655118 34607962
    [Google Scholar]
  164. Wu X. Wu Y. He L. Wu L. Wang X. Liu Z. Effects of the intestinal microbial metabolite butyrate on the development of colorectal cancer. J. Cancer 2018 9 14 2510 2517 10.7150/jca.25324 30026849
    [Google Scholar]
  165. Yu D.C.W. Waby J.S. Chirakkal H. Staton C.A. Corfe B.M. Butyrate suppresses expression of neuropilin I in colorectal cell lines through inhibition of Sp1 transactivation. Mol. Cancer 2010 9 1 276 10.1186/1476‑4598‑9‑276 20950431
    [Google Scholar]
  166. Oerlemans M.M.P. Akkerman R. Ferrari M. Walvoort M.T.C. de Vos P. Benefits of bacteria-derived exopolysaccharides on gastrointestinal microbiota, immunity and health. J. Funct. Foods 2021 76 104289 10.1016/j.jff.2020.104289
    [Google Scholar]
  167. Deepak V. Ram Kumar Pandian S. Sivasubramaniam S.D. Nellaiah H. Sundar K. Optimization of anticancer exopolysaccharide production from probiotic Lactobacillus acidophilus by response surface methodology. Prep. Biochem. Biotechnol. 2016 46 3 288 297 10.1080/10826068.2015.1031386 25831127
    [Google Scholar]
  168. Takeuchi O. Akira S. Pattern recognition receptors and inflammation. Cell 2010 140 6 805 820 10.1016/j.cell.2010.01.022 20303872
    [Google Scholar]
  169. Tsuda H. Hara K. Miyamoto T. Binding of mutagens to exopolysaccharide produced by Lactobacillus plantarum mutant strain 301102S. J. Dairy Sci. 2008 91 8 2960 2966 10.3168/jds.2007‑0538 18650272
    [Google Scholar]
  170. Zhou X. Hong T. Yu Q. Nie S. Gong D. Xiong T. Xie M. Exopolysaccharides from Lactobacillus plantarum NCU116 induce c-Jun dependent Fas/Fasl-mediated apoptosis via TLR2 in mouse intestinal epithelial cancer cells. Sci. Rep. 2017 7 1 14247 10.1038/s41598‑017‑14178‑2 29079852
    [Google Scholar]
  171. Hill M.J. Intestinal flora and endogenous vitamin synthesis. Eur. J. Cancer Prev. 1997 6 Suppl. 1 S43 S45 10.1097/00008469‑199703001‑00009 9167138
    [Google Scholar]
  172. Nalini N. Manju V. Menon V.P. Effect of coconut cake on the bacterial enzyme activity in 1,2-dimethyl hydrazine induced colon cancer. Clin. Chim. Acta 2004 342 1-2 203 210 10.1016/j.cccn.2004.01.001 15026282
    [Google Scholar]
  173. LeBlanc J.G. del Carmen S. Miyoshi A. Azevedo V. Sesma F. Langella P. Bermúdez-Humarán L.G. Watterlot L. Perdigon G. de Moreno de LeBlanc A. Use of superoxide dismutase and catalase producing lactic acid bacteria in TNBS induced Crohn’s disease in mice. J. Biotechnol. 2011 151 3 287 293 10.1016/j.jbiotec.2010.11.008 21167883
    [Google Scholar]
  174. Shimada Y. Kinoshita M. Harada K. Mizutani M. Masahata K. Kayama H. Takeda K. Commensal bacteria-dependent indole production enhances epithelial barrier function in the colon. PLoS One 2013 8 11 e80604 10.1371/journal.pone.0080604 24278294
    [Google Scholar]
  175. Busbee P.B. Menzel L. Alrafas H. Dopkins N. Becker W. Miranda K. Tang C. Chatterjee S. Singh U. Nagarkatti M. Nagarkatti P.S. Indole-3-carbinol prevents colitis and associated microbial dysbiosis in an IL-22–dependent manner. JCI Insight 2020 5 1 e127551 10.1172/jci.insight.127551 31941837
    [Google Scholar]
  176. Cervantes-Barragan L. Chai J.N. Tianero M.D. Di Luccia B. Ahern P.P. Merriman J. Cortez V.S. Caparon M.G. Donia M.S. Gilfillan S. Cella M. Gordon J.I. Hsieh C.S. Colonna M. Lactobacillus reuteri induces gut intraepithelial CD4 + CD8αα + T cells. Science 2017 357 6353 806 810 10.1126/science.aah5825 28775213
    [Google Scholar]
  177. Walczak K. Langner E. Szalast K. Makuch-Kocka A. Pożarowski P. Plech T. A tryptophan metabolite, 8-Hydroxyquinaldic acid, exerts antiproliferative and anti-migratory effects on colorectal cancer cells. Molecules 2020 25 7 1655 10.3390/molecules25071655 32260268
    [Google Scholar]
  178. Hague A. Elder D.J.E. Hicks D.J. Paraskeva C. Apoptosis in colorectal tumour cells: Induction by the short chain fatty acids butyrate, propionate and acetate and by the bile salt deoxycholate. Int. J. Cancer 1995 60 3 400 406 10.1002/ijc.2910600322 7829251
    [Google Scholar]
  179. Cai J. Sun L. Gonzalez F.J. Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis. Cell Host Microbe 2022 30 3 289 300 10.1016/j.chom.2022.02.004 35271802
    [Google Scholar]
  180. Farhana L. Nangia-Makker P. Arbit E. Shango K. Sarkar S. Mahmud H. Hadden T. Yu Y. Majumdar A.P.N. Bile acid: A potential inducer of colon cancer stem cells. Stem Cell Res. Ther. 2016 7 1 181 10.1186/s13287‑016‑0439‑4 27908290
    [Google Scholar]
  181. Nguyen T.T. Lian S. Ung T.T. Xia Y. Han J.Y. Jung Y.D. Lithocholic acid stimulates IL-8 expression in human colorectal cancer cells via activation of Erk1/2 MAPK and suppression of STAT3 activity. J. Cell. Biochem. 2017 118 9 2958 2967 10.1002/jcb.25955 28247965
    [Google Scholar]
  182. Ridlon J.M. Harris S.C. Bhowmik S. Kang D.J. Hylemon P.B. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 2016 7 1 22 39 10.1080/19490976.2015.1127483 26939849
    [Google Scholar]
  183. Zhang H. Xu H. Zhang C. Tang Q. Bi F. Ursodeoxycholic acid suppresses the malignant progression of colorectal cancer through TGR5-YAP axis. Cell Death Discov. 2021 7 1 207 10.1038/s41420‑021‑00589‑8 34365464
    [Google Scholar]
  184. Korcz E. Varga L. Exopolysaccharides from lactic acid bacteria: Techno-functional application in the food industry. Trends Food Sci. Technol. 2021 110 375 384 10.1016/j.tifs.2021.02.014
    [Google Scholar]
  185. Shin J.M. Gwak J.W. Kamarajan P. Fenno J.C. Rickard A.H. Kapila Y.L. Biomedical applications of nisin. J. Appl. Microbiol. 2016 120 6 1449 1465 10.1111/jam.13033 26678028
    [Google Scholar]
  186. de Vrese M. Schrezenmeir J. Probiotics, prebiotics, and synbiotics. Adv. Biochem. Eng. Biotechnol. 2008 111 1 66 10.1007/10_2008_097 18461293
    [Google Scholar]
  187. Cencic A. Chingwaru W. The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients 2010 2 6 611 625 10.3390/nu2060611 22254045
    [Google Scholar]
  188. Zhang M.M. Cheng J.Q. Lu Y.R. Yi Z.H. Yang P. Wu X.T. Use of pre-, pro- and synbiotics in patients with acute pancreatitis: A meta-analysis. World J. Gastroenterol. 2010 16 31 3970 3978 10.3748/wjg.v16.i31.3970 20712060
    [Google Scholar]
  189. Romeo J. Nova E. Wärnberg J. Gómez-Martínez S. Díaz Ligia L.E. Marcos A. Immunomodulatory effect of fibres, probiotics and synbiotics in different life-stages. Nutr. Hosp. 2010 25 3 341 349 20593114
    [Google Scholar]
  190. Pokusaeva K. Fitzgerald G.F. van Sinderen D. Carbohydrate metabolism in Bifidobacteria. Genes Nutr. 2011 6 3 285 306 10.1007/s12263‑010‑0206‑6 21484167
    [Google Scholar]
  191. Gourbeyre P. Denery S. Bodinier M. Probiotics, prebiotics, and synbiotics: Impact on the gut immune system and allergic reactions. J. Leukoc. Biol. 2011 89 5 685 695 10.1189/jlb.1109753 21233408
    [Google Scholar]
  192. Gupta N. Jangid A.K. Pooja D. Kulhari H. Inulin: A novel and stretchy polysaccharide tool for biomedical and nutritional applications. Int. J. Biol. Macromol. 2019 132 852 863 10.1016/j.ijbiomac.2019.03.188 30926495
    [Google Scholar]
  193. Singh S. Gaur S. Dietary FOS: Sources, biotechnological production, therapeutic benefits, and aptness in food industry. Valorization of Biomass to Bioproducts Biochemicals and Biomaterials Elsevier 2023 71 85
    [Google Scholar]
  194. Pengrattanachot N. Thongnaka L. Lungkaphin A. The impact of prebiotic fructooligosaccharides on gut dysbiosis and inflammation in obesity and diabetes related kidney disease. Food Funct 2022 13 11 5925 5945 10.1039/d1fo04428a 35583860
    [Google Scholar]
  195. Reang J. Sharma P.C. Thakur V.K. Majeed J. Understanding the therapeutic potential of ascorbic acid in the battle to overcome cancer. Biomolecules 2021 11 8 1130 10.3390/biom11081130 34439796
    [Google Scholar]
  196. Chen Y. Xie Y. Ajuwon K.M. Zhong R. Li T. Chen L. Zhang H. Beckers Y. Everaert N. Xylo-oligosaccharides, preparation and application to human and animal health: A review. Front. Nutr. 2021 8 731930 10.3389/fnut.2021.731930 34568407
    [Google Scholar]
  197. Ciecierska A. Drywień M.E. Hamulka J. Sadkowski T. Nutraceutical functions of beta-glucans in human nutrition. Rocz. Panstw. Zakl. Hig. 2019 70 4 315 324 31960663
    [Google Scholar]
  198. Souza A.F.C. Gabardo S. Coelho R.J.S. Galactooligosaccharides: Physiological benefits, production strategies, and industrial application. J. Biotechnol. 2022 359 116 129 10.1016/j.jbiotec.2022.09.020 36206850
    [Google Scholar]
  199. Nooshkam M. Babazadeh A. Jooyandeh H. Lactulose: Properties, techno-functional food applications, and food grade delivery system. Trends Food Sci. Technol. 2018 80 23 34 10.1016/j.tifs.2018.07.028
    [Google Scholar]
  200. Mafra D. Baptista B.A. Sahiun E. Abuznada S. Leal V.O. Borges N.A. May polydextrose potentially improve gut health in patients with chronic kidney disease? Clin. Nutr. ESPEN 2022 51 7 16 10.1016/j.clnesp.2022.08.025 36184250
    [Google Scholar]
  201. Hamasalim H.J. Synbiotic as feed additives relating to animal health and performance. Adv. Microbiol. 2016 6 4 288 302 10.4236/aim.2016.64028
    [Google Scholar]
  202. Sekhon B.S. Jairath S. Prebiotics, probiotics, and synbiotics: An overview. J. Pharm. Educ. Res 2010 1 13 36
    [Google Scholar]
  203. Manigandan T. Mangaiyarkarasi S.P. Hemalatha R. Hemalatha V.T. Murali N.P. Probiotics, prebiotics and synbiotics—A review. Biomed. Pharmacol. J. 2012 5 2 295 304 10.13005/bpj/357
    [Google Scholar]
  204. Zubair A. A commentary on mechanism of action and types of synbiotics. J. Probiotics Health 2022 10 9
    [Google Scholar]
  205. Markowiak P. Śliżewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 2017 9 9 1021 10.3390/nu9091021 28914794
    [Google Scholar]
  206. Pandey K.R. Naik S.R. Vakil B.V. Probiotics, prebiotics and synbiotics- A review. J. Food Sci. Technol. 2015 52 12 7577 7587 10.1007/s13197‑015‑1921‑1 26604335
    [Google Scholar]
  207. Wong V.W.S. Wong G.L-H. Chim A.M.L. Chu W.C.W. Yeung D.K.W. Li K.C.T. Chan H.L.Y. Treatment of nonalcoholic steatohepatitis with probiotics. A proof-of-concept study. Ann. Hepatol. 2013 12 2 256 262 10.1016/S1665‑2681(19)31364‑X 23396737
    [Google Scholar]
  208. Eslamparast T. Poustchi H. Zamani F. Sharafkhah M. Malekzadeh R. Hekmatdoost A. Synbiotic supplementation in nonalcoholic fatty liver disease: A randomized, double-blind, placebo-controlled pilot study. Am. J. Clin. Nutr. 2014 99 3 535 542 10.3945/ajcn.113.068890 24401715
    [Google Scholar]
  209. Rafter J. Bennett M. Caderni G. Clune Y. Hughes R. Karlsson P.C. Klinder A. O’Riordan M. O’Sullivan G.C. Pool-Zobel B. Rechkemmer G. Roller M. Rowland I. Salvadori M. Thijs H. Van Loo J. Watzl B. Collins J.K. Dietary synbiotics reduce cancer risk factors in polypectomized and colon cancer patients. Am. J. Clin. Nutr. 2007 85 2 488 496 10.1093/ajcn/85.2.488 17284748
    [Google Scholar]
  210. Mishra V. Shah C. Mokashe N. Chavan R. Yadav H. Prajapati J. Probiotics as potential antioxidants: A systematic review. J. Agric. Food Chem. 2015 63 14 3615 3626 10.1021/jf506326t 25808285
    [Google Scholar]
  211. Wang Y. Wu Y. Wang Y. Xu H. Mei X. Yu D. Wang Y. Li W. Antioxidant properties of probiotic bacteria. Nutrients 2017 9 5 521 10.3390/nu9050521 28534820
    [Google Scholar]
  212. Singh K. Rao A. Probiotics: A potential immunomodulator in COVID-19 infection management. Nutr. Res. 2021 87 1 12 10.1016/j.nutres.2020.12.014 33592454
    [Google Scholar]
  213. Shu G. He Y. Wan H. Hui Y. Li H. Effects of prebiotics on antioxidant activity of goat milk fermented by Lactobacillus plantarum L60. Acta Univ. Cibiniensis Ser. E Food Technol. 2017 21 2 11 18 10.1515/aucft‑2017‑0010
    [Google Scholar]
  214. Alves-Santos A.M. Sugizaki C.S.A. Lima G.C. Naves M.M.V. Prebiotic effect of dietary polyphenols: A systematic review. J. Funct. Foods 2020 74 104169 10.1016/j.jff.2020.104169
    [Google Scholar]
  215. Liu S. Yu Q. Huang H. Hou K. Dong R. Chen Y. Xie J. Nie S. Xie M. The effect of bound polyphenols on the fermentation and antioxidant properties of carrot dietary fiber in vivo and in vitro. Food Funct. 2020 11 1 748 758 10.1039/C9FO02277E 31913387
    [Google Scholar]
  216. Cukkemane A. Kumar P. Sathyamoorthy B. A metabolomics footprint approach to understanding the benefits of synbiotics in functional foods and dietary therapeutics for health, communicable and non-communicable diseases. Food Res. Int. 2020 128 108679 10.1016/j.foodres.2019.108679 31955779
    [Google Scholar]
  217. Pizzorno J. Glutathione! Integr. Med. 2014 13 1 8 12 26770075
    [Google Scholar]
  218. Mounir M. Ibijbijen A. Farih K. Rabetafika H.N. Razafindralambo H.L. Synbiotics and their antioxidant properties, mechanisms, and benefits on human and animal health: A narrative review. Biomolecules 2022 12 10 1443 10.3390/biom12101443 36291652
    [Google Scholar]
  219. Kleniewska P. Pawliczak R. Influence of synbiotics on selected oxidative stress parameters. Oxid. Med. Cell. Longev. 2017 2017 1 9315375 10.1155/2017/9315375 28286605
    [Google Scholar]
  220. Kleniewska P. Hoffmann A. Pniewska E. Pawliczak R. The influence of probiotic Lactobacillus casei in combination with prebiotic inulin on the antioxidant capacity of human plasma. Oxid. Med. Cell. Longev. 2016 2016 1 1340903 10.1155/2016/1340903 27066188
    [Google Scholar]
  221. Cruz B.C.S. de Sousa Moraes L.F. De Nadai Marcon L. Dias K.A. Murad L.B. Sarandy M.M. Conceição L.L. Gonçalves R.V. Ferreira C.L.L.F. Peluzio M.C.G. Evaluation of the efficacy of probiotic VSL#3 and synbiotic VSL#3 and yacon‐based product in reducing oxidative stress and intestinal permeability in mice induced to colorectal carcinogenesis. J. Food Sci. 2021 86 4 1448 1462 10.1111/1750‑3841.15690 33761141
    [Google Scholar]
  222. Heshmati J. Farsi F. Shokri F. Rezaeinejad M. Almasi-Hashiani A. Vesali S. Sepidarkish M. A systematic review and meta-analysis of the probiotics and synbiotics effects on oxidative stress. J. Funct. Foods 2018 46 66 84 10.1016/j.jff.2018.04.049
    [Google Scholar]
  223. Roshan H. Ghaedi E. Rahmani J. Barati M. Najafi M. Karimzedeh M. Nikpayam O. Effects of probiotics and synbiotic supplementation on antioxidant status: A meta-analysis of randomized clinical trials. Clin. Nutr. ESPEN 2019 30 81 88 10.1016/j.clnesp.2019.02.003 30904233
    [Google Scholar]
  224. Ghavami A. Khorvash F. Heidari Z. Khalesi S. Askari G. Effect of synbiotic supplementation on migraine characteristics and inflammatory biomarkers in women with migraine: Results of a randomized controlled trial. Pharmacol. Res. 2021 169 105668 10.1016/j.phrs.2021.105668 33989763
    [Google Scholar]
  225. Crittenden R. Weerakkody R. Sanguansri L. Augustin M. Synbiotic microcapsules that enhance microbial viability during nonrefrigerated storage and gastrointestinal transit. Appl. Environ. Microbiol. 2006 72 3 2280 2282 10.1128/AEM.72.3.2280‑2282.2006 16517688
    [Google Scholar]
  226. Govender M. Choonara Y.E. Kumar P. du Toit L.C. van Vuuren S. Pillay V. A review of the advancements in probiotic delivery: Conventional vs. non-conventional formulations for intestinal flora supplementation. AAPS PharmSciTech 2014 15 1 29 43 10.1208/s12249‑013‑0027‑1 24222267
    [Google Scholar]
  227. Krumbeck J.A. Maldonado-Gomez M.X. Martínez I. Frese S.A. Burkey T.E. Rasineni K. Ramer-Tait A.E. Harris E.N. Hutkins R.W. Walter J. In vivo selection to identify bacterial strains with enhanced ecological performance in synbiotic applications. Appl. Environ. Microbiol. 2015 81 7 2455 2465 10.1128/AEM.03903‑14 25616794
    [Google Scholar]
  228. Wu M. McNulty N.P. Rodionov D.A. Khoroshkin M.S. Griffin N.W. Cheng J. Latreille P. Kerstetter R.A. Terrapon N. Henrissat B. Osterman A.L. Gordon J.I. Genetic determinants of in vivo fitness and diet responsiveness in multiple human gut Bacteroides. Science 2015 350 6256 aac5992 10.1126/science.aac5992 26430127
    [Google Scholar]
  229. Mugambi M.N. Musekiwa A. Lombard M. Young T. Blaauw R. Association between funding source, methodological quality and research outcomes in randomized controlled trials of synbiotics, probiotics and prebiotics added to infant formula: A systematic review. BMC Med. Res. Methodol. 2013 13 1 137 10.1186/1471‑2288‑13‑137 24219082
    [Google Scholar]
  230. Eslamparast T. Zamani F. Hekmatdoost A. Sharafkhah M. Eghtesad S. Malekzadeh R. Poustchi H. Effects of synbiotic supplementation on insulin resistance in subjects with the metabolic syndrome: A randomised, double-blind, placebo-controlled pilot study. Br. J. Nutr. 2014 112 3 438 445 10.1017/S0007114514000919 24848793
    [Google Scholar]
  231. Furrie E. Macfarlane S. Kennedy A. Cummings J.H. Walsh S.V. O’neil D.A. Macfarlane G.T. Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: A randomised controlled pilot trial. Gut 2005 54 2 242 249 10.1136/gut.2004.044834 15647189
    [Google Scholar]
  232. Ishikawa H. Matsumoto S. Ohashi Y. Imaoka A. Setoyama H. Umesaki Y. Tanaka R. Otani T. Beneficial effects of probiotic bifidobacterium and galacto-oligosaccharide in patients with ulcerative colitis: A randomized controlled study. Digestion 2011 84 2 128 133 10.1159/000322977 21525768
    [Google Scholar]
  233. Akiyama T. Kimura K. Hatano H. Diverse galactooligosaccharides consumption by bifidobacteria: Implications of β-galactosidase—LacS operon. Biosci. Biotechnol. Biochem. 2015 79 4 664 672 10.1080/09168451.2014.987204 25483279
    [Google Scholar]
  234. Azcarate-Peril M.A. Ritter A.J. Savaiano D. Monteagudo-Mera A. Anderson C. Magness S.T. Klaenhammer T.R. Impact of short-chain galactooligosaccharides on the gut microbiome of lactose-intolerant individuals. Proc. Natl. Acad. Sci. USA 2017 114 3 E367 E375 10.1073/pnas.1606722113 28049818
    [Google Scholar]
  235. Davis L.M.G. Martínez I. Walter J. Hutkins R. A dose dependent impact of prebiotic galactooligosaccharides on the intestinal microbiota of healthy adults. Int. J. Food Microbiol. 2010 144 2 285 292 10.1016/j.ijfoodmicro.2010.10.007 21059476
    [Google Scholar]
  236. Bogovič Matijašić B. Obermajer T. Lipoglavšek L. Sernel T. Locatelli I. Kos M. Šmid A. Rogelj I. Effects of synbiotic fermented milk containing Lactobacillus acidophilus La-5 and Bifidobacterium animalis ssp. lactis BB-12 on the fecal microbiota of adults with irritable bowel syndrome: A randomized double-blind, placebo-controlled trial. J. Dairy Sci. 2016 99 7 5008 5021 10.3168/jds.2015‑10743 27157575
    [Google Scholar]
  237. van Loo J. Clune Y. Bennett M. Collins J.K. The SYNCAN project: Goals, set-up, first results and settings of the human intervention study. Br J Nutr 2005 93 Suppl 1 S91 S98 10.1079/bjn20041353 15877901
    [Google Scholar]
  238. Rossi M. Johnson D.W. Morrison M. Pascoe E.M. Coombes J.S. Forbes J.M. Szeto C.C. McWhinney B.C. Ungerer J.P.J. Campbell K.L. Synbiotics easing renal failure by improving gut microbiology (SYNERGY): A randomized trial. Clin. J. Am. Soc. Nephrol. 2016 11 2 223 231 10.2215/CJN.05240515 26772193
    [Google Scholar]
  239. Malaguarnera M. Greco F. Barone G. Gargante M.P. Malaguarnera M. Toscano M.A. Bifidobacterium longum with fructo-oligosaccharide (FOS) treatment in minimal hepatic encephalopathy: A randomized, double-blind, placebo-controlled study. Dig. Dis. Sci. 2007 52 11 3259 3265 10.1007/s10620‑006‑9687‑y 17393330
    [Google Scholar]
  240. Malaguarnera M. Vacante M. Antic T. Giordano M. Chisari G. Acquaviva R. Mastrojeni S. Malaguarnera G. Mistretta A. Li Volti G. Galvano F. Bifidobacterium longum with fructo-oligosaccharides in patients with non alcoholic steatohepatitis. Dig. Dis. Sci. 2012 57 2 545 553 10.1007/s10620‑011‑1887‑4 21901256
    [Google Scholar]
  241. Saulnier D.M.A. Synbiotics: Making the most of probiotics and prebiotics by their combinations? Food Sci Technol Bull Funct Foods 2007 4 2 9 19 10.1616/1476‑2137.14833
    [Google Scholar]
  242. Ahmadi A. Milani E. Madadlou A. Mortazavi S.A. Mokarram R.R. Salarbashi D. Synbiotic yogurt-ice cream produced via incorporation of microencapsulated lactobacillus acidophilus (la-5) and fructooligosaccharide. J. Food Sci. Technol. 2014 51 8 1568 1574 10.1007/s13197‑012‑0679‑y 25114349
    [Google Scholar]
  243. Angiolillo L. Conte A. Faccia M. Zambrini A.V. Del Nobile M.A. A new method to produce synbiotic Fiordilatte cheese. Innov. Food Sci. Emerg. Technol. 2014 22 180 187 10.1016/j.ifset.2013.09.010
    [Google Scholar]
  244. Konar N. Toker O.S. Oba S. Sagdic O. Improving functionality of chocolate: A review on probiotic, prebiotic, and/or synbiotic characteristics. Trends Food Sci. Technol. 2016 49 35 44 10.1016/j.tifs.2016.01.002
    [Google Scholar]
  245. Fratianni F. Cardinale F. Russo I. Iuliano C. Tremonte P. Coppola R. Nazzaro F. Ability of synbiotic encapsulated Saccharomyces cerevisiae boulardii to grow in berry juice and to survive under simulated gastrointestinal conditions. J. Microencapsul. 2014 31 3 299 305 10.3109/02652048.2013.871361 24405451
    [Google Scholar]
  246. Petreska-Ivanovska T. Petrushevska-Tozi L. Grozdanov A. Petkovska R. Hadjieva J. Popovski E. Stafilov T. Mladenovska K. From optimization of synbiotic microparticles prepared by spray-drying to development of new functional carrot juice. Chem. Ind. Chem. Eng. Q. 2014 20 4 549 564 10.2298/CICEQ130218036P
    [Google Scholar]
  247. Liu B.N. Liu X.T. Liang Z.H. Wang J.H. Gut microbiota in obesity. World J. Gastroenterol. 2021 27 25 3837 3850 10.3748/wjg.v27.i25.3837 34321848
    [Google Scholar]
  248. Li W.Z. Stirling K. Yang J.J. Zhang L. Gut microbiota and diabetes: From correlation to causality and mechanism. World J. Diabetes 2020 11 7 293 308 10.4239/wjd.v11.i7.293 32843932
    [Google Scholar]
  249. Li S.X. Guo Y. Gut microbiome: New perspectives for type 2 diabetes prevention and treatment. World J. Clin. Cases 2023 11 31 7508 7520 10.12998/wjcc.v11.i31.7508 38078135
    [Google Scholar]
  250. Masenga S.K. Hamooya B. Hangoma J. Hayumbu V. Ertuglu L.A. Ishimwe J. Rahman S. Saleem M. Laffer C.L. Elijovich F. Kirabo A. Recent advances in modulation of cardiovascular diseases by the gut microbiota. J. Hum. Hypertens. 2022 36 11 952 959 10.1038/s41371‑022‑00698‑6 35469059
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096373099250709100217
Loading
/content/journals/ccdt/10.2174/0115680096373099250709100217
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test