Current Cancer Drug Targets - Current Issue
Volume 25, Issue 11, 2025
-
-
Controversial Role of Opioids: From Pain Control to Cancer Recurrence in Breast Cancer
More LessAuthors: Mudasir Maqbool, Gyas Khan, Liming Zhang and Md Sadique HussainOpioids are widely used for pain management in breast cancer patients; however, their influence on tumor progression and recurrence remains controversial. Opioid receptors-mu (MOR), delta (DOR), and kappa (KOR)-play diverse roles in cancer biology, modulating tumor growth, immune responses, and angiogenesis. MOR activation is associated with increased proliferation, Epithelial-Mesenchymal Transition (EMT), and immunosuppression, contributing to an aggressive tumor phenotype. Conversely, KOR exhibits tumor-suppressive properties, reducing angiogenesis via VEGF inhibition. Emerging preclinical evidence suggests that opioids, particularly morphine, may facilitate breast cancer progression by enhancing cancer cell migration, angiogenesis, and immune evasion. Genetic variations in opioid receptor pathways, such as the OPRM1 A118G polymorphism, further complicate the opioid-cancer relationship, demonstrating population-dependent effects on patient outcomes. In contrast, tramadol has shown potential immune-protective effects by preserving Natural Killer (NK) cell function and inhibiting adrenergic signaling; fentanyl and sufentanil exhibit variable impacts on tumor biology, necessitating further investigation. Clinical studies, however, remain inconclusive regarding opioids' direct contribution to breast cancer recurrence, highlighting the need for targeted research. Opioid-sparing analgesic strategies, including multimodal pain management, regional anesthesia, and immunomodulatory agents, offer promising alternatives to mitigate potential oncogenic risks while ensuring adequate pain relief. Future studies integrating single-cell transcriptomics and tumor microenvironment analyses will be critical in elucidating the molecular impact of opioids in breast cancer. Personalized pain management approaches tailored to genetic and clinical profiles may optimize oncological outcomes while preserving analgesic efficacy.
-
-
-
Exosomal circRNAs: The Key Role and Potential Therapeutic Target in Gastric Cancer
More LessAuthors: Yong Jin, Jingjing Wang, Chunwei Zhang, Jingjing Li, Chengyan Wei and Yuanzhi ZhouA ring-stabilized endogenous non-coding RNA is called circular RNA (circRNA). Intercellular communication is mediated by exosomes, and circRNA is enriched and stabilized in exosomes. It has recently been demonstrated that cancer cells and tissues exhibit abnormal expression of exosomal circRNAs. By controlling angiogenesis, metabolism, metastasis, epithelial mesenchymal transition (EMT), tumor chemoresistance, immune evasion, and cell proliferation, it may also have an impact on the development of different malignancies. Furthermore, exosomal circRNAs have strong tissue selectivity, stability, and other qualities that make them useful for diagnostic purposes. Consequently, exosomal circRNAs offer a wide range of potential applications in the therapy of cancer and can be utilized as biomarkers and anti-tumor targets. The features and purposes of circRNAs and exosomes are briefly discussed in this review, which also methodically explains the function and possible mechanism of the function of exosomal circRNA in the onset of gastric cancer (GC). Furthermore, their clinical uses as targets and biomarkers for gastric cancers are also summarized and discussed in this work.
-
-
-
Recent Advancement in Drug Designing as Small Molecules in Targeted Cancer Therapy: Challenges and Future Directions
More LessAuthors: Satya Prakash, Priyanka Tyagi, Pratibha Singh, Rajkumar and Atul Pratap SinghThe adverse outcome that patients experience as a result of anti-cancer therapy failure is primarily caused by metastasis. Making cancer a chronic disease with regular but controlled relapses is the real issue in increasing cancer patient lifespans. This can only be achieved by developing efficient therapeutic techniques that target critical targets in the metastatic process. New targeted therapy medications continue to emerge, and research into the molecular targeted therapy of tumors is flourishing. The ineffectiveness of conventional chemotherapy in targeting metastatic cells is primarily due to its ability to promote the selection of chemo-resistant cell populations that engage in epithelial-to-mesenchymal transition (EMT), which in turn encourages the colonization of distant sites and maintains the initial metastatic process. In considering this circumstance, research into a broad range of small molecules and biologics has been initiated to develop anti-metastatic medications that target particular targets implicated in the different stages of metastasis. With their ability to concentrate on cancer cells while avoiding normal cells, targeted medications offer a promising alternative to conventional chemotherapy that is both highly effective and relatively safe. Many obstacles, including an inadequate response rate and drug resistance, persist for small-molecule targeted anti-cancer medications, despite significant advancements in this area. We encouraged small-molecule-focused anti-cancer therapy development by extensively assessing them by target classification. We reviewed current challenges, listed licenced drugs and key drug candidates in clinical trials for each target, and made suggestions for improving anti-cancer drug research and development. This review aims to discuss present and future small molecule inhibitor research and development for cancer treatment.
-
-
-
Recent Update on Nanoparticles Based Approaches for Management of Cancer: Wave from Traditional to Advanced Technology
More LessAuthors: Abhishek Sharma, Mridul Modgil, Gaurav Joshi and Preeti BishtCancer is the second most common cause of death worldwide and one of the biggest public health issues arising day by day. Cancer treatment has experienced significant progressions in recent years, as emerging technologies have provided innovative strategies to combat this intricate ailment. Among these developments, nanotechnology has shown itself to be a potentially useful tool in the fight against cancer. In the last few years, there have been several researches performed in the field of nanoparticles because of their several advantages as compared to conventional drug delivery using nanoparticles along with updating technologies like artificial intelligence (AI). The use of nanoparticles decreases the chance of undesirable side effects and shows its action on the targeted site with the help of designed carriers.AI based nanoparticles can’t only be used for achieving the targeted site of action but can also help us in advanced imaging, drug release and optimizing the drug delivery in a more customized way, which opens the door of a new era for tailored made medicine.
-
-
-
A Potential Role for Oridonin in Cancer Control: Mechanisms of Autophagy and Apoptosis
More LessCancer is one of the leading causes of mortality and morbidity worldwide. It is characterized by unmanaged cell proliferation and growth, leading to tumour formation with the potential to metastasize to various organs of the human body. Currently, several common therapeutic approaches exist to treat malignancies, including chemotherapy, surgery, and radiotherapy, which can be used to prevent the progression of malignancies. However, these therapeutic approaches often face challenges due to their cytotoxic impacts and various side effects. Ergo is currently researching a new treatment that effectively reduces cancer progression with minimal side effects. Emerging evidence suggests that harnessing herbal sources, which are both accessible and safe, can be useful in improving various disorders, including cancer. Oridonin, a diterpenoid isolated from the traditional Chinese medicinal herb Rabdosia rubescens, has shown significant potential in cancer therapy. Moreover, numerous pharmacological and biological capacities have been attributed to this naturally active compound, such as anti-oxidative, anti-inflammatory, anti-bacterial, and anti-viral influences. This review summarizes the current knowledge on oridonin's mechanisms of action, particularly its effects on autophagy and apoptosis. While apoptosis is a well-established pathway for eliminating cancer cells through DNA fragmentation, autophagy plays a complex role, acting as both a cytoprotective and cell death mechanism depending on the context. We provide a comprehensive evaluation of the relevant studies, highlighting oridonin's potential in cancer control and identifying areas for further research.
-
-
-
Transforming Lung Cancer Care: The Role of Transferosomes in Modern Drug Delivery
More LessCancer stands as one of the leading causes of death worldwide, and lung cancer represents its most aggressive and persistent form. Traditional strategies for addressing lung cancer involve various medical therapies such as radiotherapy, chemotherapy, and surgical excision. Despite their prevalence, these conventional methods lack precision and inadvertently cause collateral damage to neighbouring healthy cells. Recently, nanotechnology has emerged as a potential strategy for the treatment and management of lung carcinomas, bringing about a transformative shift in existing approaches. The primary focus of this shift is on minimizing harmful effects and improving the bioavailability of chemotherapy drugs specifically targeted at tumour cells. Currently, transferosome nanocarrier systems are widely employed to overcome the obstacles presented by lung cancer. The utilisation of transferosome-loaded therapeutic medication administration technologies holds tremendous potential in regulating tumour cell growth and treating lung cancer. The purpose of this study is to provide an overview and analysis of current advancements in transferosome-based drug delivery systems, employing inhalational nanoparticle strategies for precise drug targeting in lung cancer management.
-
-
-
Zinc Finger Protein 536 is a Potential Prognostic Biomarker that Promotes Neuroblastoma Progression via VEGFR2-PI3K-AKT Pathway
More LessAuthors: Yuan Fang, Rui Dong, Shujing Wang, Lian Chen, Yizhen Wang and Qiang WuBackgroundNeuroblastoma (NB) is a well-known pediatric malignancy intertwined with neurodevelopment. Previously implicated in neuronal differentiation, Zinc Finger Protein 536 (ZNF536) has emerged as a promising prognostic and immune-related biomarker in our pan-cancer analysis.
MethodsSingle-cell RNA transcriptome sequencing, bulk transcriptome analysis, and immunohistochemistry were used to assess ZNF536 expression and its association with prognosis. Cell proliferation, migration, invasion, and differentiation in ZNF536-knockdown NB cell lines were detected to evaluate the effect of ZNF536 on tumor cells. Vascular Endothelial Growth Factor Receptor 2 (VEGFR2), a potential target of ZNF536, and its downstream PI3K/AKT signaling cascade were investigated using transcriptome sequencing, CUT&Tag, quantitative real-time PCR (qRT-PCR), and Western blotting. The role of ZNF536 in tumorigenesis and the potential regulation axis was evaluated in vivo using a BALB/c nude mouse xenograft tumor model.
ResultsZNF536 mRNA and protein expression were significantly higher in NB patients with poor prognosis. In vitro, ZNF536 knockdown curtailed proliferation, migration, and invasion of NB cells while fostering differentiation. ZNF536 regulated VEGFR2 expression, thus activating the PI3K-AKT pathway. In vivo, ZNF536 knockdown reduced tumor growth and proliferation via the VEGFR2-PI3K-AKT pathway.
ConclusionZNF536 resulted as a novel prognostic biomarker in NB, promoting oncogenesis through VEGFR2-PI3K-AKT signaling axis modulation, suggesting its therapeutic potential in managing NB progression.
-
-
-
FHOD3 Promotes the Progression of Lung Cancer by Regulating the Caspase-3-Mediated Signaling Pathway
More LessAuthors: Zhonglu Peng, Junjie Wang, Zhenghang Huan, Chengmin Zhou, Zhifeng Li, Huilong Fang, Zhiying Yang, Dongyang He and Weiquan XieIntroduction/ObjectiveLung cancer causes hundreds of thousands of deaths each year worldwide. FHOD3 was reported to accelerate the progression of brain cancer. However, its role in lung cancer is not clear. This study aimed to investigate the role of FHOD3 in lung cancer.
MethodsThe clinical significance of FHOD3 in lung cancer was analyzed based on the data from the TCGA database. The expression level of FHOD3 was detected by qPCR technology. Cell proliferation was detected by CCK-8 assay, and cell invasion was detected by transwell assay. The activity of caspase-3 was determined by the ELISA method, cell apoptosis was identified by TUNEL assay, and protein expression was measured by western blotting technology.
ResultsBased on the TCGA data, FHOD3 was overexpressed in tumor tissues compared to the normal tissues. Patients with higher FHOD3 expression exhibited a worse survival rate. The expression levels of FHOD3 in lung cancer cell lines were much higher than that in normal cells. When FHOD3 was knocked down, the ability of cell proliferation and invasion was significantly inhibited. Cell apoptosis rate was increased reversely. The activity of caspase-3 was increased significantly. In addition, the expression level of cleaved caspase-3 was increased. The expression levels of Bax, caspase-8, and ICAD were also increased significantly. However, the expression of antiapoptotic molecule Bcl-2 was decreased reversely. This suggests that the caspase-3-mediated apoptosis signaling pathway was activated by FHOD3 knockdown.
ConclusionFHOD3 was overexpressed and negatively associated with survival rate in lung cancer patients. FHOD3 regulates cell proliferation, invasion, and apoptosis through the caspase-3-mediated signaling pathway. This study indicates that FHOD3 is an important gene contributing to the progression of lung cancer and might be a new drug target for the therapy of lung cancer.
-
-
-
Long Non-Coding RNA HCP5 Affects Ferroptosis in Lung Adenocarcinoma through miR-17-5p/HOXA7 Axis
More LessAuthors: Qingyun Pan, Zige Tang, Jiayu Zheng, Lingxin Yan and Quanfan ChenBackgroundFerroptosis, a regulated cell death initiated by Fe-dependent lipoperoxidation, is closely linked to the development of lung adenocarcinoma (LUAD). LncRNA human leukocyte antigen complex P5 (HCP5) has been confirmed as oncogenic in LUAD, but its function in ferroptosis is unknown.
ObjectiveBased on the previous bioinformatics mining of the ceRNA (competitive endogenous RNA) network HCP5/miR-17-5p/ Homeobox A7 (HOXA7) related to ferroptosis in LUAD, in this study, we characterized the cell-based experiments to validate the binding between the HCP5/miR-17-5p/HOXA7 axis and ferroptosis.
MethodsThe HCP5/miR-17-5p/HOXA7 linkage was identified by a two-luciferase reporter. Cell Counting Kit-8 (CCK-8) and Transwell assay were employed for the detection of viability, invasion, and migration of A549 cells, respectively. ACSL4 and SLC7A11 were associated with ferroptosis, MMP 9, vimentin, and E-cadherin, which were associated with migration and invasion and were assessed by WB and qRT-PCR. Fe2+ and malondialdehyde (MDA) were analyzed using kits.
ResultsOver-expression of HCP5 enhances the growth, invasion, and migration of A549 cells by adjusting miR-17-5P to increase the expression of HOXA7. In addition, the knockdown of HCP5 elevated miR-17-5p, which inhibited HOXA7 expression and suppressed ferroptosis and EMT in A549 cells.
ConclusionHCP5/miR-17-5p/HOXA7 can affect ferroptosis as well as the biological behavior of A549 cells.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month Most Read RSS feed