Skip to content
2000
image of High Glucose and Glucose-derived Intermediates are Linked to Lung Cancer Aggressiveness

There is no abstract available.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096415724250822061328
2025-08-29
2025-12-20
Loading full text...

Full text loading...

References

  1. Siegel R.L. Giaquinto A.N. Jemal A. Cancer statistics, 2024. CA Cancer J. Clin. 2024 74 1 12 49 10.3322/caac.21820 38230766
    [Google Scholar]
  2. Siegel R.L. Miller K.D. Wagle N.S. Jemal A. Cancer statistics, 2023. CA Cancer J. Clin. 2023 73 1 17 48 10.3322/caac.21763 36633525
    [Google Scholar]
  3. Vander Heiden M.G. Cantley L.C. Thompson C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 2009 324 5930 1029 1033 10.1126/science.1160809 19460998
    [Google Scholar]
  4. Liberti M.V. Locasale J.W. The warburg effect: How does it benefit cancer cells? Trends Biochem. Sci. 2016 41 3 211 218 10.1016/j.tibs.2015.12.001 26778478
    [Google Scholar]
  5. Hanahan D. Weinberg R.A. Hallmarks of cancer: The next generation. Cell 2011 144 5 646 674 10.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  6. Wang Y. Xia Y. Lu Z. Metabolic features of cancer cells. Cancer Commun. 2018 38 1 1 6 10.1186/s40880‑018‑0335‑7 30376896
    [Google Scholar]
  7. LeBleu VS O’Connell JT Gonzalez Herrera KN Wikman H Pantel K Haigis MC de Carvalho FM Damascena A Domingos Chinen LT Rocha RM Asara JM Kalluri R PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol 2014 16 10 992 1003 10.1038/ncb3039 25241037
    [Google Scholar]
  8. Cai Z. Li C.F. Han F. Liu C. Zhang A. Hsu C.C. Peng D. Zhang X. Jin G. Rezaeian A.H. Wang G. Zhang W. Pan B.S. Wang C.Y. Wang Y.H. Wu S.Y. Yang S.C. Hsu F.C. D’Agostino R.B. Furdui C.M. Kucera G.L. Parks J.S. Chilton F.H. Huang C.Y. Tsai F.J. Pasche B. Watabe K. Lin H.K. Phosphorylation of PDHA by AMPK drives TCA cycle to promote cancer metastasis. Mol. Cell 2020 80 2 263 278.e7 10.1016/j.molcel.2020.09.018 33022274
    [Google Scholar]
  9. Gonsalves W.I. Jang J.S. Jessen E. Hitosugi T. Evans L.A. Jevremovic D. Pettersson X.M. Bush A.G. Gransee J. Anderson E.I. Kumar S.K. Nair K.S. In vivo assessment of glutamine anaplerosis into the TCA cycle in human pre-malignant and malignant clonal plasma cells. Cancer Metab. 2020 8 1 29 10.1186/s40170‑020‑00235‑4 33308307
    [Google Scholar]
  10. Cai L. Hammond N.G. Tasdogan A. Alsamraae M. Yang C. Cameron R.B. Quan P. Solmonson A. Gu W. Pachnis P. Kaur M. Chang B.K. Zhou Q. Hensley C.T. Do Q.N. Martins Nascentes Melo L. Ubellacker J.M. Kaushik A. Clare M.G. Alcazar I.N. Kurylowicz K. Marcuccilli J.D. Allies G. Kutritz A. Klode J. Ramesh V. Rogers T.J. Rao A.D. Crentsil H.E. Li H. Brister F. McDaniel P. Xu X. Evers B.M. Zacharias L.G. Sudderth J. Xu J. Mathews T.P. Oliver D. Minna J.D. Waters J. Morrison S.J. Kernstine K.H. Faubert B. DeBerardinis R.J. High glucose contribution to the TCA cycle is a feature of aggressive non–small cell lung cancer in patients. Cancer Discov. 2025 15 4 702 716 10.1158/2159‑8290.CD‑23‑1319 39960461
    [Google Scholar]
  11. Zhou L. Zhang Q. Zhu Q. Zhan Y. Li Y. Huang X. Role and therapeutic targeting of glutamine metabolism in non small cell lung cancer (Review). Oncol. Lett. 2023 25 4 159 10.3892/ol.2023.13745 36936031
    [Google Scholar]
  12. Jin J. Byun J.K. Choi Y.K. Park K.G. Targeting glutamine metabolism as a therapeutic strategy for cancer. Exp. Mol. Med. 2023 55 4 706 715 10.1038/s12276‑023‑00971‑9 37009798
    [Google Scholar]
  13. Le A. The Heterogeneity of Cancer Metabolism. Cham Springer International Publishing 2021 10.1007/978‑3‑030‑65768‑0
    [Google Scholar]
  14. Takahara T. Amemiya Y. Sugiyama R. Maki M. Shibata H. Amino acid-dependent control of mTORC1 signaling: A variety of regulatory modes. J. Biomed. Sci. 2020 27 1 87 10.1186/s12929‑020‑00679‑2 32799865
    [Google Scholar]
  15. Faubert B. Li K.Y. Cai L. Hensley C.T. Kim J. Zacharias L.G. Yang C. Do Q.N. Doucette S. Burguete D. Li H. Huet G. Yuan Q. Wigal T. Butt Y. Ni M. Torrealba J. Oliver D. Lenkinski R.E. Malloy C.R. Wachsmann J.W. Young J.D. Kernstine K. DeBerardinis R.J. Lactate metabolism in human lung tumors. Cell 2017 171 2 358 371.e9 10.1016/j.cell.2017.09.019 28985563
    [Google Scholar]
  16. Hensley C.T. Faubert B. Yuan Q. Lev-Cohain N. Jin E. Kim J. Jiang L. Ko B. Skelton R. Loudat L. Wodzak M. Klimko C. McMillan E. Butt Y. Ni M. Oliver D. Torrealba J. Malloy C.R. Kernstine K. Lenkinski R.E. DeBerardinis R.J. Metabolic heterogeneity in human lung tumors. Cell 2016 164 4 681 694 10.1016/j.cell.2015.12.034 26853473
    [Google Scholar]
  17. Tsuji A. Akao T. Masuya T. Murai M. Miyoshi H. IACS-010759, a potent inhibitor of glycolysis-deficient hypoxic tumor cells, inhibits mitochondrial respiratory complex I through a unique mechanism. J. Biol. Chem. 2020 295 21 7481 7491 10.1074/jbc.RA120.013366 32295842
    [Google Scholar]
  18. Jin J. Yoshimura K. Sewastjanow-Silva M. Song S. Ajani J.A. Challenges and Prospects of Patient-Derived Xenografts for Cancer Research. Cancers 2023 15 17 4352 10.3390/cancers15174352 37686627
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096415724250822061328
Loading
/content/journals/ccdt/10.2174/0115680096415724250822061328
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test