Skip to content
2000
image of Role of Non-Coding RNAs in Regulating PD-L1 Expression in Breast Cancer: Emerging Insights and Implications

Abstract

The initiation and progression of breast cancer generally involve complex immune regulatory mechanisms, with increased expression of programmed cell death ligand 1 (PD-L1) as an essential factor for immune evasion and the formation of a tumor-promoting immune microenvironment. Emerging evidence underscores the regulatory role of non-coding RNAs (ncRNAs) in modulating PD-L1 expression, influencing immune evasion, tumorigenesis, and therapy resistance in breast cancer. Therefore, it is crucial further to clarify alternative regulatory mechanisms that control PD-L1 expression. The variations in PD-L1 expression among different breast cancer subtypes and the mechanisms by which ncRNAs regulate the expression of PD-L1 are delineated. This study explores the potential and challenges of combining ncRNA-based therapy with PD-L1 inhibitors, offering insights into PD-L1 regulation and personalized treatment strategies in breast cancer.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096376016250607151653
2025-06-18
2025-09-13
Loading full text...

Full text loading...

References

  1. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  2. Emens L.A. Breast cancer immunobiology driving immunotherapy: Vaccines and immune checkpoint blockade. Expert Rev. Anticancer Ther. 2012 12 12 1597 1611 10.1586/era.12.147 23253225
    [Google Scholar]
  3. Harbeck N. Gnant M. Breast cancer. Lancet 2017 389 10074 1134 1150 10.1016/S0140‑6736(16)31891‑8 27865536
    [Google Scholar]
  4. Onkar S.S. Carleton N.M. Lucas P.C. Bruno T.C. Lee A.V. Vignali D.A.A. Oesterreich S. The great immune escape: Understanding the divergent immune response in breast cancer subtypes. Cancer Discov. 2023 13 1 23 40 10.1158/2159‑8290.CD‑22‑0475 36620880
    [Google Scholar]
  5. Ye F. Dewanjee S. Li Y. Jha N.K. Chen Z.S. Kumar A. Vishakha; Behl, T.; Jha, S.K.; Tang, H. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer. Mol. Cancer 2023 22 1 105 10.1186/s12943‑023‑01805‑y 37415164
    [Google Scholar]
  6. Gao W. Wen H. Liang L. Dong X. Du R. Zhou W. Zhang X. Zhang C. Xiang R. Li N. IL20RA signaling enhances stemness and promotes the formation of an immunosuppressive microenvironment in breast cancer. Theranostics 2021 11 6 2564 2580 10.7150/thno.45280 33456560
    [Google Scholar]
  7. Schütz F. Stefanovic S. Mayer L. Au V.A. Domschke C. Sohn C. PD-1/PD-L1 pathway in breast cancer. Oncol. Res. Treat. 2017 40 5 294 297 10.1159/000464353 28346916
    [Google Scholar]
  8. Lotfinejad P. Kazemi T. Safaei S. Amini M. asl, R.E.; Baghbani, E.; Shotorbani, S.S.; Niaragh, J.F.; Derakhshani, A.; Shadbad, A.M.; Silvestris, N.; Baradaran, B. PD-L1 silencing inhibits triple-negative breast cancer development and upregulates T-cell-induced pro-inflammatory cytokines. Biomed. Pharmacother. 2021 138 111436 10.1016/j.biopha.2021.111436 33667790
    [Google Scholar]
  9. Pardoll D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012 12 4 252 264 10.1038/nrc3239 22437870
    [Google Scholar]
  10. Dermani F.K. Samadi P. Rahmani G. Kohlan A.K. Najafi R. PD‐1/PD‐L1 immune checkpoint: Potential target for cancer therapy. J. Cell. Physiol. 2019 234 2 1313 1325 10.1002/jcp.27172 30191996
    [Google Scholar]
  11. Dong H. Strome S.E. Salomao D.R. Tamura H. Hirano F. Flies D.B. Roche P.C. Lu J. Zhu G. Tamada K. Lennon V.A. Celis E. Chen L. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat. Med. 2002 8 8 793 800 10.1038/nm730 12091876
    [Google Scholar]
  12. Tang Q. Chen Y. Li X. Long S. Shi Y. Yu Y. Wu W. Han L. Wang S. The role of PD-1/PD-L1 and application of immune-checkpoint inhibitors in human cancers. Front. Immunol. 2022 13 964442 10.3389/fimmu.2022.964442 36177034
    [Google Scholar]
  13. Brahmer J.R. Tykodi S.S. Chow L.Q.M. Hwu W.J. Topalian S.L. Hwu P. Drake C.G. Camacho L.H. Kauh J. Odunsi K. Pitot H.C. Hamid O. Bhatia S. Martins R. Eaton K. Chen S. Salay T.M. Alaparthy S. Grosso J.F. Korman A.J. Parker S.M. Agrawal S. Goldberg S.M. Pardoll D.M. Gupta A. Wigginton J.M. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 2012 366 26 2455 2465 10.1056/NEJMoa1200694 22658128
    [Google Scholar]
  14. Balar A.V. Weber J.S. PD-1 and PD-L1 antibodies in cancer: Current status and future directions. Cancer Immunol. Immunother. 2017 66 5 551 564 10.1007/s00262‑017‑1954‑6 28213726
    [Google Scholar]
  15. Emens L.A. Loi S. Immunotherapy approaches for breast cancer patients in 2023. Cold Spring Harb. Perspect. Med. 2023 13 4 a041332 10.1101/cshperspect.a041332 37011999
    [Google Scholar]
  16. Cortes J. Cescon D.W. Rugo H.S. Nowecki Z. Im, S.A.; Yusof, M.M.; Gallardo, C.; Lipatov, O.; Barrios, C.H.; Holgado, E.; Iwata, H.; Masuda, N.; Otero, M.T.; Gokmen, E.; Loi, S.; Guo, Z.; Zhao, J.; Aktan, G.; Karantza, V.; Schmid, P.; Luis, F.; Gonzalo, G.A.; Diego, K.; Ruben, K.; Matias, M.; Mirta, V.; Sally, B-H.; Stephen, B.; Philip, C.; Sherene, L.; Dhanusha, S.; Andrea, G.; Donatienne, T.; Carlos, B.; Leandro, B.; Fabiano, C.; Ruffo, F.J.; Roberto, H.; Carvalho, D.L.; Fernando Cezar Toniazzi, L.; Odebrecht, R.R.; Orlando, A.S.N.; Felipe, S.; David, C.; Danielle, C.; Cristiano, F.; Xinni, S.; Joanne, Y.; Alejandro, A.; Carlos, G.; Claudio, S.; Cesar, S.; Eduardo, Y.; Alvaro, G.D.; Jesus, S.; Petra, H.; Zdenek, K.; Bohuslav, M.; Katarina, P.; Jana, P.; Vesna, G.; Erik, J.; Jeanette, J.; Soren, L.; Tamas, L.; Herve, B.; Isabelle, D.; Anthony, G.; Anne-Claire, H-B.; Luis, T.; Jens-Uwe, B.; Peter, F.; Dirk, F.; Nadia, H.; Jens, H.; Anna, K.F.S.; Christian, K.; Sibylle, L.; Diana, L.; Tjoung-Won, P-S.; Von, R.S.; Pauline, W.; Louis, C.; Ava, K.; Kai Cheong Roger, N.; Peter, A.; Tibor, C.; Zsuzsanna, K.; Laszlo, L.; Karoly, M.; Gabor, R.; John, C.; Catherine, K.; Seamus, O.R.; Saverio, C.; Antonietta, D.A.; Enrico, R.; Tomoyuki, A.; Takaaki, F.; Kenichi, I.; Takashi, I.; Yoshinori, I.; Tsutomu, I.; Hiroji, I.; Yoshimasa, K.; Koji, M.; Yasuo, M.; Hirofumi, M.; Seigo, N.; Naoki, N.; Shoichiro, O.; Akihiko, O.; Yasuaki, S.; Eiji, S.; Masato, T.; Yuko, T.; Kenji, T.; Koichiro, T.; Junichiro, W.; Naohito, Y.; Yutaka, Y.; Teruo, Y.; Anita, B.; Mastura, M.Y.; Angel, G.V.; Alejandro, J.R.; Jorge, M.R.; Flavia, M-V.; Jessica, R.C.; Karin, B.; Vivianne, T-H.; David, P.; Ewa, C.; Ewa, N-Z.; Zbigniew, N.; Barbara, R.; Joanna, S.; Cezary, S.; Rafal, T.; Bogdan, Z.; Alexander, A.; Natalia, F.; Oleg, L.; Andrey, M.; Vladimir, M.; Guzel, M.; Hee, J.A.; Seock-Ah, I.; Seok, K.L.; Hwa, K.P.; Hee, Y.P.; Begona, B.H.; Javier, C.; Josefina, C.J.; Luis, C.M.; Jose, G.S.; Maria, G.; Esther, H.; Esther, Z.A.; Chien-Ting, L.; Mei-Ching, L.; Chiun-Sheng, H.; Chao-Jung, T.; Ling-Ming, T.; Cagatay, A.; Gul, B.; Irfan, C.; Erhan, G.; Seyda, G.; Nil, M.M.; Mustafa, O.; Ozgur, O.; Sinan, Y.; Steve, C.; Janine, G.; Iain, M.P.; Peter, S.; Nicholas, T.; Mark, T.; Christopher, T.; Duncan, W.; Hryhoriy, A.; Oleksandr, B.; Igor, B.; Oleksii, K.; Olena, K.; Hanna, K.; Anna, K.; Iurii, L.; Alla, N.; Natalya, O.; Olga, P.; Andrii, R.; Sergii, S.; Yaroslav, S.; Dmytro, T.; Grygorii, U.; Ihor, V.; Sibel, B.; Madhu, C.; Michael, C.; Patrick, C.; Scott, C.; Jennifer, D.; Keerthi, G.; Jeffrey, H.; Kent, H.; William, I.; Randa, L.; Janice, L.; Raul, M.; Susan, M.; Rita, N.; Ira, O.; Coral, O.; Timothy, P.; Amit, P.; Brian, P.; Hope, R.; Irina, R.; Michael, S.; Robert, S.; Michael, S.; Laura, S.; Bradley, S.; Michaela, T.; Frances, V-A. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): A randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet 2020 396 10265 1817 1828 10.1016/S0140‑6736(20)32531‑9 33278935
    [Google Scholar]
  17. Aguiar P.N. Santoro I.L. Tadokoro H. Lopes L.D.G. Filardi B.A. Oliveira P. Mountzios G. Mello D.R.A. The role of PD-L1 expression as a predictive biomarker in advanced non-small-cell lung cancer: A network meta-analysis. Immunotherapy 2016 8 4 479 488 10.2217/imt‑2015‑0002 26973128
    [Google Scholar]
  18. Anastasiadou E. Jacob L.S. Slack F.J. Non-coding RNA networks in cancer. Nat. Rev. Cancer 2018 18 1 5 18 10.1038/nrc.2017.99 29170536
    [Google Scholar]
  19. Yan H. Bu P. Non-coding RNA in cancer. Essays Biochem. 2021 65 4 625 639 10.1042/EBC20200032 33860799
    [Google Scholar]
  20. Nappi F. Non-coding RNA-targeted therapy: A state-of-the-art review. Int. J. Mol. Sci. 2024 25 7 3630 10.3390/ijms25073630 38612441
    [Google Scholar]
  21. Hedayat S. Cascione L. Cunningham D. Schirripa M. Lampis A. Hahne J.C. Tunariu N. Hong S.P. Marchetti S. Khan K. Fontana E. Angerilli V. Delrieux M. Rodrigues N.D. Procaccio L. Rao S. Watkins D. Starling N. Chau I. Braconi C. Fotiadis N. Begum R. Guppy N. Howell L. Valenti M. Cribbes S. Kolozsvari B. Kirkin V. Lonardi S. Ghidini M. Passalacqua R. Elghadi R. Magnani L. Pinato D.J. Maggio D.F. Ghelardi F. Sottotetti E. Vetere G. Ciracì P. Vlachogiannis G. Pietrantonio F. Cremolini C. Cortellini A. Loupakis F. Fassan M. Valeri N. Circulating microRNA analysis in a prospective co-clinical trial identifies mir652–3p as a response biomarker and driver of regorafenib resistance mechanisms in colorectal cancer. Clin. Cancer Res. 2024 30 10 2140 2159 10.1158/1078‑0432.CCR‑23‑2748 38376926
    [Google Scholar]
  22. Seto A.G. Beatty X. Lynch J.M. Hermreck M. Tetzlaff M. Duvic M. Jackson A.L. Cobomarsen, an oligonucleotide inhibitor of miR‐155, co‐ordinately regulates multiple survival pathways to reduce cellular proliferation and survival in cutaneous T‐cell lymphoma. Br. J. Haematol. 2018 183 3 428 444 10.1111/bjh.15547 30125933
    [Google Scholar]
  23. Hong J. Sim D. Lee B.H. Sarangthem V. Park R.W. Multifunctional elastin-like polypeptide nanocarriers for efficient miRNA delivery in cancer therapy. J. Nanobiotechnology 2024 22 1 293 10.1186/s12951‑024‑02559‑5 38802812
    [Google Scholar]
  24. Lin Y.Z. Liu S.H. Wu W.R. Shen Y.C. Wang Y.L. Liao C.C. Lin P.L. Chang H. Liu L.C. Cheng W.C. Wang S.C. miR-4759 suppresses breast cancer through immune checkpoint blockade. Comput. Struct. Biotechnol. J. 2022 20 241 251 10.1016/j.csbj.2021.12.020 35024096
    [Google Scholar]
  25. Jiang K. Zou H. microRNA-20b-5p overexpression combing Pembrolizumab potentiates cancer cells to radiation therapy via repressing programmed death-ligand 1. Bioengineered 2022 13 1 917 929 10.1080/21655979.2021.2014617 34968160
    [Google Scholar]
  26. Deng S. Wang M. Wang C. Zeng Y. Qin X. Tan Y. Liang B. Cao Y. p53 downregulates PD-L1 expression via miR-34a to inhibit the growth of triple-negative breast cancer cells: A potential clinical immunotherapeutic target. Mol. Biol. Rep. 2023 50 1 577 587 10.1007/s11033‑022‑08047‑z 36352176
    [Google Scholar]
  27. Wang X. Ren Z. Xu Y. Gao X. Huang H. Zhu F. KCNQ1OT1 sponges miR ‐34a to promote malignant progression of malignant melanoma via upregulation of the STAT3/PD‐L1 axis. Environ. Toxicol. 2023 38 2 368 380 10.1002/tox.23687 36399467
    [Google Scholar]
  28. Li D. Wang X. Yang M. Kan Q. Duan Z. miR3609 sensitizes breast cancer cells to adriamycin by blocking the programmed death-ligand 1 immune checkpoint. Exp. Cell Res. 2019 380 1 20 28 10.1016/j.yexcr.2019.03.025 30904483
    [Google Scholar]
  29. Huang L. Ma J. Cui M. Circular RNA hsa_circ_0001598 promotes programmed death-ligand-1-mediated immune escape and trastuzumab resistance via sponging miR-1184 in breast cancer cells. Immunol. Res. 2021 69 6 558 567 10.1007/s12026‑021‑09237‑w 34559381
    [Google Scholar]
  30. Zhang X. Wang C. Huang C. Yang J. Wang J. Doxorubicin resistance in breast cancer xenografts and cell lines can be counterweighted by microRNA-140-3p, through PD-L1 suppression. Histol. Histopathol. 2023 38 10 1193 1204 36621840
    [Google Scholar]
  31. Peng F. Xiong L. Peng C. (-)-Sativan inhibits tumor development and regulates miR-200c/PD-L1 in triple negative breast cancer cells. Front. Pharmacol. 2020 11 251 10.3389/fphar.2020.00251 32231566
    [Google Scholar]
  32. Yang L. Cai Y. Zhang D. Sun J. Xu C. Zhao W. Jiang W. Pan C. miR-195/miR-497 regulate CD274 expression of immune regulatory ligands in triple-negative breast cancer. J. Breast Cancer 2018 21 4 371 381 10.4048/jbc.2018.21.e60 30607158
    [Google Scholar]
  33. Hajibabaei S. Sotoodehnejadnematalahi F. Nafissi N. Zeinali S. Azizi M. Aberrant promoter hypermethylation of miR-335 and miR-145 is involved in breast cancer PD-L1 overexpression. Sci. Rep. 2023 13 1 1003 10.1038/s41598‑023‑27415‑8 36653507
    [Google Scholar]
  34. Zhang M. Shi Y. Zhang Y. Wang Y. Alotaibi F. Qiu L. Wang H. Peng S. Liu Y. Li Q. Gao D. Wang Z. Yuan K. Dou F. Koropatnick J. Xiong J. Min W. miRNA-5119 regulates immune checkpoints in dendritic cells to enhance breast cancer immunotherapy. Cancer Immunol. Immunother. 2020 69 6 951 967 10.1007/s00262‑020‑02507‑w 32076794
    [Google Scholar]
  35. Dastmalchi N. Hosseinpourfeizi M.A. Khojasteh S.M.B. Baradaran B. Safaralizadeh R. Tumor suppressive activity of miR-424-5p in breast cancer cells through targeting PD-L1 and modulating PTEN/PI3K/AKT/mTOR signaling pathway. Life Sci. 2020 259 118239 10.1016/j.lfs.2020.118239 32784058
    [Google Scholar]
  36. Dastmalchi N. Safaralizadeh R. Hosseinpourfeizi M.A. Baradaran B. Khojasteh S.M.B. MicroRNA-424-5p enhances chemosensitivity of breast cancer cells to Taxol and regulates cell cycle, apoptosis, and proliferation. Mol. Biol. Rep. 2021 48 2 1345 1357 10.1007/s11033‑021‑06193‑4 33555529
    [Google Scholar]
  37. Zhou Y. Yamamoto Y. Takeshita F. Yamamoto T. Xiao Z. Ochiya T. Delivery of miR-424-5p via extracellular vesicles promotes the apoptosis of mda-mb-231 tnbc cells in the tumor microenvironment. Int. J. Mol. Sci. 2021 22 2 844 10.3390/ijms22020844 33467725
    [Google Scholar]
  38. Gao L. Guo Q. Li X. Yang X. Ni H. Wang T. Zhao Q. Liu H. Xing Y. Xi T. Zheng L. MiR-873/PD-L1 axis regulates the stemness of breast cancer cells. EBioMedicine 2019 41 395 407 10.1016/j.ebiom.2019.02.034 30803931
    [Google Scholar]
  39. Selem N.A. Nafae H. Manie T. Youness R.A. Gad M.Z. Let-7a/cMyc/CCAT1/miR-17–5p circuit re-sensitizes atezolizumab resistance in triple negative breast cancer through modulating PD-L1. Pathol. Res. Pract. 2023 248 154579 10.1016/j.prp.2023.154579 37301086
    [Google Scholar]
  40. Yang M. Xiao R. Wang X. Xiong Y. Duan Z. Li D. Kan Q. MiR-93-5p regulates tumorigenesis and tumor immunity by targeting PD-L1/CCND1 in breast cancer. Ann. Transl. Med. 2022 10 4 203 10.21037/atm‑22‑97 35280383
    [Google Scholar]
  41. Wang Q. Li G. Ma X. Liu L. Liu J. Yin Y. Li H. Chen Y. Zhang X. Zhang L. Sun L. Ai J. Xu S. LncRNA TINCR impairs the efficacy of immunotherapy against breast cancer by recruiting DNMT1 and downregulating MiR-199a-5p via the STAT1–TINCR-USP20-PD-L1 axis. Cell Death Dis. 2023 14 2 76 10.1038/s41419‑023‑05609‑2 36725842
    [Google Scholar]
  42. Dong L.F. Chen F.F. Fan Y.F. Zhang K. Chen H.H. circ-0000512 inhibits PD-L1 ubiquitination through sponging miR-622/CMTM6 axis to promote triple-negative breast cancer and immune escape. J. Immunother. Cancer 2023 11 6 e005461 10.1136/jitc‑2022‑005461 37349124
    [Google Scholar]
  43. Zhang M. Wang N. Song P. Fu Y. Ren Y. Li Z. Wang J. LncRNA GATA3‐AS1 facilitates tumour progression and immune escape in triple‐negative breast cancer through destabilization of GATA3 but stabilization of PD‐L1. Cell Prolif. 2020 53 9 e12855 10.1111/cpr.12855 32687248
    [Google Scholar]
  44. Hamed M.M. Handoussa H. Hussein N.H. Eissa R.A. Abdel-Aal L.K. Tayebi E.H.M. Oleuropin controls miR-194/XIST/PD-L1 loop in triple negative breast cancer: New role of nutri-epigenetics in immune-oncology. Life Sci. 2021 277 119353 10.1016/j.lfs.2021.119353 33798547
    [Google Scholar]
  45. Samir A. Tawab R. Eltayebi H. Long non coding RNAs XIST and MALAT1 hijack the PD L1 regulatory signaling pathway in breast cancer subtypes. Oncol. Lett. 2021 22 2 593 10.3892/ol.2021.12854 34149904
    [Google Scholar]
  46. Azarbarzin S. Hosseinpour-Feizi M.A. Khojasteh B.S.M. Baradaran B. Safaralizadeh R. MicroRNA -383-5p restrains the proliferation and migration of breast cancer cells and promotes apoptosis via inhibition of PD-L1. Life Sci. 2021 267 118939 10.1016/j.lfs.2020.118939 33359245
    [Google Scholar]
  47. Dastmalchi N. Azarbarzin S. Safaralizadeh R. Khojasteh S.M.B. Shadbad M.A. Amini M. Baghbanzadeh A. Asl E.R. Baghbani E. Lotfinejad P. Baradaran B. The combined therapy of miR-383-5p restoration and paclitaxel for treating MDA-MB-231 breast cancer. Med. Oncol. 2022 39 1 9 10.1007/s12032‑021‑01606‑7 34761351
    [Google Scholar]
  48. Xu D. Chen W.Q. Liang M.X. Chen X. Liu Z. Fei Y.J. Shao X.Y. Wu Y. Zhang W. Tang J.H. Tumor-derived small extracellular vesicles promote breast cancer progression by upregulating PD-L1 expression in macrophages. Cancer Cell Int. 2023 23 1 137 10.1186/s12935‑023‑02980‑0 37452413
    [Google Scholar]
  49. Lin Q. Liu T. Wang X. Hou G. Xiang Z. Zhang W. Zheng S. Zhao D. Leng Q. Zhang X. Lu M. Guan T. Liu H. Hu Y. Long noncoding RNA HITT coordinates with RGS2 to inhibit PD-L1 translation in T cell immunity. J. Clin. Invest. 2023 133 11 e162951 10.1172/JCI162951 37014700
    [Google Scholar]
  50. Fan Y. Dong X. Li M. Liu P. Zheng J. Li H. Zhang Y. LncRNA KRT19P3 is involved in breast cancer cell proliferation, migration and invasion. Front. Oncol. 2022 11 799082 10.3389/fonc.2021.799082 35059320
    [Google Scholar]
  51. Salama E.A. Adbeltawab R.E. Tayebi E.H.M. XIST and TSIX: Novel cancer immune biomarkers in pd-l1-overexpressing breast cancer patients. Front. Oncol. 2020 9 1459 10.3389/fonc.2019.01459 31998636
    [Google Scholar]
  52. Mekky R.Y. Ragab M.F. Manie T. Attia A.A. Youness R.A. MALAT-1: Immunomodulatory lncRNA hampering the innate and the adaptive immune arms in triple negative breast cancer. Transl. Oncol. 2023 31 101653 10.1016/j.tranon.2023.101653 36907052
    [Google Scholar]
  53. Jayaraman S. Sekar R. Veeraraghavan V.P. Raj A.T. Patil S. MALAT 1 a modulator of PD-1/PD-L1 regulation in oral malignancies: An emerging target in cancer therapy. Oral Oncol. 2022 130 105950 10.1016/j.oraloncology.2022.105950 35662027
    [Google Scholar]
  54. Zhang Y. Li Z. Chen M. Chen H. Zhong Q. Liang L. Li B. lncRNA TCL6 correlates with immune cell infiltration and indicates worse survival in breast cancer. Breast Cancer 2020 27 4 573 585 10.1007/s12282‑020‑01048‑5 31960363
    [Google Scholar]
  55. Dong H. Han J. Chen X. Sun H. Han M. Wang W. LncRNA ZNF649-AS1 promotes trastuzumab resistance and TAM-dependent PD-L1 expression in breast cancer by regulating EXOC7 alternative splicing. Arch. Biochem. Biophys. 2024 761 110128 10.1016/j.abb.2024.110128 39159899
    [Google Scholar]
  56. Liang L. Gao M. Li W. Tang J. He Q. Zeng F. Cao J. Liu S. Chen Y. Li X. Zhou Y. CircGSK3β mediates PD-L1 transcription through miR-338-3p/PRMT5/H3K4me3 to promote breast cancer cell immune evasion and tumor progression. Cell Death Discov. 2024 10 1 426 10.1038/s41420‑024‑02197‑8 39366935
    [Google Scholar]
  57. Li J. Dong X. Kong X. Wang Y. Li Y. Tong Y. Zhao W. Duan W. Li P. Wang Y. Wang C. Circular RNA hsa_circ_0067842 facilitates tumor metastasis and immune escape in breast cancer through HuR/CMTM6/PD-L1 axis. Biol. Direct 2023 18 1 48 10.1186/s13062‑023‑00397‑3 37592296
    [Google Scholar]
  58. Zhang Z. Huo W. Li J. circATAD2 mitigates CD8+ T cells antitumor immune surveillance in breast cancer via IGF2BP3/m6A/PD-L1 manner. Cancer Immunol. Immunother. 2024 73 7 130 10.1007/s00262‑024‑03705‑6 38748254
    [Google Scholar]
  59. Wang Z. Li Y. Yang J. Sun Y. He Y. Wang Y. Liang Y. Chen X. Chen T. Han D. Zhang N. Chen B. Zhao W. Wang L. Luo D. Yang Q. CircCFL1 promotes TNBC stemness and immunoescape via deacetylation‐mediated c‐myc deubiquitylation to facilitate mutant TP53 transcription. Adv. Sci. 2024 11 34 2404628 10.1002/advs.202404628 38981022
    [Google Scholar]
  60. Zheng Y. Ren S. Zhang Y. Liu S. Meng L. Liu F. Gu L. Ai N. Sang M. Circular RNA circWWC3 augments breast cancer progression through promoting M2 macrophage polarization and tumor immune escape via regulating the expression and secretion of IL-4. Cancer Cell Int. 2022 22 1 264 10.1186/s12935‑022‑02686‑9 35996149
    [Google Scholar]
  61. Perou C.M. Sørlie T. Eisen M.B. Rijn D.V.M. Jeffrey S.S. Rees C.A. Pollack J.R. Ross D.T. Johnsen H. Akslen L.A. Fluge Ø. Pergamenschikov A. Williams C. Zhu S.X. Lønning P.E. Børresen-Dale A.L. Brown P.O. Botstein D. Molecular portraits of human breast tumours. Nature 2000 406 6797 747 752 10.1038/35021093 10963602
    [Google Scholar]
  62. Curigliano G. Burstein H.J. Winer E.P. Gnant M. Dubsky P. Loibl S. Colleoni M. Regan M.M. Piccart-Gebhart M. Senn H.J. Thürlimann B. André F. Baselga J. Bergh J. Bonnefoi H. Brucker S.Y. Cardoso F. Carey L. Ciruelos E. Cuzick J. Denkert C. Leo D.A. Ejlertsen B. Francis P. Galimberti V. Garber J. Gulluoglu B. Goodwin P. Harbeck N. Hayes D.F. Huang C.S. Huober J. Khaled H. Jassem J. Jiang Z. Karlsson P. Morrow M. Orecchia R. Osborne K.C. Pagani O. Partridge A.H. Pritchard K. Ro J. Rutgers E.J.T. Sedlmayer F. Semiglazov V. Shao Z. Smith I. Toi M. Tutt A. Viale G. Watanabe T. Whelan T.J. Xu B. De-escalating and escalating treatments for early-stage breast cancer: The St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer 2017. Ann. Oncol. 2017 28 8 1700 1712 10.1093/annonc/mdx308 28838210
    [Google Scholar]
  63. Cejalvo J.M. Martínez de Dueñas E. Galván P. García-Recio S. Gasión B.O. Paré L. Antolín S. Martinello R. Blancas I. Adamo B. Guerrero-Zotano Á. Muñoz M. Nucíforo P. Vidal M. Pérez R.M. Chacón López-Muniz J.I. Caballero R. Peg V. Carrasco E. Rojo F. Perou C.M. Cortés J. Adamo V. Albanell J. Gomis R.R. Lluch A. Prat A. Intrinsic subtypes and gene expression profiles in primary and metastatic breast cancer. Cancer Res. 2017 77 9 2213 2221 10.1158/0008‑5472.CAN‑16‑2717 28249905
    [Google Scholar]
  64. Abdel-Rahman O. Correlation between PD-L1 expression and outcome of NSCLC patients treated with anti-PD-1/PD-L1 agents: A meta-analysis. Crit. Rev. Oncol. Hematol. 2016 101 75 85 10.1016/j.critrevonc.2016.03.007 26969107
    [Google Scholar]
  65. Cai J. Wang D. Zhang G. Guo X. The role of PD-1/PD-L1 axis in treg development and function: Implications for cancer immunotherapy. OncoTargets Ther. 2019 12 8437 8445 10.2147/OTT.S221340 31686860
    [Google Scholar]
  66. Stovgaard E.S. Dyhl-Polk A. Roslind A. Balslev E. Nielsen D. PD-L1 expression in breast cancer: Expression in subtypes and prognostic significance: A systematic review. Breast Cancer Res. Treat. 2019 174 3 571 584 10.1007/s10549‑019‑05130‑1 30627961
    [Google Scholar]
  67. Baptista M.Z. Sarian L.O. Derchain S.F.M. Pinto G.A. Vassallo J. Prognostic significance of PD-L1 and PD-L2 in breast cancer. Hum. Pathol. 2016 47 1 78 84 10.1016/j.humpath.2015.09.006 26541326
    [Google Scholar]
  68. Beckers R.K. Selinger C.I. Vilain R. Madore J. Wilmott J.S. Harvey K. Holliday A. Cooper C.L. Robbins E. Gillett D. Kennedy C.W. Gluch L. Carmalt H. Mak C. Warrier S. Gee H.E. Chan C. McLean A. Walker E. McNeil C.M. Beith J.M. Swarbrick A. Scolyer R.A. O’Toole S.A. Programmed death ligand 1 expression in triple‐negative breast cancer is associated with tumour‐infiltrating lymphocytes and improved outcome. Histopathology 2016 69 1 25 34 10.1111/his.12904 26588661
    [Google Scholar]
  69. Sabatier R. Finetti P. Mamessier E. Adelaide J. Chaffanet M. Ali H.R. Viens P. Caldas C. Birnbaum D. Bertucci F. Prognostic and predictive value of PDL1 expression in breast cancer. Oncotarget 2015 6 7 5449 5464 10.18632/oncotarget.3216 25669979
    [Google Scholar]
  70. Muenst S. Schaerli A.R. Gao F. Däster S. Trella E. Droeser R.A. Muraro M.G. Zajac P. Zanetti R. Gillanders W.E. Weber W.P. Soysal S.D. Expression of programmed death ligand 1 (PD-L1) is associated with poor prognosis in human breast cancer. Breast Cancer Res. Treat. 2014 146 1 15 24 10.1007/s10549‑014‑2988‑5 24842267
    [Google Scholar]
  71. McLemore L.E. Janakiram M. Albanese J. Shapiro N. Lo Y. Zang X. Fineberg S. An immunoscore using PD-L1, CD68, and tumor-infiltrating lymphocytes (TILs) to predict response to neoadjuvant chemotherapy in invasive breast cancer. Appl. Immunohistochem. Mol. Morphol. 2018 26 9 611 619 10.1097/PAI.0000000000000485 28422766
    [Google Scholar]
  72. Viale G. Newell H.A.E. Walker E. Harlow G. Bai I. Russo L. Dell’Orto P. Maisonneuve P. Ki-67 (30-9) scoring and differentiation of Luminal A- and Luminal B-like breast cancer subtypes. Breast Cancer Res. Treat. 2019 178 2 451 458 10.1007/s10549‑019‑05402‑w 31422497
    [Google Scholar]
  73. Angelico G. Broggi G. Tinnirello G. Puzzo L. Vecchio G.M. Salvatorelli L. Memeo L. Santoro A. Farina J. Mulé A. Magro G. Caltabiano R. Tumor infiltrating lymphocytes (TILS) and PD-L1 expression in breast cancer: A review of current evidence and prognostic implications from pathologist’s perspective. Cancers 2023 15 18 4479 10.3390/cancers15184479 37760449
    [Google Scholar]
  74. Ghebeh H. Mohammed S. Al-Omair A. Qattant A. Lehe C. Al-Qudaihi G. Elkum N. Alshabanah M. Amer B.S. Tulbah A. Ajarim D. Al-Tweigeri T. Dermime S. The B7-H1 (PD-L1) T lymphocyte-inhibitory molecule is expressed in breast cancer patients with infiltrating ductal carcinoma: Correlation with important high-risk prognostic factors. Neoplasia 2006 8 3 190 198 10.1593/neo.05733 16611412
    [Google Scholar]
  75. Ghebeh H. Tulbah A. Mohammed S. ElKum N. Amer S.M.B. Al-Tweigeri T. Dermime S. Expression of B7‐H1 in breast cancer patients is strongly associated with high proliferative Ki‐67‐expressing tumor cells. Int. J. Cancer 2007 121 4 751 758 10.1002/ijc.22703 17415709
    [Google Scholar]
  76. Kurozumi S. Inoue K. Matsumoto H. Fujii T. Horiguchi J. Oyama T. Kurosumi M. Shirabe K. Clinicopathological values of PD-L1 expression in HER2-positive breast cancer. Sci. Rep. 2019 9 1 16662 10.1038/s41598‑019‑52944‑6 31723167
    [Google Scholar]
  77. Alkhayyal N. Elemam N.M. Hussein A. Magdub S. Jundi M. Maghazachi A.A. Talaat I.M. Bendardaf R. Expression of immune checkpoints (PD-L1 and IDO) and tumour-infiltrating lymphocytes in breast cancer. Heliyon 2022 8 9 e10482 10.1016/j.heliyon.2022.e10482 36097493
    [Google Scholar]
  78. Wagner J. Rapsomaniki M.A. Chevrier S. Anzeneder T. Langwieder C. Dykgers A. Rees M. Ramaswamy A. Muenst S. Soysal S.D. Jacobs A. Windhager J. Silina K. Broek D.V.M. Dedes K.J. Martínez R.M. Weber W.P. Bodenmiller B. A single-cell atlas of the tumor and immune ecosystem of human breast cancer. Cell 2019 177 5 1330 1345.e18 10.1016/j.cell.2019.03.005 30982598
    [Google Scholar]
  79. Dieci M.V. Guarneri V. Tosi A. Bisagni G. Musolino A. Spazzapan S. Moretti G. Vernaci G.M. Griguolo G. Giarratano T. Urso L. Schiavi F. Pinato C. Magni G. Mele L.M. Salvo D.G.L. Rosato A. Conte P. Neoadjuvant chemotherapy and immunotherapy in luminal b-like breast cancer: Results of the phase II GIADA trial. Clin. Cancer Res. 2022 28 2 308 317 10.1158/1078‑0432.CCR‑21‑2260 34667023
    [Google Scholar]
  80. Gao J.J. Swain S.M. Luminal a breast cancer and molecular assays: A review. Oncologist 2018 23 5 556 565 10.1634/theoncologist.2017‑0535 29472313
    [Google Scholar]
  81. Sparano J.A. Gray R.J. Makower D.F. Pritchard K.I. Albain K.S. Hayes D.F. Geyer C.E. Dees E.C. Goetz M.P. Olson J.A. Lively T. Badve S.S. Saphner T.J. Wagner L.I. Whelan T.J. Ellis M.J. Paik S. Wood W.C. Ravdin P.M. Keane M.M. Moreno G.H.L. Reddy P.S. Goggins T.F. Mayer I.A. Brufsky A.M. Toppmeyer D.L. Kaklamani V.G. Berenberg J.L. Abrams J. Sledge G.W. Adjuvant chemotherapy guided by a 21-gene expression assay in breast cancer. N. Engl. J. Med. 2018 379 2 111 121 10.1056/NEJMoa1804710 29860917
    [Google Scholar]
  82. Pusztai L. Yau C. Wolf D.M. Han H.S. Du L. Wallace A.M. String-Reasor E. Boughey J.C. Chien A.J. Elias A.D. Beckwith H. Nanda R. Albain K.S. Clark A.S. Kemmer K. Kalinsky K. Isaacs C. Thomas A. Shatsky R. Helsten T.L. Forero-Torres A. Liu M.C. Brown-Swigart L. Petricoin E.F. Wulfkuhle J.D. Asare S.M. Wilson A. Singhrao R. Sit L. Hirst G.L. Berry S. Sanil A. Asare A.L. Matthews J.B. Perlmutter J. Melisko M. Rugo H.S. Schwab R.B. Symmans W.F. Yee D. van’t Veer L.J. Hylton N.M. DeMichele A.M. Berry D.A. Esserman L.J. Durvalumab with olaparib and paclitaxel for high-risk HER2-negative stage II/III breast cancer: Results from the adaptively randomized I-SPY2 trial. Cancer Cell 2021 39 7 989 998.e5 10.1016/j.ccell.2021.05.009 34143979
    [Google Scholar]
  83. Caluwe D.A. Romano E. Poortmans P. Gombos A. Agostinetto E. Marta G.N. Denis Z. Drisis S. Vandekerkhove C. Desmet A. Philippson C. Craciun L. Veys I. Larsimont D. Paesmans M. Gestel V.D. Salgado R. Sotiriou C. Piccart-Gebhart M. Ignatiadis M. Buisseret L. First-in-human study of SBRT and adenosine pathway blockade to potentiate the benefit of immunochemotherapy in early-stage luminal B breast cancer: Results of the safety run-in phase of the Neo-CheckRay trial. J. Immunother. Cancer 2023 11 12 e007279 10.1136/jitc‑2023‑007279 38056900
    [Google Scholar]
  84. Rugo H.S. Delord J.P. Im, S.A.; Ott, P.A.; Piha-Paul, S.A.; Bedard, P.L.; Sachdev, J.; Tourneau, C.L.; Brummelen, V.E.M.J.; Varga, A.; Salgado, R.; Loi, S.; Saraf, S.; Pietrangelo, D.; Karantza, V.; Tan, A.R. Safety and antitumor activity of pembrolizumab in patients with estrogen receptor–positive/human epidermal growth factor receptor 2–negative advanced breast cancer. Clin. Cancer Res. 2018 24 12 2804 2811 10.1158/1078‑0432.CCR‑17‑3452 29559561
    [Google Scholar]
  85. Wang H. Yee D. I-SPY 2: A neoadjuvant adaptive clinical trial designed to improve outcomes in high-risk breast cancer. Curr. Breast Cancer Rep. 2019 11 4 303 310 10.1007/s12609‑019‑00334‑2 33312344
    [Google Scholar]
  86. Seshadri R. Firgaira F.A. Horsfall D.J. McCaul K. Setlur V. Kitchen P. Clinical significance of HER-2/neu oncogene amplification in primary breast cancer. J. Clin. Oncol. 1993 11 10 1936 1942 10.1200/JCO.1993.11.10.1936 8105035
    [Google Scholar]
  87. Slamon D.J. Clark G.M. Wong S.G. Levin W.J. Ullrich A. McGuire W.L. Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987 235 4785 177 182 10.1126/science.3798106 3798106
    [Google Scholar]
  88. Swain S.M. Tang G. Lucas P.C. Robidoux A. Goerlitz D. Harris B.T. Bandos H. Geyer C.E. Rastogi P. Mamounas E.P. Wolmark N. Pathologic complete response and outcomes by intrinsic subtypes in NSABP B-41, a randomized neoadjuvant trial of chemotherapy with trastuzumab, lapatinib, or the combination. Breast Cancer Res. Treat. 2019 178 2 389 399 10.1007/s10549‑019‑05398‑3 31428908
    [Google Scholar]
  89. Schettini F. Prat A. Dissecting the biological heterogeneity of HER2-positive breast cancer. Breast 2021 59 339 350 10.1016/j.breast.2021.07.019 34392185
    [Google Scholar]
  90. Padmanabhan R. Kheraldine H.S. Meskin N. Vranic S. Moustafa A.A.E. Crosstalk between HER2 and PD-1/PD-L1 in breast cancer: From clinical applications to mathematical models. Cancers 2020 12 3 636 10.3390/cancers12030636 32164163
    [Google Scholar]
  91. Barroso-Sousa R. Barry W.T. Guo H. Dillon D. Tan Y.B. Fuhrman K. Osmani W. Getz A. Baltay M. Dang C. Yardley D. Moy B. Marcom P.K. Mittendorf E.A. Krop I.E. Winer E.P. Tolaney S.M. The immune profile of small HER2-positive breast cancers: A secondary analysis from the APT trial. Ann. Oncol. 2019 30 4 575 581 10.1093/annonc/mdz047 30753274
    [Google Scholar]
  92. Kim A. Lee S.J. Kim Y.K. Park W.Y. Park D.Y. Kim J.Y. Lee C.H. Gong G. Huh G.Y. Choi K.U. Programmed death-ligand 1 (PD-L1) expression in tumour cell and tumour infiltrating lymphocytes of HER2-positive breast cancer and its prognostic value. Sci. Rep. 2017 7 1 11671 10.1038/s41598‑017‑11905‑7 28916815
    [Google Scholar]
  93. Bae S.B. Cho H.D. Oh M.H. Lee J.H. Jang S.H. Hong S.A. Cho J. Kim S.Y. Han S.W. Lee J.E. Kim H.J. Lee H.J. Expression of programmed death receptor ligand 1 with high tumor-infiltrating lymphocytes is associated with better prognosis in breast cancer. J. Breast Cancer 2016 19 3 242 251 10.4048/jbc.2016.19.3.242 27721873
    [Google Scholar]
  94. Tsang J.Y.S. Au W.L. Lo K.Y. Ni Y.B. Hlaing T. Hu J. Chan S.K. Chan K.F. Cheung S.Y. Tse G.M. PD-L1 expression and tumor infiltrating PD-1+ lymphocytes associated with outcome in HER2+ breast cancer patients. Breast Cancer Res. Treat. 2017 162 1 19 30 10.1007/s10549‑016‑4095‑2 28058578
    [Google Scholar]
  95. Polk A. Svane I.M. Andersson M. Nielsen D. Checkpoint inhibitors in breast cancer – Current status. Cancer Treat. Rev. 2018 63 122 134 10.1016/j.ctrv.2017.12.008 29287242
    [Google Scholar]
  96. Emens L.A. Esteva F.J. Beresford M. Saura C. Laurentiis D.M. Kim S.B. Im S.A. Wang Y. Salgado R. Mani A. Shah J. Lambertini C. Liu H. Haas D.S.L. Patre M. Loi S. Trastuzumab emtansine plus atezolizumab versus trastuzumab emtansine plus placebo in previously treated, HER2-positive advanced breast cancer (KATE2): A phase 2, multicentre, randomised, double-blind trial. Lancet Oncol. 2020 21 10 1283 1295 10.1016/S1470‑2045(20)30465‑4 33002436
    [Google Scholar]
  97. Loi S. Giobbie-Hurder A. Gombos A. Bachelot T. Hui R. Curigliano G. Campone M. Biganzoli L. Bonnefoi H. Jerusalem G. Bartsch R. Rabaglio-Poretti M. Kammler R. Maibach R. Smyth M.J. Leo D.A. Colleoni M. Viale G. Regan M.M. André F. Fumagalli D. Gelber R.D. Goulioti T. Hiltbrunner A. Hui R. Roschitzki H. Ruepp B. Boyle F. Stahel R. Aebi S. Coates A.S. Goldhirsch A. Karlsson P. Kössler I. Fournarakou S. Gasca A. Pfister R. Ribeli-Hofmann S. Weber M. Celotto D. Comune C. Frapolli M. Sánchez-Hohl M. Huang H. Mahoney C. Price K. Scott K. Shaw H. Fischer S. Greco M. King C. Andrighetto S. Piccart-Gebhart M. Findlay H. Jenkins M. Karantza V. Mejia J. Schneier P. Pembrolizumab plus trastuzumab in trastuzumab-resistant, advanced, HER2-positive breast cancer (PANACEA): A single-arm, multicentre, phase 1b–2 trial. Lancet Oncol. 2019 20 3 371 382 10.1016/S1470‑2045(18)30812‑X 30765258
    [Google Scholar]
  98. Siegel R.L. Giaquinto A.N. Jemal A. Cancer statistics, 2024. CA Cancer J. Clin. 2024 74 1 12 49 10.3322/caac.21820 38230766
    [Google Scholar]
  99. Vagia E. Mahalingam D. Cristofanilli M. The landscape of targeted therapies in TNBC. Cancers 2020 12 4 916 10.3390/cancers12040916 32276534
    [Google Scholar]
  100. Lee K.L. Kuo Y.C. Ho Y.S. Huang Y.H. Triple-Negative Breast Cancer: Current Understanding and Future Therapeutic Breakthrough Targeting Cancer Stemness. Cancers 2019 11 9 1334 10.3390/cancers11091334 31505803
    [Google Scholar]
  101. Singh D.D. Yadav D.K. TNBC: Potential targeting of multiple receptors for a therapeutic breakthrough, nanomedicine, and immunotherapy. Biomedicines 2021 9 8 876 10.3390/biomedicines9080876 34440080
    [Google Scholar]
  102. Won K.A. Spruck C. Triple negative breast cancer therapy: Current and future perspectives (Review). Int. J. Oncol. 2020 57 6 1245 1261 10.3892/ijo.2020.5135 33174058
    [Google Scholar]
  103. Ende D.V.N.S. Nguyen A.H. Jager A. Kok M. Debets R. Deurzen V.C.H.M. Triple-negative breast cancer and predictive markers of response to neoadjuvant chemotherapy: A systematic review. Int. J. Mol. Sci. 2023 24 3 2969 10.3390/ijms24032969 36769287
    [Google Scholar]
  104. Mittendorf E.A. Philips A.V. Meric-Bernstam F. Qiao N. Wu Y. Harrington S. Su X. Wang Y. Gonzalez-Angulo A.M. Akcakanat A. Chawla A. Curran M. Hwu P. Sharma P. Litton J.K. Molldrem J.J. Alatrash G. PD-L1 expression in triple-negative breast cancer. Cancer Immunol. Res. 2014 2 4 361 370 10.1158/2326‑6066.CIR‑13‑0127 24764583
    [Google Scholar]
  105. Stanton S.E. Adams S. Disis M.L. Variation in the incidence and magnitude of tumor-infiltrating lymphocytes in breast cancer subtypes. JAMA Oncol. 2016 2 10 1354 1360 10.1001/jamaoncol.2016.1061 27355489
    [Google Scholar]
  106. Safonov A. Jiang T. Bianchini G. Győrffy B. Karn T. Hatzis C. Pusztai L. Immune gene expression is associated with genomic aberrations in breast cancer. Cancer Res. 2017 77 12 3317 3324 10.1158/0008‑5472.CAN‑16‑3478 28428277
    [Google Scholar]
  107. Marletta S. Fusco N. Munari E. Luchini C. Cimadamore A. Brunelli M. Querzoli G. Martini M. Vigliar E. Colombari R. Girolami I. Pagni F. Eccher A. Atlas of PD-L1 for pathologists: Indications, scores, diagnostic platforms and reporting systems. J. Pers. Med. 2022 12 7 1073 10.3390/jpm12071073 35887569
    [Google Scholar]
  108. Miyakoshi J. Yazaki S. Shimoi T. Onishi M. Saito A. Kita S. Yamamoto K. Kojima Y. Sumiyoshi-Okuma H. Nishikawa T. Sudo K. Noguchi E. Murata T. Shiino S. Takayama S. Suto A. Fujiwara Y. Yoshida M. Yonemori K. Discordance in PD-L1 expression using 22C3 and SP142 assays between primary and metastatic triple-negative breast cancer. Virchows Arch. 2023 483 6 855 863 10.1007/s00428‑023‑03634‑2 37668667
    [Google Scholar]
  109. Han E.K. Woo J.W. Suh K.J. Kim S.H. Kim J.H. Park S.Y. PD-L1 (SP142) expression in primary and recurrent/metastatic triple-negative breast cancers and its clinicopathological significance. Cancer Res. Treat. 2024 56 2 557 566 10.4143/crt.2023.1025 38097920
    [Google Scholar]
  110. Foldi J. Silber A. Reisenbichler E. Singh K. Fischbach N. Persico J. Adelson K. Katoch A. Horowitz N. Lannin D. Chagpar A. Park T. Marczyk M. Frederick C. Burrello T. Ibrahim E. Qing T. Bai Y. Blenman K. Rimm D.L. Pusztai L. Neoadjuvant durvalumab plus weekly nab-paclitaxel and dose-dense doxorubicin/cyclophosphamide in triple-negative breast cancer. NPJ Breast Cancer 2021 7 1 9 10.1038/s41523‑021‑00219‑7 33558513
    [Google Scholar]
  111. Arole V. Nitta H. Wei L. Shen T. Parwani A.V. Li Z. M2 tumor-associated macrophages play important role in predicting response to neoadjuvant chemotherapy in triple-negative breast carcinoma. Breast Cancer Res. Treat. 2021 188 1 37 42 10.1007/s10549‑021‑06260‑1 34032986
    [Google Scholar]
  112. Cerbelli B. Pernazza A. Botticelli A. Fortunato L. Monti M. Sciattella P. Campagna D. Mazzuca F. Mauri M. Naso G. Marchetti P. d’Amati G. Costarelli L. PD-L1 expression in TNBC: A predictive biomarker of response to neoadjuvant chemotherapy? BioMed Res. Int. 2017 2017 1 7 10.1155/2017/1750925 29387716
    [Google Scholar]
  113. Gianni L. Huang C.S. Egle D. Bermejo B. Zamagni C. Thill M. Anton A. Zambelli S. Bianchini G. Russo S. Ciruelos E.M. Greil R. Semiglazov V. Colleoni M. Kelly C. Mariani G. Mastro D.L. Maffeis I. Valagussa P. Viale G. Pathologic complete response (pCR) to neoadjuvant treatment with or without atezolizumab in triple-negative, early high-risk and locally advanced breast cancer: NeoTRIP Michelangelo randomized study. Ann. Oncol. 2022 33 5 534 543 10.1016/j.annonc.2022.02.004 35182721
    [Google Scholar]
  114. Yeong J. Lim J.C.T. Lee B. Li H. Ong C.C.H. Thike A.A. Yeap W.H. Yang Y. Lim A.Y.H. Tay T.K.Y. Liu J. Wong S.C. Chen J. Lim E.H. Iqbal J. Dent R. Newell E.W. Tan P.H. Prognostic value of CD8 + PD-1+ immune infiltrates and PDCD1 gene expression in triple negative breast cancer. J. Immunother. Cancer 2019 7 1 34 10.1186/s40425‑019‑0499‑y 30728081
    [Google Scholar]
  115. Okabe M. Toh U. Iwakuma N. Saku S. Akashi M. Kimitsuki Y. Seki N. Kawahara A. Ogo E. Itoh K. Akagi Y. Predictive factors of the tumor immunological microenvironment for long‐term follow‐up in early stage breast cancer. Cancer Sci. 2017 108 1 81 90 10.1111/cas.13114 27801993
    [Google Scholar]
  116. Mori H. Kubo M. Yamaguchi R. Nishimura R. Osako T. Arima N. Okumura Y. Okido M. Yamada M. Kai M. Kishimoto J. Oda Y. Nakamura M. The combination of PD-L1 expression and decreased tumor-infiltrating lymphocytes is associated with a poor prognosis in triple-negative breast cancer. Oncotarget 2017 8 9 15584 15592 10.18632/oncotarget.14698 28107186
    [Google Scholar]
  117. Lotfinejad P. Jafarabadi A.M. Shadbad A.M. Kazemi T. Pashazadeh F. Shotorbani S.S. Niaragh J.F. Baghbanzadeh A. Vahed N. Silvestris N. Baradaran B. Prognostic role and clinical significance of tumor-infiltrating lymphocyte (TIL) and programmed death ligand 1 (PD-l1) expression in triple-negative breast cancer (TNBC): A systematic review and meta-analysis study. Diagnostics 2020 10 9 704 10.3390/diagnostics10090704 32957579
    [Google Scholar]
  118. Geurts V. Kok M. Immunotherapy for Metastatic Triple Negative Breast Cancer: Current Paradigm and Future Approaches. Curr. Treat. Options Oncol. 2023 24 6 628 643 10.1007/s11864‑023‑01069‑0 37079257
    [Google Scholar]
  119. Mavratzas A. Seitz J. Smetanay K. Schneeweiss A. Jäger D. Fremd C. Atezolizumab for use in PD-L1-positive unresectable, locally advanced or metastatic triple-negative breast cancer. Future Oncol. 2020 16 3 4439 4453 10.2217/fon‑2019‑0468 31829043
    [Google Scholar]
  120. Schmid P. Adams S. Rugo H.S. Schneeweiss A. Barrios C.H. Iwata H. Diéras V. Hegg R. Im S.A. Wright S.G. Henschel V. Molinero L. Chui S.Y. Funke R. Husain A. Winer E.P. Loi S. Emens L.A. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N. Engl. J. Med. 2018 379 22 2108 2121 10.1056/NEJMoa1809615 30345906
    [Google Scholar]
  121. Nanda R. Liu M.C. Yau C. Shatsky R. Pusztai L. Wallace A. Chien A.J. Forero-Torres A. Ellis E. Han H. Clark A. Albain K. Boughey J.C. Jaskowiak N.T. Elias A. Isaacs C. Kemmer K. Helsten T. Majure M. Stringer-Reasor E. Parker C. Lee M.C. Haddad T. Cohen R.N. Asare S. Wilson A. Hirst G.L. Singhrao R. Steeg K. Asare A. Matthews J.B. Berry S. Sanil A. Schwab R. Symmans W.F. ’t Veer V.L. Yee D. DeMichele A. Hylton N.M. Melisko M. Perlmutter J. Rugo H.S. Berry D.A. Esserman L.J. Effect of pembrolizumab plus neoadjuvant chemotherapy on pathologic complete response in women with early-stage breast cancer. JAMA Oncol. 2020 6 5 676 684 10.1001/jamaoncol.2019.6650 32053137
    [Google Scholar]
  122. Qi Y. Zhang W. Jiang R. Xu O. Kong X. Zhang L. Fang Y. Wang J. Wang J. Efficacy and safety of PD-1 and PD-L1 inhibitors combined with chemotherapy in randomized clinical trials among triple-negative breast cancer. Front. Pharmacol. 2022 13 960323 10.3389/fphar.2022.960323 36188589
    [Google Scholar]
  123. Hirsch F.R. McElhinny A. Stanforth D. Ranger-Moore J. Jansson M. Kulangara K. Richardson W. Towne P. Hanks D. Vennapusa B. Mistry A. Kalamegham R. Averbuch S. Novotny J. Rubin E. Emancipator K. McCaffery I. Williams J.A. Walker J. Longshore J. Tsao M.S. Kerr K.M. PD-L1 immunohistochemistry assays for lung cancer: Results from phase 1 of the blueprint PD-L1 ihc assay comparison project. J. Thorac. Oncol. 2017 12 2 208 222 10.1016/j.jtho.2016.11.2228 27913228
    [Google Scholar]
  124. Mishra S. Yadav T. Rani V. Exploring miRNA based approaches in cancer diagnostics and therapeutics. Crit. Rev. Oncol. Hematol. 2016 98 12 23 10.1016/j.critrevonc.2015.10.003 26481951
    [Google Scholar]
  125. Yu J. Yan Y. Li S. Xu Y. Parolia A. Rizvi S. Wang W. Zhai Y. Xiao R. Li X. Liao P. Zhou J. Okla K. Lin H. Lin X. Grove S. Wei S. Vatan L. Hu J. Szumilo J. Kotarski J. Freeman Z.T. Skala S. Wicha M. Cho K.R. Chinnaiyan A.M. Schon S. Wen F. Kryczek I. Wang S. Chen L. Zou W. Progestogen-driven B7-H4 contributes to onco-fetal immune tolerance. Cell 2024 187 17 4713 4732.e19 10.1016/j.cell.2024.06.012 38968937
    [Google Scholar]
  126. Chen J. Jiang C.C. Jin L. Zhang X.D. Regulation of PD-L1: A novel role of pro-survival signalling in cancer. Ann. Oncol. 2016 27 3 409 416 10.1093/annonc/mdv615 26681673
    [Google Scholar]
  127. Bridges M.C. Daulagala A.C. Kourtidis A. LNCcation: LncRNA localization and function. J. Cell Biol. 2021 220 2 e202009045 10.1083/jcb.202009045 33464299
    [Google Scholar]
  128. An S.J. Rivera-Molina F. Anneken A. Xi Z. McNellis B. Polejaev V.I. Toomre D. An active tethering mechanism controls the fate of vesicles. Nat. Commun. 2021 12 1 5434 10.1038/s41467‑021‑25465‑y 34521845
    [Google Scholar]
  129. Han M. Qian X. Cao H. Wang F. Li X. Han N. Yang X. Yang Y. Dou D. Hu J. Wang W. Han J. Zhang F. Dong H. lncRNA ZNF649-AS1 induces trastuzumab resistance by promoting ATG5 expression and autophagy. Mol. Ther. 2020 28 11 2488 2502 10.1016/j.ymthe.2020.07.019 32735773
    [Google Scholar]
  130. Chen L. Shan G. CircRNA in cancer: Fundamental mechanism and clinical potential. Cancer Lett. 2021 505 49 57 10.1016/j.canlet.2021.02.004 33609610
    [Google Scholar]
  131. Zuo Y. Zheng W. Liu J. Tang Q. Wang S.S. Yang X.S. MiR-34a-5p/PD-L1 axis regulates cisplatin chemoresistance of ovarian cancer cells. Neoplasma 2020 67 1 93 101 10.4149/neo_2019_190202N106 31777260
    [Google Scholar]
  132. Xu D. Wang W. Wang D. Ding J. Zhou Y. Zhang W. Long noncoding RNA MALAT-1: A versatile regulator in cancer progression, metastasis, immunity, and therapeutic resistance. Noncoding RNA Res. 2024 9 2 388 406 10.1016/j.ncrna.2024.01.015 38511067
    [Google Scholar]
  133. Gupta R.A. Shah N. Wang K.C. Kim J. Horlings H.M. Wong D.J. Tsai M.C. Hung T. Argani P. Rinn J.L. Wang Y. Brzoska P. Kong B. Li R. West R.B. Vijver D.V.M.J. Sukumar S. Chang H.Y. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010 464 7291 1071 1076 10.1038/nature08975 20393566
    [Google Scholar]
  134. Bereczki Z. Benczik B. Balogh O.M. Marton S. Puhl E. Pétervári M. Váczy-Földi M. Papp Z.T. Makkos A. Glass K. Locquet F. Euler G. Schulz R. Ferdinandy P. Ágg B. Mitigating off‐target effects of small RNAs: Conventional approaches, network theory and artificial intelligence. Br. J. Pharmacol. 2025 182 2 340 379 10.1111/bph.17302 39293936
    [Google Scholar]
  135. Wei P.S. Thota N. John G. Chang E. Lee S. Wang Y. Ma Z. Tsai Y.H. Mei K.C. Enhancing RNA-lipid nanoparticle delivery: Organ- and cell-specificity and barcoding strategies. J. Control. Release 2024 375 366 388 10.1016/j.jconrel.2024.08.030 39179112
    [Google Scholar]
  136. Zhong Y. Le H. Zhang X. Dai Y. Guo F. Ran X. Hu G. Xie Q. Wang D. Cai Y. Identification of restrictive molecules involved in oncolytic virotherapy using genome-wide CRISPR screening. J. Hematol. Oncol. 2024 17 1 36 10.1186/s13045‑024‑01554‑5 38783389
    [Google Scholar]
  137. Hu W. Kumar A. Ahmed S.F. Qi S. Ma D.K.G. Chen H. Singh G.J. Casan J.M.L. Haber M. Voskoboinik I. McKay M.R. Trapani J.A. Ekert P.G. Fareh M. Single-base tiled screen unveils design principles of PspCas13b for potent and off-target-free RNA silencing. Nat. Struct. Mol. Biol. 2024 31 11 1702 1716 10.1038/s41594‑024‑01336‑0 38951623
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096376016250607151653
Loading
/content/journals/ccdt/10.2174/0115680096376016250607151653
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: PD-L1-targeted immunotherapy ; non-coding RNAs ; Breast cancer ; immune regulation ; PD-L1
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test