Skip to content
2000
image of Controversial Role of Opioids: From Pain Control to Cancer Recurrence in Breast Cancer

Abstract

Opioids are widely used for pain management in breast cancer patients; however, their influence on tumor progression and recurrence remains controversial. Opioid receptors-mu (MOR), delta (DOR), and kappa (KOR)-play diverse roles in cancer biology, modulating tumor growth, immune responses, and angiogenesis. MOR activation is associated with increased proliferation, Epithelial-Mesenchymal Transition (EMT), and immunosuppression, contributing to an aggressive tumor phenotype. Conversely, KOR exhibits tumor-suppressive properties, reducing angiogenesis via VEGF inhibition. Emerging preclinical evidence suggests that opioids, particularly morphine, may facilitate breast cancer progression by enhancing cancer cell migration, angiogenesis, and immune evasion. Genetic variations in opioid receptor pathways, such as the OPRM1 A118G polymorphism, further complicate the opioid-cancer relationship, demonstrating population-dependent effects on patient outcomes. In contrast, tramadol has shown potential immune-protective effects by preserving Natural Killer (NK) cell function and inhibiting adrenergic signaling; fentanyl and sufentanil exhibit variable impacts on tumor biology, necessitating further investigation. Clinical studies, however, remain inconclusive regarding opioids' direct contribution to breast cancer recurrence, highlighting the need for targeted research. Opioid-sparing analgesic strategies, including multimodal pain management, regional anesthesia, and immunomodulatory agents, offer promising alternatives to mitigate potential oncogenic risks while ensuring adequate pain relief. Future studies integrating single-cell transcriptomics and tumor microenvironment analyses will be critical in elucidating the molecular impact of opioids in breast cancer. Personalized pain management approaches tailored to genetic and clinical profiles may optimize oncological outcomes while preserving analgesic efficacy.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096391788250610080609
2025-06-18
2025-09-13
Loading full text...

Full text loading...

References

  1. Sun D Li X Nie S Liu J Wang S Disorders of cancer metabolism: The therapeutic potential of cannabinoids. Biomed Pharmacother 2023 157 113993 10.1016/j.biopha.2022.113993 36379120
    [Google Scholar]
  2. Li R. Luo P. Guo Y. He Y. Wang C. Clinical features, treatment, and prognosis of SGLT2 inhibitors induced acute pancreatitis. Expert Opin. Drug Saf. 2024 1 5 10.1080/14740338.2024.2396387 39172128
    [Google Scholar]
  3. Zeng Q. Chen C. Chen C. Song H. Li M. Yan J. Lv X. Serum Raman spectroscopy combined with convolutional neural network for rapid diagnosis of HER2-positive and triple-negative breast cancer. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023 286 122000 10.1016/j.saa.2022.122000 36279798
    [Google Scholar]
  4. Bennett M. Paice J.A. Wallace M. Pain and opioids in cancer care: Benefits, risks, and alternatives. Am Soc Clin Oncol Educ Book 2017 37 705 713 10.1200/EDBK_180469 28561731
    [Google Scholar]
  5. Patrad E. Khalighfard S. Khori V. Alizadeh A.M. The other side of the coin: Positive view on the role of opioids in cancer. Eur. J. Pharmacol. 2022 923 174888 10.1016/j.ejphar.2022.174888 35367422
    [Google Scholar]
  6. Cao Z. Zhu J. Wang Z. Peng Y. Zeng L. Comprehensive pan-cancer analysis reveals ENC1 as a promising prognostic biomarker for tumor microenvironment and therapeutic responses. Sci. Rep. 2024 14 1 25331 10.1038/s41598‑024‑76798‑9 39455818
    [Google Scholar]
  7. Meng H. Dai T. Hanlon J.G. Downar J. Alibhai S.M.H. Clarke H. Cannabis and cannabinoids in cancer pain management. Curr. Opin. Support. Palliat. Care 2020 14 2 87 93 10.1097/SPC.0000000000000493 32332209
    [Google Scholar]
  8. Khan Y. Rizvi S. Raza A. Khan A. Hussain S. Khan N.U. Alshammari S.O. Alshammari Q.A. Alshammari A. Ellakwa D.E.S. Tailored therapies for triple-negative breast cancer: Current landscape and future perceptions. Naunyn Schmiedebergs Arch. Pharmacol. 2025 10.1007/s00210‑025‑03896‑4 40029385
    [Google Scholar]
  9. Novy D.M. Nelson D.V. Koyyalagunta D. Cata J.P. Gupta P. Gupta K. Pain, opioid therapy, and survival: A needed discussion. Pain 2020 161 3 496 501 10.1097/j.pain.0000000000001736 31693537
    [Google Scholar]
  10. Zhou Q. Zhang Z. Long S. Li W. Wang B. Liang N. Opioids in cancer: The κ‑opioid receptor (Review). Mol. Med. Rep. 2022 25 2 25 10.3892/mmr.2021.12560 34878160
    [Google Scholar]
  11. Bhoir S. Uhelski M. Guerra-Londono J.J. Cata J.P. The role of opioid receptors in cancer. Adv. Biol. 2023 7 7 2300102 10.1002/adbi.202300102 37132160
    [Google Scholar]
  12. Zhu L. Bai M. Xiao S. Liu Y. Zhu Q. Wang Z. Zhao J. Zhang W. Chen D. In-situ monitoring of cellular H2O2 within 3D cell clusters using conductive scaffolds. Talanta 2024 279 126559 10.1016/j.talanta.2024.126559 39018950
    [Google Scholar]
  13. Santoni A. Santoni M. Arcuri E. Chronic cancer pain: Opioids within tumor microenvironment affect neuroinflammation, tumor and pain evolution. Cancers 2022 14 9 2253 10.3390/cancers14092253 35565382
    [Google Scholar]
  14. Hussain M.S. Majami A.A. Ali H. Gupta G. Almalki W.H. Alzarea S.I. Kazmi I. Syed R.U. Khalifa N.E. Bin Break M.K. Khan R. Altwaijry N. Sharma R. The complex role of MEG3: An emerging long non-coding RNA in breast cancer. Pathol. Res. Pract. 2023 251 154850 10.1016/j.prp.2023.154850 37839358
    [Google Scholar]
  15. Plein L.M. Rittner H.L. Opioids and the immune system – Friend or foe. Br. J. Pharmacol. 2018 175 14 2717 2725 10.1111/bph.13750 28213891
    [Google Scholar]
  16. Wang R. Zhang Y. Shan F. Interaction of opioid growth factor (OGF) and opioid antagonist and their significance in cancer therapy. Int. Immunopharmacol. 2019 75 105785 10.1016/j.intimp.2019.105785 31404891
    [Google Scholar]
  17. Lennon F.E. Moss J. Singleton P.A. Riou B. The μ-opioid receptor in cancer progression: Is there a direct effect? Anesthesiology 2012 116 4 940 945 10.1097/ALN.0b013e31824b9512 22357347
    [Google Scholar]
  18. Waldhoer M. Bartlett S.E. Whistler J.L. Opioid Receptors. Annu. Rev. Biochem. 2004 73 1 953 990 10.1146/annurev.biochem.73.011303.073940 15189164
    [Google Scholar]
  19. Shang Y. Filizola M. Opioid receptors: Structural and mechanistic insights into pharmacology and signaling. Eur. J. Pharmacol. 2015 763 Pt B 206 213 10.1016/j.ejphar.2015.05.012 25981301
    [Google Scholar]
  20. Zhao C Song W Wang J Tang X Jiang Z. Immunoadjuvant-functionalized metal-organic frameworks: Synthesis and applications in tumor immune modulation. Chem. Commun. 2025 61 1962 1977 10.1039/D4CC06510G
    [Google Scholar]
  21. Ma X. Cheng H. Hou J. Jia Z. Wu G. Lü X. Li H. Zheng X. Chen C. Detection of breast cancer based on novel porous silicon Bragg reflector surface-enhanced Raman spectroscopy-active structure. Chin. Opt. Lett. 2020 18 5 051701 10.3788/COL202018.051701
    [Google Scholar]
  22. Chapman C.R. Lipschitz D.L. Angst M.S. Chou R. Denisco R.C. Donaldson G.W. Fine P.G. Foley K.M. Gallagher R.M. Gilson A.M. Haddox J.D. Horn S.D. Inturrisi C.E. Jick S.S. Lipman A.G. Loeser J.D. Noble M. Porter L. Rowbotham M.C. Schoelles K.M. Turk D.C. Volinn E. Von Korff M.R. Webster L.R. Weisner C.M. Opioid pharmacotherapy for chronic non-cancer pain in the United States: A research guideline for developing an evidence-base. J. Pain 2010 11 9 807 829 10.1016/j.jpain.2010.02.019 20430701
    [Google Scholar]
  23. Sah D. Shoffel-Havakuk H. Tsur N. Uhelski M.L. Gottumukkala V. Cata J.P. Opioids and cancer: Current understanding and clinical considerations. Curr. Oncol. 2024 31 6 3086 3098 10.3390/curroncol31060235 38920719
    [Google Scholar]
  24. Gopalakrishnan L. Chatterjee O. Ravishankar N. Suresh S. Raju R. Mahadevan A. Prasad T.S.K. Opioid receptors signaling network. J. Cell Commun. Signal. 2022 16 3 475 483 10.1007/s12079‑021‑00653‑z 34724150
    [Google Scholar]
  25. Scroope C.A. Singleton Z. Hollmann M.W. Parat M.O. Opioid receptor-mediated and non-opioid receptor-mediated roles of opioids in tumour growth and metastasis. Front. Oncol. 2021 11 792290 10.3389/fonc.2021.792290 35004315
    [Google Scholar]
  26. Wang R. Li S. Wang B. Wang G. Zheng H. Impact of opioids and mu-opioid receptors on oncologic metastasis. Am. J. Cancer Res. 2024 14 9 4236 4247 10.62347/SCLS3277 39417177
    [Google Scholar]
  27. Tregubenko P. Zvonarev V. Impact of opioid use in hematological malignancies: Clinical, immunological and concomitant aspects. J. Hematol. 2020 9 3 41 54 10.14740/jh689 32855752
    [Google Scholar]
  28. Dong Q. Jiang Z. Platinum–iron nanoparticles for oxygen-enhanced sonodynamic tumor cell suppression. Inorganics 2024 12 12 331 10.3390/inorganics12120331
    [Google Scholar]
  29. Nagata K. Nagase H. Okuzumi A. Nishiyama C. Delta opioid receptor agonists ameliorate colonic inflammation by modulating immune responses. Front. Immunol. 2021 12 730706 10.3389/fimmu.2021.730706 34630408
    [Google Scholar]
  30. Goode-Romero G. Dominguez L. Descriptive molecular pharmacology of the δ opioid receptor (DOR): A computational study with structural approach. PLoS One 2024 19 7 e0304068 10.1371/journal.pone.0304068 38991032
    [Google Scholar]
  31. Lyu Z. Xin M. Oyston D.R. Xue T. Kang H. Wang X. Wang Z. Li Q. Cause and consequence of heterogeneity in human mesenchymal stem cells: Challenges in clinical application. Pathol. Res. Pract. 2024 260 155354 10.1016/j.prp.2024.155354 38870711
    [Google Scholar]
  32. Dalefield M.L. Scouller B. Bibi R. Kivell B.M. The kappa opioid receptor: A promising therapeutic target for multiple pathologies. Front. Pharmacol. 2022 13 837671 10.3389/fphar.2022.837671 35795569
    [Google Scholar]
  33. Singleton P.A. Mirzapoiazova T. Hasina R. Salgia R. Moss J. Increased μ-opioid receptor expression in metastatic lung cancer. Br. J. Anaesth. 2014 113 Suppl 1 Suppl. 1 i103 i108 10.1093/bja/aeu165 24920011
    [Google Scholar]
  34. Lahav Y Cohen O Huszar M Levy I Cata JP Halperin D Mu-Opioid receptor expression in laryngeal cancer. J Voice. 2023 37 3 433 439 10.1016/j.jvoice.2021.02.018 33750623
    [Google Scholar]
  35. Zhang H. Sun M. Zhou D. Gorur A. Sun Z. Zeng W. Cata J.P. Chen W. Miao C. Increased mu-opioid receptor expression is associated with reduced disease-free and overall survival in laryngeal squamous cell carcinoma. Br. J. Anaesth. 2020 125 5 722 729 10.1016/j.bja.2020.07.051 32900505
    [Google Scholar]
  36. Mathew B. Lennon F.E. Siegler J. Mirzapoiazova T. Mambetsariev N. Sammani S. Gerhold L.M. LaRiviere P.J. Chen C.T. Garcia J.G. Salgia R. Moss J. Singleton P.A. The novel role of the mu opioid receptor in lung cancer progression: A laboratory investigation. Anesth. Analg. 2011 112 3 558 567 10.1213/ANE.0b013e31820568af 21156980
    [Google Scholar]
  37. Zylla D. Gourley B.L. Vang D. Jackson S. Boatman S. Lindgren B. Kuskowski M.A. Le C. Gupta K. Gupta P. Opioid requirement, opioid receptor expression, and clinical outcomes in patients with advanced prostate cancer. Cancer 2013 119 23 4103 4110 10.1002/cncr.28345 24104703
    [Google Scholar]
  38. Zhang H. Qu M. Gorur A. Sun Z. Cata J.P. Chen W. Miao C. Association of Mu-Opioid Receptor(MOR) expression and opioids requirement with survival in patients with stage I-III pancreatic ductal adenocarcinoma. Front. Oncol. 2021 11 686877 10.3389/fonc.2021.686877 34222012
    [Google Scholar]
  39. de Sousa A. Dantas T. Barros Silva P. Martins C. Freire G. Junior H. Brito G.A. Pereira K. Leitão R.F. Analysis of the immunoexpression of opioid receptors and their correlation with markers of angiogenesis, cell proliferation and apoptosis in breast cancer. Asian Pac. J. Cancer Prev. 2021 22 2 633 640 10.31557/APJCP.2021.22.2.633 33639684
    [Google Scholar]
  40. Schreiber G. Campa M.J. Prabhakar S. O’Briant K. Bepler G. Patz E.F. Jr Molecular characterization of the human delta opioid receptor in lung cancer. Anticancer Res. 1998 18 3A 1787 1792 9673405
    [Google Scholar]
  41. Wei Y.C. Zhang B. Li X. Liu X.M. Zhang J. Lei B. Li B. Zhai R. Chen Q. Li Y. Upregulation and activation of δ-opioid receptors promotes the progression of human breast cancer. Oncol. Rep. 2016 36 5 2579 2586 10.3892/or.2016.5109 27665747
    [Google Scholar]
  42. Campa M.J. Schreiber G. Bepler G. Bishop M.J. McNutt R.W. Chang K.J. Patz E.F. Jr Characterization of delta opioid receptors in lung cancer using a novel nonpeptidic ligand. Cancer Res. 1996 56 7 1695 1701 8603422
    [Google Scholar]
  43. Madar I Bencherif B Lever J Heitmiller RF Yang SC Brock M Imaging delta- and mu-opioid receptors by PET in lung carcinoma patients. J Nucl Med 2007 48 2 207 213 17268016
    [Google Scholar]
  44. Montagna G. Gupta H.V. Hannum M. Tan K.S. Lee J. Scarpa J.R. Plitas G. Irie T. McCormick P.J. Fischer G.W. Morrow M. Mincer J.S. Intraoperative opioids are associated with improved recurrence-free survival in triple-negative breast cancer. Br. J. Anaesth. 2021 126 2 367 376 10.1016/j.bja.2020.10.021 33220939
    [Google Scholar]
  45. Wang H. Hao R. Liu W. Zhang Y. Ma S. Lu Y. Hu J. Qi Y. Identification of transcription factors associated with the disease-free survival of triple-negative breast cancer through weighted gene co-expression network analysis. Cytojournal 2024 21 71 10.25259/Cytojournal_127_2024 39917004
    [Google Scholar]
  46. Zhang Y.F. Xu Q.X. Liao L.D. Xu X.E. Wu J.Y. Shen J. Wu Z.Y. Shen J.H. Li E.M. Xu L.Y. κ-Opioid receptor in the nucleus is a novel prognostic factor of esophageal squamous cell carcinoma. Hum. Pathol. 2013 44 9 1756 1765 10.1016/j.humpath.2012.11.025 23574786
    [Google Scholar]
  47. Zagon I. McLaughlin P. Opioid growth factor receptor is unaltered with the progression of human pancreatic and colon cancers. Int. J. Oncol. 2006 29 2 489 494 10.3892/ijo.29.2.489 16820893
    [Google Scholar]
  48. Bimonte S. Barbieri A. Rea D. Palma G. Luciano A. Cuomo A. Arra C. Izzo F. Morphine promotes tumor angiogenesis and increases breast cancer progression. BioMed Res. Int. 2015 2015 1 8 10.1155/2015/161508 26064880
    [Google Scholar]
  49. Ecimovic P. Murray D. Doran P. McDonald J. Lambert D.G. Buggy D.J. Direct effect of morphine on breast cancer cell function in vitro : Role of the NET1 gene. Br. J. Anaesth. 2011 107 6 916 923 10.1093/bja/aer259 21857017
    [Google Scholar]
  50. Gupta K. Kshirsagar S. Chang L. Schwartz R. Law P.Y. Yee D. Hebbel R.P. Morphine stimulates angiogenesis by activating proangiogenic and survival-promoting signaling and promotes breast tumor growth. Cancer Res. 2002 62 15 4491 4498 12154060
    [Google Scholar]
  51. Guo Z. Guan K. Bao M. He B. Lu J. LINC-PINT plays an anti-tumor role in nasopharyngeal carcinoma by binding to XRCC6 and affecting its function. Pathol. Res. Pract. 2024 260 155460 10.1016/j.prp.2024.155460 39032384
    [Google Scholar]
  52. Jiang C.H. Sun T.L. Xiang D.X. Wei S.S. Li W.Q. Anticancer activity and mechanism of xanthohumol: A prenylated flavonoid from hops (Humulus lupulus L.). Front. Pharmacol. 2018 9 530 10.3389/fphar.2018.00530 29872398
    [Google Scholar]
  53. Li Y. Li G. Tao T. Kang X. Liu C. Zhang X. Wang C. Li C. Guo X. The μ-opioid receptor (MOR) promotes tumor initiation in hepatocellular carcinoma. Cancer Lett. 2019 453 1 9 10.1016/j.canlet.2019.03.038 30928385
    [Google Scholar]
  54. Lu H. Zhang H. Weng M. Zhang J. Jiang N. Cata J.P. Ma D. Chen W.K. Miao C.H. Morphine promotes tumorigenesis and cetuximab resistance via EGFR signaling activation in human colorectal cancer. J. Cell. Physiol. 2021 236 6 4445 4454 10.1002/jcp.30161 33184860
    [Google Scholar]
  55. Tagirasa R. Yoo E. Role of serine proteases at the tumor-stroma interface. Front. Immunol. 2022 13 832418 10.3389/fimmu.2022.832418 35222418
    [Google Scholar]
  56. Gonzalez-Nunez V. Noriega-Prieto J.A. Rodríguez R.E. Morphine modulates cell proliferation through mir133b & mir128 in the neuroblastoma SH-SY5Y cell line. Biochim. Biophys. Acta Mol. Basis Dis. 2014 1842 4 566 572 10.1016/j.bbadis.2014.01.003 24440526
    [Google Scholar]
  57. Lennon F.E. Mirzapoiazova T. Mambetsariev B. Poroyko V.A. Salgia R. Moss J. Singleton P.A. The Mu opioid receptor promotes opioid and growth factor-induced proliferation, migration and Epithelial Mesenchymal Transition (EMT) in human lung cancer. PLoS One 2014 9 3 e91577 10.1371/journal.pone.0091577 24662916
    [Google Scholar]
  58. Nie Y. Li D. Peng Y. Wang S. Hu S. Liu M. Ding J. Zhou W. Metal organic framework coated MnO2 nanosheets delivering doxorubicin and self-activated DNAzyme for chemo-gene combinatorial treatment of cancer. Int. J. Pharm. 2020 585 119513 10.1016/j.ijpharm.2020.119513 32526334
    [Google Scholar]
  59. Nguyen J. Luk K. Vang D. Soto W. Vincent L. Robiner S. Saavedra R. Li Y. Gupta P. Gupta K. Morphine stimulates cancer progression and mast cell activation and impairs survival in transgenic mice with breast cancer. Br. J. Anaesth. 2014 113 Suppl 1 Suppl. 1 i4 i13 10.1093/bja/aeu090 24861561
    [Google Scholar]
  60. Lennon F.E. Mirzapoiazova T. Mambetsariev B. Salgia R. Moss J. Singleton P.A. Overexpression of the μ-opioid receptor in human non-small cell lung cancer promotes Akt and mTOR activation, tumor growth, and metastasis. Anesthesiology 2012 116 4 857 867 10.1097/ALN.0b013e31824babe2 22343475
    [Google Scholar]
  61. Gach K. Szemraj J. Wyrębska A. Janecka A. The influence of opioids on matrix metalloproteinase-2 and -9 secretion and mRNA levels in MCF-7 breast cancer cell line. Mol. Biol. Rep. 2011 38 2 1231 1236 10.1007/s11033‑010‑0222‑z 20563853
    [Google Scholar]
  62. Hu M Yuan X Liu Y Tang S Miao J Zhou Q Il-1β-induced NF-κB activation down-regulates miR-506 expression to promotes osteosarcoma cell growth through JAG1. Biomed Pharmacother 2017 95 1147 1155 10.1016/j.biopha.2017.08.120 28926924
    [Google Scholar]
  63. Xie N. Khabbazi S. Nassar Z.D. Gregory K. Vithanage T. Anand-Apte B. Cabot P.J. Sturgess D. Shaw P.N. Parat M.O. Morphine alters the circulating proteolytic profile in mice: Functional consequences on cellular migration and invasion. FASEB J. 2017 31 12 5208 5216 10.1096/fj.201700546R 28784632
    [Google Scholar]
  64. Li N.L. Yu B.L. Tseng S.C. Hsu C.C. Lai W.J. Hsieh P.F. Peng W.L. Chen C.M. The effect on improvement of recovery and pain scores of paravertebral block immediately before breast surgery. Acta Anaesthesiol. Taiwan. 2011 49 3 91 95 10.1016/j.aat.2011.08.006 21982169
    [Google Scholar]
  65. Gaspani L. Bianchi M. Limiroli E. Panerai A.E. Sacerdote P. The analgesic drug tramadol prevents the effect of surgery on natural killer cell activity and metastatic colonization in rats. J. Neuroimmunol. 2002 129 1-2 18 24 10.1016/s0165‑5728(02)00165‑0 12161016
    [Google Scholar]
  66. Sacerdote P. Bianchi M. Gaspani L. Manfredi B. Maucione A. Terno G. Ammatuna M. Panerai A.E. The effects of tramadol and morphine on immune responses and pain after surgery in cancer patients. Anesth. Analg. 2000 90 6 1411 1414 10.1097/00000539‑200006000‑00028 10825330
    [Google Scholar]
  67. Barakat A. Revisiting tramadol: A multi-modal agent for pain management. CNS Drugs 2019 33 5 481 501 10.1007/s40263‑019‑00623‑5 31004280
    [Google Scholar]
  68. Xia M. Tong J.H. Zhou Z.Q. Duan M.L. Xu J.G. Zeng H.J. Wang S.H. Tramadol inhibits proliferation, migration and invasion via α2-adrenoceptor signaling in breast cancer cells. Eur. Rev. Med. Pharmacol. Sci. 2016 20 1 157 165 26813469
    [Google Scholar]
  69. Yadav P. Ahuja S. Zaheer S. Singh M. Chintamani C. Efficacy of intraoperative imprint cytology of sentinel lymph node in breast cancer. Cytojournal 2024 21 4 10.25259/Cytojournal_37_2023 38343762
    [Google Scholar]
  70. Li Y Sun L Zhou Q Lee AJ Wang L Zhang R Effects of opioid drugs on immune function in cancer patients. Biomed Pharmacother 2024 175 116665 10.1016/j.biopha.2024.116665 38701564
    [Google Scholar]
  71. Kim M.H. Oh J.E. Park S. Kim J.H. Lee K.Y. Bai S.J. Song H. Hwang H.J. Kim D.W. Yoo Y.C. Tramadol use is associated with enhanced postoperative outcomes in breast cancer patients: A retrospective clinical study with in vitro confirmation. Br. J. Anaesth. 2019 123 6 865 876 10.1016/j.bja.2019.09.004 31591020
    [Google Scholar]
  72. Kocak N. Ozen F. Yildirim I.H. Duran Y. Fentanyl inhibits tumorigenesis from human breast stem cells by inducing apoptosis. APJCP 2017 18 3 735 739 10.22034/APJCP.2017.18.3.735 28441707
    [Google Scholar]
  73. Gong L. Qin Q. Zhou L. Ouyang W. Li Y. Wu Y. Li Y. Effects of fentanyl anesthesia and sufentanil anesthesia on regulatory T cells frequencies. Int. J. Clin. Exp. Pathol. 2014 7 11 7708 7716 25550807
    [Google Scholar]
  74. Cronin-Fenton D.P. Heide-Jørgensen U. Ahern T.P. Lash T.L. Christiansen P.M. Ejlertsen B. Sjøgren P. Kehlet H. Sørensen H.T. Opioids and breast cancer recurrence: A Danish population-based cohort study. Cancer 2015 121 19 3507 3514 10.1002/cncr.29532 26207518
    [Google Scholar]
  75. Joliat G.R. Kobayashi K. Hasegawa K. Thomson J.E. Padbury R. Scott M. Brustia R. Scatton O. Tran Cao H.S. Vauthey J.N. Dincler S. Clavien P.A. Wigmore S.J. Demartines N. Melloul E. Guidelines for perioperative care for liver surgery: Enhanced recovery after surgery (ERAS) society recommendations 2022. world j. surg. 2023 47 1 11 34 10.1007/s00268‑022‑06732‑5 36310325
    [Google Scholar]
  76. Kim R. Anesthetic technique for cancer surgery: Harm or benefit for cancer recurrence? Eur J Surg Oncol 2018 44 5 557 558 10.1016/j.ejso.2018.02.207 29530344
    [Google Scholar]
  77. Ramirez M.F. Cata J.P. Anesthesia techniques and long-term oncological outcomes. Front. Oncol. 2021 11 788918 10.3389/fonc.2021.788918 34956903
    [Google Scholar]
  78. Hussain M.S. Agrawal M. Shaikh N.K. Saraswat N. Bahl G. Maqbool Bhat M. Khurana N. Bisht A.S. Tufail M. Kumar R. Beyond the genome: Deciphering the role of MALAT1 in breast cancer progression. Curr. Genomics 2024 25 5 343 357 10.2174/0113892029305656240503045154 39323624
    [Google Scholar]
  79. Tufail M. Wu C. Hussain M.S. Dietary, addictive and habitual factors, and risk of colorectal cancer. Nutrition 2024 120 112334 10.1016/j.nut.2023.112334 38271761
    [Google Scholar]
  80. Jayachandran P. Battaglin F. Strelez C. Lenz A. Algaze S. Soni S. Lo J.H. Yang Y. Millstein J. Zhang W. Shih J.C. Lu J. Mumenthaler S.M. Spicer D. Neman J. Roussos Torres E.T. Lenz H.J. Breast cancer and neurotransmitters: Emerging insights on mechanisms and therapeutic directions. Oncogene 2023 42 9 627 637 10.1038/s41388‑022‑02584‑4 36650218
    [Google Scholar]
  81. Sánchez M.L. Rodríguez F.D. Coveñas R. Involvement of the opioid peptide family in cancer progression. Biomedicines 2023 11 7 11 10.3390/biomedicines11071993 37509632
    [Google Scholar]
  82. Suter R. Marcum J.A. The molecular genetics of breast cancer and targeted therapy. Biologics 2007 1 3 241 258 19707334
    [Google Scholar]
  83. Lucia M. Luca T. Federica D.P. Cecilia G. Chiara M. Laura D.M. Carlo D.R. Grazia P.M. Opioids and breast cancer recurrence: A systematic review. Cancers 2021 13 21 5499 10.3390/cancers13215499 34771662
    [Google Scholar]
  84. Lee Y.J. Oh C.S. Choi J.M. Park S. Kim S.H. mu-Opioid receptor polymorphisms and breast cancer recurrence in adult Korean women undergoing breast cancer surgery: A retrospective study. Int. J. Med. Sci. 2020 17 18 2941 2946 10.7150/ijms.49297 33173414
    [Google Scholar]
  85. Bortsov A.V. Millikan R.C. Belfer I. Boortz-Marx R.L. Arora H. McLean S.A. μ-Opioid receptor gene A118G polymorphism predicts survival in patients with breast cancer. Anesthesiology 2012 116 4 896 902 10.1097/ALN.0b013e31824b96a1 22433205
    [Google Scholar]
  86. Cata J.P. Bugada D. Marchesini M. De Gregori M. Allegri M. Opioids and cancer recurrence: A brief review of the literature. Cancer Cell Microenviron. 2016 3 e1159
    [Google Scholar]
  87. Cruceriu D. Baldasici O. Balacescu O. Berindan-Neagoe I. The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: Molecular insights and therapeutic approaches. Cell Oncol. 2020 43 1 1 18 10.1007/s13402‑019‑00489‑1 31900901
    [Google Scholar]
  88. Habanjar O. Bingula R. Decombat C. Diab-Assaf M. Caldefie-Chezet F. Delort L. Crosstalk of inflammatory cytokines within the breast tumor microenvironment. Int. J. Mol. Sci. 2023 24 4 24 10.3390/ijms24044002 36835413
    [Google Scholar]
  89. Feng C. Wang Y. Xu J. Zheng Y. Zhou W. Wang Y. Luo C. Precisely tailoring molecular structure of doxorubicin prodrugs to enable stable nanoassembly, rapid activation, and potent antitumor effect. Pharmaceutics 2024 16 12 16 10.3390/pharmaceutics16121582 39771561
    [Google Scholar]
  90. Inchingolo A.M. Dipalma G. Inchingolo A.D. Palumbo I. Guglielmo M. Morolla R. Mancini A. Inchingolo F. Advancing postoperative pain management in oral cancer patients: A systematic review. Pharmaceuticals 2024 17 4 17 10.3390/ph17040542 38675500
    [Google Scholar]
  91. Sun D.Y. Hu Y.J. Li X. Peng J. Dai Z.J. Wang S. Unlocking the full potential of memory T cells in adoptive T cell therapy for hematologic malignancies. Int. Immunopharmacol. 2025 144 113392 10.1016/j.intimp.2024.113392 39608170
    [Google Scholar]
  92. Xuan W. Hankin J. Zhao H. Yao S. Ma D. The potential benefits of the use of regional anesthesia in cancer patients. Int. J. Cancer 2015 137 12 2774 2784 10.1002/ijc.29306 25359704
    [Google Scholar]
  93. Sessler D.I. Pei L. Huang Y. Fleischmann E. Marhofer P. Kurz A. Mayers D.B. Meyer-Treschan T.A. Grady M. Tan E.Y. Ayad S. Mascha E.J. Buggy D.J. Recurrence of breast cancer after regional or general anaesthesia: A randomised controlled trial. Lancet 2019 394 10211 1807 1815 10.1016/S0140‑6736(19)32313‑X 31645288
    [Google Scholar]
  94. Ostović H. Šimac B. Pražetina M. Bradić N. Peršec J. The Effect of Intravenous Lidocaine, Ketamine, and Lidocaine-Ketamine Combination in Colorectal Cancer Surgery: A Randomized Controlled Trial. Anesth. Analg. 2025 140 1 67 76 10.1213/ANE.0000000000006555 37224065
    [Google Scholar]
  95. Sebastian A. Hum N.R. Martin K.A. Gilmore S.F. Peran I. Byers S.W. Wheeler E.K. Coleman M.A. Loots G.G. Single-Cell Transcriptomic Analysis of Tumor-Derived Fibroblasts and Normal Tissue-Resident Fibroblasts Reveals Fibroblast Heterogeneity in Breast Cancer. Cancers 2020 12 5 12 32455670
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096391788250610080609
Loading
/content/journals/ccdt/10.2174/0115680096391788250610080609
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test