
Full text loading...
Opioids are widely used for pain management in breast cancer patients; however, their influence on tumor progression and recurrence remains controversial. Opioid receptors-mu (MOR), delta (DOR), and kappa (KOR)-play diverse roles in cancer biology, modulating tumor growth, immune responses, and angiogenesis. MOR activation is associated with increased proliferation, Epithelial-Mesenchymal Transition (EMT), and immunosuppression, contributing to an aggressive tumor phenotype. Conversely, KOR exhibits tumor-suppressive properties, reducing angiogenesis via VEGF inhibition. Emerging preclinical evidence suggests that opioids, particularly morphine, may facilitate breast cancer progression by enhancing cancer cell migration, angiogenesis, and immune evasion. Genetic variations in opioid receptor pathways, such as the OPRM1 A118G polymorphism, further complicate the opioid-cancer relationship, demonstrating population-dependent effects on patient outcomes. In contrast, tramadol has shown potential immune-protective effects by preserving Natural Killer (NK) cell function and inhibiting adrenergic signaling; fentanyl and sufentanil exhibit variable impacts on tumor biology, necessitating further investigation. Clinical studies, however, remain inconclusive regarding opioids' direct contribution to breast cancer recurrence, highlighting the need for targeted research. Opioid-sparing analgesic strategies, including multimodal pain management, regional anesthesia, and immunomodulatory agents, offer promising alternatives to mitigate potential oncogenic risks while ensuring adequate pain relief. Future studies integrating single-cell transcriptomics and tumor microenvironment analyses will be critical in elucidating the molecular impact of opioids in breast cancer. Personalized pain management approaches tailored to genetic and clinical profiles may optimize oncological outcomes while preserving analgesic efficacy.
Article metrics loading...
Full text loading...
References
Data & Media loading...