Skip to content
2000
Volume 25, Issue 11
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Opioids are widely used for pain management in breast cancer patients; however, their influence on tumor progression and recurrence remains controversial. Opioid receptors-mu (MOR), delta (DOR), and kappa (KOR)-play diverse roles in cancer biology, modulating tumor growth, immune responses, and angiogenesis. MOR activation is associated with increased proliferation, Epithelial-Mesenchymal Transition (EMT), and immunosuppression, contributing to an aggressive tumor phenotype. Conversely, KOR exhibits tumor-suppressive properties, reducing angiogenesis via VEGF inhibition. Emerging preclinical evidence suggests that opioids, particularly morphine, may facilitate breast cancer progression by enhancing cancer cell migration, angiogenesis, and immune evasion. Genetic variations in opioid receptor pathways, such as the OPRM1 A118G polymorphism, further complicate the opioid-cancer relationship, demonstrating population-dependent effects on patient outcomes. In contrast, tramadol has shown potential immune-protective effects by preserving Natural Killer (NK) cell function and inhibiting adrenergic signaling; fentanyl and sufentanil exhibit variable impacts on tumor biology, necessitating further investigation. Clinical studies, however, remain inconclusive regarding opioids' direct contribution to breast cancer recurrence, highlighting the need for targeted research. Opioid-sparing analgesic strategies, including multimodal pain management, regional anesthesia, and immunomodulatory agents, offer promising alternatives to mitigate potential oncogenic risks while ensuring adequate pain relief. Future studies integrating single-cell transcriptomics and tumor microenvironment analyses will be critical in elucidating the molecular impact of opioids in breast cancer. Personalized pain management approaches tailored to genetic and clinical profiles may optimize oncological outcomes while preserving analgesic efficacy.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096391788250610080609
2025-06-18
2026-02-06
Loading full text...

Full text loading...

References

  1. SunD. LiX. NieS. LiuJ. WangS. Disorders of cancer metabolism: The therapeutic potential of cannabinoids.Biomed. Pharmacother.202315711399310.1016/j.biopha.2022.113993 36379120
    [Google Scholar]
  2. LiR. LuoP. GuoY. HeY. WangC. Clinical features, treatment, and prognosis of SGLT2 inhibitors induced acute pancreatitis.Expert Opin. Drug Saf.20241510.1080/14740338.2024.2396387 39172128
    [Google Scholar]
  3. ZengQ. ChenC. ChenC. SongH. LiM. YanJ. LvX. Serum Raman spectroscopy combined with convolutional neural network for rapid diagnosis of HER2-positive and triple-negative breast cancer.Spectrochim. Acta A Mol. Biomol. Spectrosc.202328612200010.1016/j.saa.2022.122000 36279798
    [Google Scholar]
  4. BennettM. PaiceJ.A. WallaceM. Pain and opioids in cancer care: Benefits, risks, and alternatives.Am. Soc. Clin. Oncol. Educ. Book20173770571310.1200/EDBK_180469 28561731
    [Google Scholar]
  5. PatradE. KhalighfardS. KhoriV. AlizadehA.M. The other side of the coin: Positive view on the role of opioids in cancer.Eur. J. Pharmacol.202292317488810.1016/j.ejphar.2022.174888 35367422
    [Google Scholar]
  6. CaoZ. ZhuJ. WangZ. PengY. ZengL. Comprehensive pan-cancer analysis reveals ENC1 as a promising prognostic biomarker for tumor microenvironment and therapeutic responses.Sci. Rep.20241412533110.1038/s41598‑024‑76798‑9 39455818
    [Google Scholar]
  7. MengH. DaiT. HanlonJ.G. DownarJ. AlibhaiS.M.H. ClarkeH. Cannabis and cannabinoids in cancer pain management.Curr. Opin. Support. Palliat. Care2020142879310.1097/SPC.0000000000000493 32332209
    [Google Scholar]
  8. KhanY. RizviS. RazaA. KhanA. HussainS. KhanN.U. AlshammariS.O. AlshammariQ.A. AlshammariA. EllakwaD.E.S. Tailored therapies for triple-negative breast cancer: Current landscape and future perceptions.Naunyn Schmiedebergs Arch. Pharmacol.202510.1007/s00210‑025‑03896‑4 40029385
    [Google Scholar]
  9. NovyD.M. NelsonD.V. KoyyalaguntaD. CataJ.P. GuptaP. GuptaK. Pain, opioid therapy, and survival: A needed discussion.Pain2020161349650110.1097/j.pain.0000000000001736 31693537
    [Google Scholar]
  10. ZhouQ. ZhangZ. LongS. LiW. WangB. LiangN. Opioids in cancer: The κ opioid receptor (Review).Mol. Med. Rep.20222522510.3892/mmr.2021.12560 34878160
    [Google Scholar]
  11. BhoirS. UhelskiM. Guerra-LondonoJ.J. CataJ.P. The role of opioid receptors in cancer.Adv. Biol.202377230010210.1002/adbi.202300102 37132160
    [Google Scholar]
  12. ZhuL. BaiM. XiaoS. LiuY. ZhuQ. WangZ. ZhaoJ. ZhangW. ChenD. In-situ monitoring of cellular H2O2 within 3D cell clusters using conductive scaffolds.Talanta202427912655910.1016/j.talanta.2024.126559 39018950
    [Google Scholar]
  13. SantoniA. SantoniM. ArcuriE. Chronic cancer pain: Opioids within tumor microenvironment affect neuroinflammation, tumor and pain evolution.Cancers2022149225310.3390/cancers14092253 35565382
    [Google Scholar]
  14. HussainM.S. MajamiA.A. AliH. GuptaG. AlmalkiW.H. AlzareaS.I. KazmiI. SyedR.U. KhalifaN.E. Bin BreakM.K. KhanR. AltwaijryN. SharmaR. The complex role of MEG3: An emerging long non-coding RNA in breast cancer.Pathol. Res. Pract.202325115485010.1016/j.prp.2023.154850 37839358
    [Google Scholar]
  15. PleinL.M. RittnerH.L. Opioids and the immune system – Friend or foe.Br. J. Pharmacol.2018175142717272510.1111/bph.13750 28213891
    [Google Scholar]
  16. WangR. ZhangY. ShanF. Interaction of opioid growth factor (OGF) and opioid antagonist and their significance in cancer therapy.Int. Immunopharmacol.20197510578510.1016/j.intimp.2019.105785 31404891
    [Google Scholar]
  17. LennonF.E. MossJ. SingletonP.A. RiouB. The μ-opioid receptor in cancer progression: Is there a direct effect?Anesthesiology2012116494094510.1097/ALN.0b013e31824b9512 22357347
    [Google Scholar]
  18. WaldhoerM. BartlettS.E. WhistlerJ.L. Opioid Receptors.Annu. Rev. Biochem.200473195399010.1146/annurev.biochem.73.011303.073940 15189164
    [Google Scholar]
  19. ShangY. FilizolaM. Opioid receptors: Structural and mechanistic insights into pharmacology and signaling.Eur J. Pharmacol.2015763Pt B20621310.1016/j.ejphar.2015.05.012 25981301
    [Google Scholar]
  20. ZhaoC. SongW. WangJ. TangX. JiangZ. Immunoadjuvant-functionalized metal-organic frameworks: Synthesis and applications in tumor immune modulation.Chem. Commun.2025611962197710.1039/D4CC06510G
    [Google Scholar]
  21. MaX. ChengH. HouJ. JiaZ. WuG. LüX. LiH. ZhengX. ChenC. Detection of breast cancer based on novel porous silicon Bragg reflector surface-enhanced Raman spectroscopy-active structure.Chin. Opt. Lett.202018505170110.3788/COL202018.051701
    [Google Scholar]
  22. ChapmanC.R. LipschitzD.L. AngstM.S. ChouR. DeniscoR.C. DonaldsonG.W. FineP.G. FoleyK.M. GallagherR.M. GilsonA.M. HaddoxJ.D. HornS.D. InturrisiC.E. JickS.S. LipmanA.G. LoeserJ.D. NobleM. PorterL. RowbothamM.C. SchoellesK.M. TurkD.C. VolinnE. Von KorffM.R. WebsterL.R. WeisnerC.M. Opioid pharmacotherapy for chronic non-cancer pain in the United States: A research guideline for developing an evidence-base.J. Pain201011980782910.1016/j.jpain.2010.02.019 20430701
    [Google Scholar]
  23. SahD. Shoffel-HavakukH. TsurN. UhelskiM.L. GottumukkalaV. CataJ.P. Opioids and cancer: Current understanding and clinical considerations.Curr. Oncol.20243163086309810.3390/curroncol31060235 38920719
    [Google Scholar]
  24. GopalakrishnanL. ChatterjeeO. RavishankarN. SureshS. RajuR. MahadevanA. PrasadT.S.K. Opioid receptors signaling network.J. Cell Commun. Signal.202216347548310.1007/s12079‑021‑00653‑z 34724150
    [Google Scholar]
  25. ScroopeC.A. SingletonZ. HollmannM.W. ParatM.O. Opioid receptor-mediated and non-opioid receptor-mediated roles of opioids in tumour growth and metastasis.Front. Oncol.20211179229010.3389/fonc.2021.792290 35004315
    [Google Scholar]
  26. WangR. LiS. WangB. WangG. ZhengH. Impact of opioids and mu-opioid receptors on oncologic metastasis.Am. J. Cancer Res.20241494236424710.62347/SCLS3277 39417177
    [Google Scholar]
  27. TregubenkoP. ZvonarevV. Impact of opioid use in hematological malignancies: Clinical, immunological and concomitant aspects.J. Hematol.202093415410.14740/jh689 32855752
    [Google Scholar]
  28. DongQ. JiangZ. Platinum–iron nanoparticles for oxygen-enhanced sonodynamic tumor cell suppression.Inorganics2024121233110.3390/inorganics12120331
    [Google Scholar]
  29. NagataK. NagaseH. OkuzumiA. NishiyamaC. Delta opioid receptor agonists ameliorate colonic inflammation by modulating immune responses.Front. Immunol.20211273070610.3389/fimmu.2021.730706 34630408
    [Google Scholar]
  30. Goode-RomeroG. DominguezL. Descriptive molecular pharmacology of the δ opioid receptor (DOR): A computational study with structural approach.PLoS One2024197e030406810.1371/journal.pone.0304068 38991032
    [Google Scholar]
  31. LyuZ. XinM. OystonD.R. XueT. KangH. WangX. WangZ. LiQ. Cause and consequence of heterogeneity in human mesenchymal stem cells: Challenges in clinical application.Pathol. Res. Pract.202426015535410.1016/j.prp.2024.155354 38870711
    [Google Scholar]
  32. DalefieldM.L. ScoullerB. BibiR. KivellB.M. The kappa opioid receptor: A promising therapeutic target for multiple pathologies.Front. Pharmacol.20221383767110.3389/fphar.2022.837671 35795569
    [Google Scholar]
  33. SingletonP.A. MirzapoiazovaT. HasinaR. SalgiaR. MossJ. Increased μ-opioid receptor expression in metastatic lung cancer.Br J. Anaesth2014113Suppl 1i103i108(Suppl. 1)10.1093/bja/aeu165 24920011
    [Google Scholar]
  34. LahavY. CohenO. HuszarM. LevyI. CataJ.P. HalperinD. Mu-Opioid receptor expression in laryngeal cancer.J. Voice202337343343910.1016/j.jvoice.2021.02.018 33750623
    [Google Scholar]
  35. ZhangH. SunM. ZhouD. GorurA. SunZ. ZengW. CataJ.P. ChenW. MiaoC. Increased mu-opioid receptor expression is associated with reduced disease-free and overall survival in laryngeal squamous cell carcinoma.Br. J. Anaesth.2020125572272910.1016/j.bja.2020.07.051 32900505
    [Google Scholar]
  36. MathewB. LennonF.E. SieglerJ. MirzapoiazovaT. MambetsarievN. SammaniS. GerholdL.M. LaRiviereP.J. ChenC.T. GarciaJ.G. SalgiaR. MossJ. SingletonP.A. The novel role of the mu opioid receptor in lung cancer progression: A laboratory investigation.Anesth. Analg.2011112355856710.1213/ANE.0b013e31820568af 21156980
    [Google Scholar]
  37. ZyllaD. GourleyB.L. VangD. JacksonS. BoatmanS. LindgrenB. KuskowskiM.A. LeC. GuptaK. GuptaP. Opioid requirement, opioid receptor expression, and clinical outcomes in patients with advanced prostate cancer.Cancer2013119234103411010.1002/cncr.28345 24104703
    [Google Scholar]
  38. ZhangH. QuM. GorurA. SunZ. CataJ.P. ChenW. MiaoC. Association of Mu-Opioid Receptor(MOR) expression and opioids requirement with survival in patients with stage I-III pancreatic ductal adenocarcinoma.Front. Oncol.20211168687710.3389/fonc.2021.686877 34222012
    [Google Scholar]
  39. de SousaA. DantasT. Barros SilvaP. MartinsC. FreireG. JuniorH. BritoG.A. PereiraK. LeitãoR.F. Analysis of the immunoexpression of opioid receptors and their correlation with markers of angiogenesis, cell proliferation and apoptosis in breast cancer.Asian Pac. J. Cancer Prev.202122263364010.31557/APJCP.2021.22.2.633 33639684
    [Google Scholar]
  40. SchreiberG. CampaM.J. PrabhakarS. O’BriantK. BeplerG. PatzE.F. Molecular characterization of the human delta opioid receptor in lung cancer.Anticancer Res.1998183A17871792 9673405
    [Google Scholar]
  41. WeiY.C. ZhangB. LiX. LiuX.M. ZhangJ. LeiB. LiB. ZhaiR. ChenQ. LiY. Upregulation and activation of δ-opioid receptors promotes the progression of human breast cancer.Oncol. Rep.20163652579258610.3892/or.2016.5109 27665747
    [Google Scholar]
  42. CampaM.J. SchreiberG. BeplerG. BishopM.J. McNuttR.W. ChangK.J. PatzE.F. Characterization of delta opioid receptors in lung cancer using a novel nonpeptidic ligand.Cancer Res.199656716951701 8603422
    [Google Scholar]
  43. MadarI. BencherifB. LeverJ. HeitmillerR.F. YangS.C. Brock, M Imaging delta- and mu-opioid receptors by PET in lung carcinoma patients.J. Nucl. Med.2007482207213 17268016
    [Google Scholar]
  44. MontagnaG. GuptaH.V. HannumM. TanK.S. LeeJ. ScarpaJ.R. PlitasG. IrieT. McCormickP.J. FischerG.W. MorrowM. MincerJ.S. Intraoperative opioids are associated with improved recurrence-free survival in triple-negative breast cancer.Br. J. Anaesth.2021126236737610.1016/j.bja.2020.10.021 33220939
    [Google Scholar]
  45. WangH. HaoR. LiuW. ZhangY. MaS. LuY. HuJ. QiY. Identification of transcription factors associated with the disease-free survival of triple-negative breast cancer through weighted gene co-expression network analysis.Cytojournal2024217110.25259/Cytojournal_127_2024 39917004
    [Google Scholar]
  46. ZhangY.F. XuQ.X. LiaoL.D. XuX.E. WuJ.Y. ShenJ. WuZ.Y. ShenJ.H. LiE.M. XuL.Y. κ-Opioid receptor in the nucleus is a novel prognostic factor of esophageal squamous cell carcinoma.Hum. Pathol.20134491756176510.1016/j.humpath.2012.11.025 23574786
    [Google Scholar]
  47. ZagonI. McLaughlinP. Opioid growth factor receptor is unaltered with the progression of human pancreatic and colon cancers.Int. J. Oncol.200629248949410.3892/ijo.29.2.489 16820893
    [Google Scholar]
  48. BimonteS. BarbieriA. ReaD. PalmaG. LucianoA. CuomoA. ArraC. IzzoF. Morphine promotes tumor angiogenesis and increases breast cancer progression.BioMed Res. Int.201520151810.1155/2015/161508 26064880
    [Google Scholar]
  49. EcimovicP. MurrayD. DoranP. McDonaldJ. LambertD.G. BuggyD.J. Direct effect of morphine on breast cancer cell function in vitro: Role of the NET1 gene.Br. J. Anaesth.2011107691692310.1093/bja/aer259 21857017
    [Google Scholar]
  50. GuptaK. KshirsagarS. ChangL. SchwartzR. LawP.Y. YeeD. HebbelR.P. Morphine stimulates angiogenesis by activating proangiogenic and survival-promoting signaling and promotes breast tumor growth.Cancer Res.2002621544914498 12154060
    [Google Scholar]
  51. GuoZ. GuanK. BaoM. HeB. LuJ. LINC-PINT plays an anti-tumor role in nasopharyngeal carcinoma by binding to XRCC6 and affecting its function.Pathol. Res. Pract.202426015546010.1016/j.prp.2024.155460 39032384
    [Google Scholar]
  52. JiangC.H. SunT.L. XiangD.X. WeiS.S. LiW.Q. Anticancer activity and mechanism of xanthohumol: A prenylated flavonoid from hops (Humulus lupulus L.).Front. Pharmacol.2018953010.3389/fphar.2018.00530 29872398
    [Google Scholar]
  53. LiY. LiG. TaoT. KangX. LiuC. ZhangX. WangC. LiC. GuoX. The μ-opioid receptor (MOR) promotes tumor initiation in hepatocellular carcinoma.Cancer Lett.20194531910.1016/j.canlet.2019.03.038 30928385
    [Google Scholar]
  54. LuH. ZhangH. WengM. ZhangJ. JiangN. CataJ.P. MaD. ChenW.K. MiaoC.H. Morphine promotes tumorigenesis and cetuximab resistance via EGFR signaling activation in human colorectal cancer.J. Cell. Physiol.202123664445445410.1002/jcp.30161 33184860
    [Google Scholar]
  55. TagirasaR. YooE. Role of serine proteases at the tumor-stroma interface.Front. Immunol.20221383241810.3389/fimmu.2022.832418 35222418
    [Google Scholar]
  56. Gonzalez-NunezV. Noriega-PrietoJ.A. RodríguezR.E. Morphine modulates cell proliferation through mir133b & mir128 in the neuroblastoma SH-SY5Y cell line.Biochim. Biophys. Acta Mol. Basis Dis.20141842456657210.1016/j.bbadis.2014.01.003 24440526
    [Google Scholar]
  57. LennonF.E. MirzapoiazovaT. MambetsarievB. PoroykoV.A. SalgiaR. MossJ. SingletonP.A. The Mu opioid receptor promotes opioid and growth factor-induced proliferation, migration and Epithelial Mesenchymal Transition (EMT) in human lung cancer.PLoS One201493e9157710.1371/journal.pone.0091577 24662916
    [Google Scholar]
  58. NieY. LiD. PengY. WangS. HuS. LiuM. DingJ. ZhouW. Metal organic framework coated MnO2 nanosheets delivering doxorubicin and self-activated DNAzyme for chemo-gene combinatorial treatment of cancer.Int. J. Pharm.202058511951310.1016/j.ijpharm.2020.119513 32526334
    [Google Scholar]
  59. NguyenJ. LukK. VangD. SotoW. VincentL. RobinerS. SaavedraR. LiY. GuptaP. GuptaK. Morphine stimulates cancer progression and mast cell activation and impairs survival in transgenic mice with breast cancer.Br J. Anaesth2014113Suppl 1i4i13Suppl. 110.1093/bja/aeu090 24861561
    [Google Scholar]
  60. LennonF.E. MirzapoiazovaT. MambetsarievB. SalgiaR. MossJ. SingletonP.A. Overexpression of the μ-opioid receptor in human non-small cell lung cancer promotes Akt and mTOR activation, tumor growth, and metastasis.Anesthesiology2012116485786710.1097/ALN.0b013e31824babe2 22343475
    [Google Scholar]
  61. GachK. SzemrajJ. WyrębskaA. JaneckaA. The influence of opioids on matrix metalloproteinase-2 and -9 secretion and mRNA levels in MCF-7 breast cancer cell line.Mol. Biol. Rep.20113821231123610.1007/s11033‑010‑0222‑z 20563853
    [Google Scholar]
  62. HuM. YuanX. LiuY. TangS. MiaoJ. ZhouQ. Il-1β-induced NF-κB activation down-regulates miR-506 expression to promotes osteosarcoma cell growth through JAG1.Biomed. Pharmacother.2017951147115510.1016/j.biopha.2017.08.120 28926924
    [Google Scholar]
  63. XieN. KhabbaziS. NassarZ.D. GregoryK. VithanageT. Anand-ApteB. CabotP.J. SturgessD. ShawP.N. ParatM.O. Morphine alters the circulating proteolytic profile in mice: Functional consequences on cellular migration and invasion.FASEB J.201731125208521610.1096/fj.201700546R 28784632
    [Google Scholar]
  64. LiN.L. YuB.L. TsengS.C. HsuC.C. LaiW.J. HsiehP.F. PengW.L. ChenC.M. The effect on improvement of recovery and pain scores of paravertebral block immediately before breast surgery.Acta Anaesthesiol. Taiwan.2011493919510.1016/j.aat.2011.08.006 21982169
    [Google Scholar]
  65. GaspaniL. BianchiM. LimiroliE. PaneraiA.E. SacerdoteP. The analgesic drug tramadol prevents the effect of surgery on natural killer cell activity and metastatic colonization in rats.J. Neuroimmunol.20021291-2182410.1016/s0165‑5728(02)00165‑0 12161016
    [Google Scholar]
  66. SacerdoteP. BianchiM. GaspaniL. ManfrediB. MaucioneA. TernoG. AmmatunaM. PaneraiA.E. The effects of tramadol and morphine on immune responses and pain after surgery in cancer patients.Anesth. Analg.20009061411141410.1097/00000539‑200006000‑00028 10825330
    [Google Scholar]
  67. BarakatA. Revisiting tramadol: A multi-modal agent for pain management.CNS Drugs201933548150110.1007/s40263‑019‑00623‑5 31004280
    [Google Scholar]
  68. XiaM. TongJ.H. ZhouZ.Q. DuanM.L. XuJ.G. ZengH.J. WangS.H. Tramadol inhibits proliferation, migration and invasion via α2-adrenoceptor signaling in breast cancer cells.Eur. Rev. Med. Pharmacol. Sci.2016201157165 26813469
    [Google Scholar]
  69. YadavP. AhujaS. ZaheerS. SinghM. ChintamaniC. Efficacy of intraoperative imprint cytology of sentinel lymph node in breast cancer.Cytojournal202421410.25259/Cytojournal_37_2023 38343762
    [Google Scholar]
  70. LiY. SunL. ZhouQ. LeeA.J. WangL. ZhangR. Effects of opioid drugs on immune function in cancer patients.Biomed. Pharmacother.202417511666510.1016/j.biopha.2024.116665 38701564
    [Google Scholar]
  71. KimM.H. OhJ.E. ParkS. KimJ.H. LeeK.Y. BaiS.J. SongH. HwangH.J. KimD.W. YooY.C. Tramadol use is associated with enhanced postoperative outcomes in breast cancer patients: A retrospective clinical study with in vitro confirmation.Br. J. Anaesth.2019123686587610.1016/j.bja.2019.09.004 31591020
    [Google Scholar]
  72. KocakN. OzenF. YildirimI.H. DuranY. Fentanyl inhibits tumorigenesis from human breast stem cells by inducing apoptosis.APJCP201718373573910.22034/APJCP.2017.18.3.735 28441707
    [Google Scholar]
  73. GongL. QinQ. ZhouL. OuyangW. LiY. WuY. LiY. Effects of fentanyl anesthesia and sufentanil anesthesia on regulatory T cells frequencies.Int. J. Clin. Exp. Pathol.201471177087716 25550807
    [Google Scholar]
  74. Cronin-FentonD.P. Heide-JørgensenU. AhernT.P. LashT.L. ChristiansenP.M. EjlertsenB. SjøgrenP. KehletH. SørensenH.T. Opioids and breast cancer recurrence: A Danish population-based cohort study.Cancer2015121193507351410.1002/cncr.29532 26207518
    [Google Scholar]
  75. JoliatG.R. KobayashiK. HasegawaK. ThomsonJ.E. PadburyR. ScottM. BrustiaR. ScattonO. Tran CaoH.S. VautheyJ.N. DinclerS. ClavienP.A. WigmoreS.J. DemartinesN. MelloulE. Guidelines for perioperative care for liver surgery: Enhanced recovery after surgery (ERAS) society recommendations 2022.world j surg2023471113410.1007/s00268‑022‑06732‑5 36310325
    [Google Scholar]
  76. KimR. Anesthetic technique for cancer surgery: Harm or benefit for cancer recurrence?Eur. J. Surg. Oncol.201844555755810.1016/j.ejso.2018.02.207 29530344
    [Google Scholar]
  77. RamirezM.F. CataJ.P. Anesthesia techniques and long-term oncological outcomes.Front. Oncol.20211178891810.3389/fonc.2021.788918 34956903
    [Google Scholar]
  78. HussainM.S. AgrawalM. ShaikhN.K. SaraswatN. BahlG. Maqbool BhatM. KhuranaN. BishtA.S. TufailM. KumarR. Beyond the genome: Deciphering the role of MALAT1 in breast cancer progression.Curr. Genomics202425534335710.2174/0113892029305656240503045154 39323624
    [Google Scholar]
  79. TufailM. WuC. HussainM.S. Dietary, addictive and habitual factors, and risk of colorectal cancer.Nutrition202412011233410.1016/j.nut.2023.112334 38271761
    [Google Scholar]
  80. JayachandranP. BattaglinF. StrelezC. LenzA. AlgazeS. SoniS. LoJ.H. YangY. MillsteinJ. ZhangW. ShihJ.C. LuJ. MumenthalerS.M. SpicerD. NemanJ. Roussos TorresE.T. LenzH.J. Breast cancer and neurotransmitters: Emerging insights on mechanisms and therapeutic directions.Oncogene202342962763710.1038/s41388‑022‑02584‑4 36650218
    [Google Scholar]
  81. SánchezM.L. RodríguezF.D. CoveñasR. Involvement of the opioid peptide family in cancer progression.Biomedicines20231171110.3390/biomedicines11071993 37509632
    [Google Scholar]
  82. SuterR. MarcumJ.A. The molecular genetics of breast cancer and targeted therapy.Biologics200713241258 19707334
    [Google Scholar]
  83. LuciaM. LucaT. FedericaD.P. CeciliaG. ChiaraM. LauraD.M. CarloD.R. GraziaP.M. Opioids and breast cancer recurrence: A systematic review.Cancers20211321549910.3390/cancers13215499 34771662
    [Google Scholar]
  84. LeeY.J. OhC.S. ChoiJ.M. ParkS. KimS.H. mu-Opioid receptor polymorphisms and breast cancer recurrence in adult Korean women undergoing breast cancer surgery: A retrospective study.Int. J. Med. Sci.202017182941294610.7150/ijms.49297 33173414
    [Google Scholar]
  85. BortsovA.V. MillikanR.C. BelferI. Boortz-MarxR.L. AroraH. McLeanS.A. μ-Opioid receptor gene A118G polymorphism predicts survival in patients with breast cancer.Anesthesiology2012116489690210.1097/ALN.0b013e31824b96a1 22433205
    [Google Scholar]
  86. CataJ.P. BugadaD. MarchesiniM. De GregoriM. AllegriM. Opioids and cancer recurrence: A brief review of the literature.Cancer Cell Microenviron.20163e1159
    [Google Scholar]
  87. CruceriuD. BaldasiciO. BalacescuO. Berindan-NeagoeI. The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: Molecular insights and therapeutic approaches.Cell. Oncol.202043111810.1007/s13402‑019‑00489‑1 31900901
    [Google Scholar]
  88. HabanjarO. BingulaR. DecombatC. Diab-AssafM. Caldefie-ChezetF. DelortL. Crosstalk of inflammatory cytokines within the breast tumor microenvironment.Int. J. Mol. Sci.20232442410.3390/ijms24044002 36835413
    [Google Scholar]
  89. FengC. WangY. XuJ. ZhengY. ZhouW. WangY. LuoC. Precisely tailoring molecular structure of doxorubicin prodrugs to enable stable nanoassembly, rapid activation, and potent antitumor effect.Pharmaceutics202416121610.3390/pharmaceutics16121582 39771561
    [Google Scholar]
  90. InchingoloA.M. DipalmaG. InchingoloA.D. PalumboI. GuglielmoM. MorollaR. ManciniA. InchingoloF. Advancing postoperative pain management in oral cancer patients: A systematic review.Pharmaceuticals20241741710.3390/ph17040542 38675500
    [Google Scholar]
  91. SunD.Y. HuY.J. LiX. PengJ. DaiZ.J. WangS. Unlocking the full potential of memory T cells in adoptive T cell therapy for hematologic malignancies.Int. Immunopharmacol.202514411339210.1016/j.intimp.2024.113392 39608170
    [Google Scholar]
  92. XuanW. HankinJ. ZhaoH. YaoS. MaD. The potential benefits of the use of regional anesthesia in cancer patients.Int. J. Cancer2015137122774278410.1002/ijc.29306 25359704
    [Google Scholar]
  93. SesslerD.I. PeiL. HuangY. FleischmannE. MarhoferP. KurzA. MayersD.B. Meyer-TreschanT.A. GradyM. TanE.Y. AyadS. MaschaE.J. BuggyD.J. Recurrence of breast cancer after regional or general anaesthesia: A randomised controlled trial.Lancet2019394102111807181510.1016/S0140‑6736(19)32313‑X 31645288
    [Google Scholar]
  94. OstovićH. ŠimacB. PražetinaM. BradićN. PeršecJ. The Effect of Intravenous Lidocaine, Ketamine, and Lidocaine-Ketamine Combination in Colorectal Cancer Surgery: A Randomized Controlled Trial.Anesth. Analg.20251401677610.1213/ANE.0000000000006555 37224065
    [Google Scholar]
  95. SebastianA. HumN.R. MartinK.A. GilmoreS.F. PeranI. ByersS.W. WheelerE.K. ColemanM.A. LootsG.G. Single-Cell Transcriptomic Analysis of Tumor-Derived Fibroblasts and Normal Tissue-Resident Fibroblasts Reveals Fibroblast Heterogeneity in Breast Cancer.Cancers202012512 32455670
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096391788250610080609
Loading
/content/journals/ccdt/10.2174/0115680096391788250610080609
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test