Current Topics in Medicinal Chemistry - Online First
Description text for Online First listing goes here...
101 - 102 of 102 results
-
-
Targeting Malaria's Achilles' Heels: A Review of Plasmodium Life Cycle Vulnerabilities for Drug Discovery
Authors: Shruti Shukla, Shikha Kushwah and Ashutosh ManiAvailable online: 10 January 2025More LessThe global rise of drug-resistant malaria parasites is becoming an increasing threat to public health, emphasizing the urgent need for the development of new therapeutic strategies. Artimisinin-based therapies, once the backbone of malaria treatment, are now at risk due to the resistance developed in parasites. The lack of a universally accessible malaria vaccine exacerbates this crisis, underscoring the need to explore new antimalarial drugs. A more comprehensive understanding of the parasites’s life cycle has revealed several promising targets, including enzymes, transport proteins, and essential metabolic pathways that the parasite relies on for its survival and proliferation. This review provides an in-depth analysis of the vulnerabilities displayed by Plasmodium and recent advances that highlight potential drug targets and candidate molecules.
-
-
-
Triazole scaffold-based DPP-IV Inhibitors for the management of Type-II Diabetes Mellitus: Insight into Molecular Docking and SAR
Available online: 31 October 2024More LessDiabetes mellitus, characterized as a chronic metabolic disorder or a polygenic syndrome; is increasing at a very fast pace among every group of the population worldwide. It arises due to the inability of the body to produce enough insulin (the hormone responsible for controlling blood sugar levels) or inability to utilize the insulin, leading to hyperglycaemic condition, which, if left uncontrolled gives rise to chronic microvascular and macrovascular complications like retinopathy, neuropathy, nephropathy, coronary artery disease, cognitive impairment, etc. Several therapeutic approaches are available for the treatment of diabetes; among which dipeptidyl peptidase (DPP-IV) inhibitors (gliptins) hold a significant place. DPP-IV is a multifunctional enzyme or a serine exopeptidase that plays an imperative role in cleaving bioactive molecules. DPP-IV causes the breakdown of incretin hormone (GLP-1: Glucagon-like peptide 1 and GIP: Glucose-dependent insulinotropic peptide) that is essential for controlling glycaemic levels in the body. Inhibition of DPP-IV enzyme (DPP-IV inhibitors: Sitagliptin, Saxagliptin, Linagliptin, Alogliptin) prevents this breakdown, thereby controlling blood glucose levels and saving the patients from deleterious effects of prolonged hyperglycaemic conditions. Triazole-based DPP-IV inhibitors are a significant class of drugs used to treat Type 2 diabetes mellitus in a dose-dependent manner. Clinical trials have demonstrated their efficacy as monotherapy or in combination with other antidiabetic agents. This review highlights the molecular docking studies and structure-activity relationship of potential synthetic derivatives that may act as lead molecules for future drug discovery and yield drug molecules with enhanced efficacy, potency and reduced toxicity profile.
-