Skip to content
2000
image of Structure-Guided Development of Mycobacterial Thymidine 
Monophosphate Kinase (MtbTMPK) Inhibitors: Unlocking New Frontiers 
in Tuberculosis Research

Abstract

Researchers are actively engaged in developing new antitubercular drugs targeting the enzyme Mycobacterial Thymidine Monophosphate Kinase (MtbTMPK). This newer target has specificity and selectivity over other thymidylate kinases and especially differs from human thymidylate kinase (hTMPK). Over the last two decades, various potent MtbTMPK inhibitors comprised of both nucleoside and non-nucleoside structures have been developed. Mostly, nucleoside inhibitors have encountered substantial challenges, primarily related to poor solubility and permeability, which often render them inactive in whole-cell antitubercular assays. Consequently, the focus has shifted towards identifying potent non-nucleoside inhibitors that demonstrate activity in whole-cell assays. Researchers have employed structure-based modifications and leveraged insights from co-crystal structures of TMPK (MtbTMPK) with its natural substrate, thymidine monophosphate (TMP), to develop potent non-nucleoside inhibitors—such as cynopyridone and 5-methylpyridine analogues—which have demonstrated nanomolar enzyme inhibitory activity. However, the problem was persistent and only a few non-nucleoside inhibitors have been found to be active in whole-cell activity, likewise nucleoside inhibitors. The reason behind the uncertainty between enzyme inhibitory and whole cell antitubercular activity of developed inhibitors remains incomprehensible to date, even though the efflux pump and permeability-related studies have been performed. Despite numerous efforts, no antitubercular drug targeting MtbTMPK has reached the market or clinical trials, though some non-nucleoside inhibitors are in preclinical stages. As MtbTMPK is crucial for survival and its inhibition effectively reduces the growth of the bacteria, making it a promising target for novel antitubercular drugs. In addition to thymidine-like core structures, several inhibitors with non-thymidine-like cores have also been developed as potent MtbTMPK inhibitors, opening new opportunities for future research to explore the uncharted chemical space of this target.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266372955250514075248
2025-05-21
2025-11-08
Loading full text...

Full text loading...

References

  1. ShahH. PatelJ. RaiS. SenA. Advancing tuberculosis elimination in India: A qualitative review of current strategies and areas for improvement in tuberculosis preventive treatment.IJID Reg.20251410055610.1016/j.ijregi.2024.10055639866845
    [Google Scholar]
  2. IrfanM. BishtD. Innovations in molecular identification of mycobacterium tuberculosis.J. Pure Appl. Microbiol.2022161748810.22207/JPAM.16.1.76
    [Google Scholar]
  3. Perea-JacoboR. Paredes-GutiérrezG.R. Guerrero-ChevannierM.Á. FloresD.L. Muñiz-SalazarR. Machine Learning of the whole genome sequence of Mycobacterium tuberculosis: A scoping PRISMA-based review.Microorganisms2023118187210.3390/microorganisms1108187237630431
    [Google Scholar]
  4. Hernández-AcevedoG.N. González-VázquezR. Reyes-PavónD. Torres-MaravillaE. Tuberculosis infection and comorbidities: A public health issue in Baja California, Mexico.Bacteria20243319420810.3390/bacteria3030014
    [Google Scholar]
  5. DhedaK. MirzayevF. CirilloD.M. UdwadiaZ. DooleyK.E. ChangK.C. OmarS.V. ReuterA. PerumalT. HorsburghC.R.Jr MurrayM. LangeC. Multidrug-resistant tuberculosis.Nat. Rev. Dis. Primers20241012210.1038/s41572‑024‑00504‑238523140
    [Google Scholar]
  6. Lale NgemaS. DookieN. PerumalR. NandlalL. NaickerN. Peter LetsoaloM. O’DonnellM. KhanA. PadayatchiN. NaidooK. Isoniazid resistance-conferring mutations are associated with highly variable phenotypic resistance.J. Clin. Tuberc. Other Mycobact. Dis.2023333310038710.1016/j.jctube.2023.10038737554582
    [Google Scholar]
  7. WangH. LiB. SunY. MaQ. FengY. JiaY. WangW. SuM. LiuX. ShuB. ZhengJ. SangS. YanY. WuY. ZhangY. GaoQ. LiP. WangJ. MaF. LiX. YanD. WangD. ZouX. LiaoY. NIR‐II AIE Luminogen‐based erythrocyte‐like nanoparticles with granuloma‐targeting and self‐oxygenation characteristics for combined phototherapy of tuberculosis.Adv. Mater.20243638240614310.1002/adma.20240614339072892
    [Google Scholar]
  8. EscuyerV. Use of whole genome sequencing for detection of antimicrobial resistance: Mycobacterium tuberculosis, a model organism.American Soc. Clini. Laborat. Sci.20191910.29074/ascls.119.001784
    [Google Scholar]
  9. Martínez-GonzálezM.A. Peña-RodríguezL.M. Uc-CachónA.H. BórquezJ. SimirgiotisM.J. Barrios-GarcíaH.B. Hernández-PandoR. LoyolaL.A. ArecheC. Dzul-BehA.J. Barrios-PayánJ.A. Mata-EspinosaD. Escalante-ErosaF. García-SosaK. Molina-SalinasG.M. Activity of semi-synthetic mulinanes against MDR, Pre-XDR, and XDR strains of Mycobacterium tuberculosis.Metabolites2021111287610.3390/metabo1112087634940634
    [Google Scholar]
  10. WangW. WangJ. HuZ. YanX. GaoQ. LiX. ZhengJ. LiB. WuY. LiaoY. Advancing aggregation‐induced emission‐derived biomaterials in viral, tuberculosis, and fungal infectious diseases.Aggregate2024e715e71510.1002/agt2.715
    [Google Scholar]
  11. SchamiA. IslamM.N. BelisleJ.T. TorrellesJ.B. Drug-resistant strains of Mycobacterium tuberculosis: cell envelope profiles and interactions with the host.Front. Cell. Infect. Microbiol.202313127417510.3389/fcimb.2023.127417538029252
    [Google Scholar]
  12. ChenH. NyantakyiS.A. LiM. GopalP. AzizD.B. YangT. MoreiraW. GengenbacherM. DickT. GoM.L. The mycobacterial membrane: A novel target space for anti-tubercular drugs.Front. Microbiol.20189162710.3389/fmicb.2018.0162730072978
    [Google Scholar]
  13. NehruV.J. BrammacharryU. Sri RamkumarS.R. KhusroA. VadakunnelM.J. GunasekaranS. DavidE. PriyaV.V. AljowaieR.M. AlmutairiS.M. Molecular analysis of bedaquiline resistance and genetic variations in clinical isolates of multidrug and fluoroquinolones-resistant Mycobacterium tuberculosis.J. King Saud Univ. Sci.202436610322610.1016/j.jksus.2024.103226
    [Google Scholar]
  14. WellingtonS. HungD.T. The expanding diversity of Mycobacterium tuberculosis drug targets.ACS Infect. Dis.20184569671410.1021/acsinfecdis.7b0025529412643
    [Google Scholar]
  15. SridharS. DashP. GuruprasadK. Comparative analyses of the proteins from Mycobacterium tuberculosis and human genomes: Identification of potential tuberculosis drug targets. Gene20165791697410.1016/j.gene.2015.12.05426762852
    [Google Scholar]
  16. SinghN.K. SelvamS.M. ChakravarthyP. T-iDT : Tool for identification of drug target in bacteria and validation by Mycobacterium tuberculosis.In Silico Biol.20066648549310.3233/ISB‑0026017518759
    [Google Scholar]
  17. LouZ. ZhangX. Protein targets for structure-based anti-Mycobacterium tuberculosis drug discovery.Protein Cell20101543544210.1007/s13238‑010‑0057‑321203958
    [Google Scholar]
  18. ZhangY. The magic bullets and tuberculosis drug targets.Annu. Rev. Pharmacol. Toxicol.20054552956410.1146/annurev.pharmtox.45.120403.100120
    [Google Scholar]
  19. CapelaR. FélixR. ClarianoM. NunesD. PerryM.J. LopesF. Target identification in anti-tuberculosis drug discovery.Int. J. Mol. Sci.202324131048210.3390/ijms24131048237445660
    [Google Scholar]
  20. SukumarS KrishnanA KhanM.K. Protein kinases as antituberculosis targets: The case of thymidylate kinases.Front. Biosci.20202591636165410.2741/4871
    [Google Scholar]
  21. XieZ. YangX. DuanY. HanJ. LiaoC. Small-molecule kinase inhibitors for the treatment of nononcologic diseases.J. Med. Chem.20216431283134510.1021/acs.jmedchem.0c0151133481605
    [Google Scholar]
  22. SongL. MerceronR. GraciaB. QuintanaA.L. RisseeuwM.D.P. HulpiaF. CosP. AínsaJ.A. Munier-LehmannH. SavvidesS.N. Van CalenberghS. Structure guided lead generation toward nonchiral M. tuberculosis thymidylate kinase inhibitors.J. Med. Chem.20186172753277510.1021/acs.jmedchem.7b0157029510037
    [Google Scholar]
  23. SammartinoJ.C. MoriciM. StelitanoG. DegiacomiG. RiccardiG. ChiarelliL.R. Functional investigation of the antitubercular drug target Decaprenylphosphoryl-β-D-ribofuranose-2-epimerase DprE1/DprE2 complex.Biochem. Biophys. Res. Commun.2022607495310.1016/j.bbrc.2022.03.09135366543
    [Google Scholar]
  24. CuiQ. ShinW.S. LuoY. TianJ. CuiH. YinD. Thymidylate kinase: An old topic brings new perspectives.Curr. Med. Chem.201320101286130510.2174/092986731132010000623394555
    [Google Scholar]
  25. RussellJ.H. OstermeierM. The thymidylate kinase genes from Mycobacterium tuberculosis and methicillin-resistant Staphylococcus aureus confer 3′-azido-3′-deoxythymidine resistance to Escherichia coli.FEMS Microbiol. Lett.2014361215816510.1111/1574‑6968.1262725310917
    [Google Scholar]
  26. FernandesG.F.S. ThompsonA.M. CastagnoloD. DennyW.A. Dos SantosJ.L. Tuberculosis drug discovery: Challenges and new horizons.J. Med. Chem.202265117489753110.1021/acs.jmedchem.2c0022735612311
    [Google Scholar]
  27. Van DaeleI. Munier-LehmannH. FroeyenM. BalzariniJ. Van CalenberghS. Rational design of 5′-thiourea-substituted α-thymidine analogues as thymidine monophosphate kinase inhibitors capable of inhibiting mycobacterial growth.J. Med. Chem.200750225281529210.1021/jm070615817910427
    [Google Scholar]
  28. ZhangX. ZhaoR. QiY. YanX. QiG. PengQ. The progress of Mycobacterium tuberculosis drug targets.Front. Med.202411145571510.3389/fmed.2024.145571539497852
    [Google Scholar]
  29. FerrariV. SerpiM. Nucleoside analogs and tuberculosis: New weapons against an old enemy.Future Med. Chem.20157329131410.4155/fmc.14.16625826361
    [Google Scholar]
  30. VenugopalaK.N. TratratC. PillayM. ChandrashekharappaS. Al-AttraqchiO.H.A. AldhubiabB.E. AttimaradM. AlwassilO.I. NairA.B. SreeharshaN. VenugopalaR. MorsyM.A. HarounM. KumaloH.M. OdhavB. MlisanaK. In silico design and synthesis of tetrahydropyrimidinones and tetrahydropyrimidinethiones as potential thymidylate kinase inhibitors exerting anti-TB activity against Mycobacterium tuberculosis.Drug Des. Devel. Ther.2020141027103910.2147/DDDT.S22838132214795
    [Google Scholar]
  31. BlindheimF.H. MalmeA.T. DalhusB. SundbyE. HoffB.H. Synthesis and evaluation of fused pyrimidines as E. coli thymidylate monophosphate kinase inhibitors.ChemistrySelect2021645128521285710.1002/slct.202103796
    [Google Scholar]
  32. Van PoeckeS. Munier-LehmannH. HelynckO. FroeyenM. Van CalenberghS. Synthesis and inhibitory activity of thymidine analogues targeting Mycobacterium tuberculosis thymidine monophosphate kinase.Bioorg. Med. Chem.201119247603761110.1016/j.bmc.2011.10.02122061826
    [Google Scholar]
  33. VanheusdenV Van RompaeyP Munier-LehmannH PochetS HerdewijnP Van CalenberghS. Thymidine and thymidine-5′-O-monophosphate analogues as inhibitors of Mycobacterium tuberculosis thymidylate kinase.Bioorg. Med. Chem. Lett.200313183045304810.1016/S0960‑894X(03)00643‑7
    [Google Scholar]
  34. PochetS. DuguéL. LabesseG. DelepierreM. Munier-LehmannH. Comparative study of purine and pyrimidine nucleoside analogues acting on the thymidylate kinases of Mycobacterium tuberculosis and of humans.ChemBioChem20034874274710.1002/cbic.20030060812898625
    [Google Scholar]
  35. VanheusdenV. Munier-LehmannH. FroeyenM. BussonR. RozenskiJ. HerdewijnP. Van CalenberghS. Discovery of bicyclic thymidine analogues as selective and high-affinity inhibitors of Mycobacterium tuberculosis thymidine monophosphate kinase.J. Med. Chem.200447256187619410.1021/jm040847w15566289
    [Google Scholar]
  36. FamiliarO. Munier-LehmannH. NegriA. GagoF. DouguetD. RigoutsL. HernándezA.I. CamarasaM.J. Pérez-PérezM.J. Exploring acyclic nucleoside analogues as inhibitors of Mycobacterium tuberculosis thymidylate kinase.ChemMedChem2008371083109310.1002/cmdc.20080006018418833
    [Google Scholar]
  37. NaikM. RaichurkarA. BandodkarB.S. VarunB.V. BhatS. KalkhambkarR. MuruganK. MenonR. BhatJ. PaulB. IyerH. HusseinS. TuckerJ.A. VogtherrM. EmbreyK.J. McMikenH. PrasadS. GillA. UgarkarB.G. VenkatramanJ. ReadJ. PandaM. Structure guided lead generation for M. tuberculosis thymidylate kinase (Mtb TMK): Discovery of 3-cyanopyridone and 1,6-naphthyridin-2-one as potent inhibitors.J. Med. Chem.201558275376610.1021/jm501294725486447
    [Google Scholar]
  38. SongL. MerceronR. HulpiaF. LucíaA. GraciaB. JianY. RisseeuwM.D.P. VerstraelenT. CosP. AínsaJ.A. BoshoffH.I. Munier-LehmannH. SavvidesS.N. Van CalenberghS. Structure-aided optimization of non-nucleoside M. tuberculosis thymidylate kinase inhibitors.Eur. J. Med. Chem.202122511378410.1016/j.ejmech.2021.11378434450493
    [Google Scholar]
  39. JianY. HulpiaF. RisseeuwM.D.P. ForbesH.E. Munier-LehmannH. CaljonG. BoshoffH.I.M. Van CalenberghS. Synthesis and structure activity relationships of cyanopyridone based anti-tuberculosis agents.Eur. J. Med. Chem.202020111245010.1016/j.ejmech.2020.11245032623208
    [Google Scholar]
  40. Munier-LehmannH.É.L.È.N.E. ChaffotteA. PochetS. LabesseG. Thymidylate kinase of Mycobacterium tuberculosis: A chimera sharing properties common to eukaryotic and bacterial enzymes.Protein Sci.20011061195120510.1110/ps.4570111369858
    [Google Scholar]
  41. GulS. KhalilR. Zaheer Ul-Haq MubarakM.S. Computational overview of mycobacterial thymidine monophosphate kinase.Curr. Pharm. Des.202026151676168110.2174/138161282666620040311415232242781
    [Google Scholar]
  42. Li de la SierraI. Munier-LehmannH. GillesA.M. BârzuO. DelarueM. X-ray structure of TMP kinase from Mycobacterium tuberculosis complexed with TMP at 1.95 Å resolution.J. Mol. Biol.200131118710010.1006/jmbi.2001.484311469859
    [Google Scholar]
  43. ShabalinI.G. PorebskiP.J. MinorW. Refining the macromolecular model – Achieving the best agreement with the data from X-ray diffraction experiment.Crystallogr. Rev.201824423626210.1080/0889311X.2018.152180530416256
    [Google Scholar]
  44. YiH. SinghA. YinglingY.G. X3DBio1: A visual analysis tool for biomolecular structure exploration.Proceedings201282941610.1117/12.906893
    [Google Scholar]
  45. NekrasovA.N. ZinchenkoA.A. Structural features of the interfaces in enzyme-inhibitor complexes.J. Biomol. Struct. Dyn.2010281859610.1080/07391102.2010.1050734520476797
    [Google Scholar]
  46. HaouzA. VanheusdenV. Munier-LehmannH. FroeyenM. HerdewijnP. Van CalenberghS. DelarueM. Enzymatic and structural analysis of inhibitors designed against Mycobacterium tuberculosis thymidylate kinase. New insights into the phosphoryl transfer mechanism.J. Biol. Chem.200327874963497110.1074/jbc.M20963020012454011
    [Google Scholar]
  47. DavisS.L. BeN.A. LamichhaneG. NimmagaddaS. PomperM.G. BishaiW.R. JainS.K. Bacterial thymidine kinase as a non-invasive imaging reporter for Mycobacterium tuberculosis in live animals.PLoS One200947e629710.1371/journal.pone.000629719606217
    [Google Scholar]
  48. VanheusdenV. Munier-LehmannH. PochetS. HerdewijnP. Van CalenberghS. Synthesis and evaluation of thymidine-5′-O-monophosphate analogues as inhibitors of Mycobacterium tuberculosis thymidylate kinase.Bioorg. Med. Chem. Lett.200212192695269810.1016/S0960‑894X(02)00551‑612217356
    [Google Scholar]
  49. SaitoH. TomiokaH. Thymidine kinase of bacteria: Activity of the enzyme in actinomycetes and related organisms.Microbiology198413071863187010.1099/00221287‑130‑7‑18636381650
    [Google Scholar]
  50. ColeS.T. BroschR ParkhillJ GarnierT ChurcherC HarrisD Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence.Nature1998393668553754410.1038/31159
    [Google Scholar]
  51. PochetS DugueL DouguetD. LabesseG. Munier-LehmannH. Nucleoside analogues as inhibitors of thymidylate kinases: Possible therapeutic applications.Chem. Bio. Chem.20023110811010.1002/1439‑7633(20020104)3:1<108::AID‑CBIC108>3.0.CO;2‑B
    [Google Scholar]
  52. VanheusdenV. Munier-LehmannH. FroeyenM. DuguéL. HeyerickA. De KeukeleireD. PochetS. BussonR. HerdewijnP. Van CalenberghS. 3′-C-branched-chain-substituted nucleosides and nucleotides as potent inhibitors of Mycobacterium tuberculosis thymidine monophosphate kinase.J. Med. Chem.200346183811382110.1021/jm021108n12930144
    [Google Scholar]
  53. Van RompaeyP. NauwelaertsK. VanheusdenV. RozenskiJ. Munier-LehmannH. HerdewijnP. Van CalenberghS. Mycobacterium tuberculosis thymidine monophosphate kinase inhibitors: Biological evaluation and conformational analysis of 2′‐ and 3′‐modified thymidine analogues.Eur. J. Org. Chem.20032003152911291810.1002/ejoc.200300177
    [Google Scholar]
  54. BlondinC. SerinaL. WiesmüllerL. GillesA.M. BârzuO. Improved spectrophotometric assay of nucleoside monophosphate kinase activity using the pyruvate kinase/lactate dehydrogenase coupling system.Anal. Biochem.1994220121922110.1006/abio.1994.13267978251
    [Google Scholar]
  55. KifliN. Thet HtarT. De ClercqE. BalzariniJ. SimonsC. Novel bicyclic sugar modified nucleosides: synthesis, conformational analysis and antiviral evaluation.Bioorg. Med. Chem.200412123247325710.1016/j.bmc.2004.03.07215158793
    [Google Scholar]
  56. FrecerV. SeneciP. MiertusS. Computer-assisted combinatorial design of bicyclic thymidine analogs as inhibitors of Mycobacterium tuberculosis thymidine monophosphate kinase.J. Comput. Aided Mol. Des.2011251314910.1007/s10822‑010‑9399‑421082329
    [Google Scholar]
  57. Owono OwonoL.C. KeitaM. MegnassanE. FrecerV. MiertusS. Design of thymidine analogues targeting thymidilate kinase of Mycobacterium tuberculosis.Tuberc. Res. Treat.20132013111310.1155/2013/67083623634301
    [Google Scholar]
  58. O’SheaR. MoserH.E. Physicochemical properties of antibacterial compounds: Implications for drug discovery.J. Med. Chem.200851102871287810.1021/jm700967e18260614
    [Google Scholar]
  59. AndrewsL.D. KaneT.R. DozzoP. HaglundC.M. HilderbrandtD.J. LinsellM.S. MachajewskiT. McEnroeG. SerioA.W. WlasichukK.B. NeauD.B. PakhomovaS. WaldropG.L. SharpM. PoglianoJ. CirzR.T. CohenF. Optimization and mechanistic characterization of pyridopyrimidine inhibitors of bacterial biotin carboxylase.J. Med. Chem.201962167489750510.1021/acs.jmedchem.9b0062531306011
    [Google Scholar]
  60. MugumbateG. OveringtonJ.P. The relationship between target-class and the physicochemical properties of antibacterial drugs.Bioorg. Med. Chem.201523165218522410.1016/j.bmc.2015.04.06325975639
    [Google Scholar]
  61. Sameer ChitreT. Dhirendra AsgaonkarK. Manoj PatilS. Kumaradoss KathiravanM. Balkrishna PadhyeS. Exploring pyrimidine pharmacophore as thymidine monophosphate kinase inhibitors for antitubercular activity: A review.Curr. Top. Med. Chem.201616283211322310.2174/156802661666616050613091427150375
    [Google Scholar]
  62. GasseC. DouguetD. HuteauV. MarchalG. Munier-LehmannH. PochetS. Substituted benzyl-pyrimidines targeting thymidine monophosphate kinase of Mycobacterium tuberculosis: Synthesis and in vitro anti-mycobacterial activity.Bioorg. Med. Chem.200816116075608510.1016/j.bmc.2008.04.04518467107
    [Google Scholar]
  63. FamiliarO. Munier-LehmannH. AínsaJ.A. CamarasaM.J. Pérez-PérezM.J. Design, synthesis and inhibitory activity against Mycobacterium tuberculosis thymidine monophosphate kinase of acyclic nucleoside analogues with a distal imidazoquinolinone.Eur. J. Med. Chem.201045125910591810.1016/j.ejmech.2010.09.05620951473
    [Google Scholar]
  64. FanY.F. ZhuS.X. HouF.B. ZhaoD.F. PanQ.S. XiangY.W. QianX.K. GeG.B. WangP. Spectrophotometric assays for sensing tyrosinase activity and their applications.Biosensors202111829010.3390/bios1108029034436092
    [Google Scholar]
  65. VeskoukisA.S. MargaritelisN.V. KyparosA. PaschalisV. NikolaidisM.G. Spectrophotometric assays for measuring redox biomarkers in blood and tissues: The NADPH network.Redox Rep.2018231475610.1080/13510002.2017.139269529088980
    [Google Scholar]
  66. PalominoJ.C. MartinA. CamachoM. GuerraH. SwingsJ. PortaelsF. Resazurin microtiter assay plate: Simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis.Antimicrob. Agents Chemother.20024682720272210.1128/AAC.46.8.2720‑2722.200212121966
    [Google Scholar]
  67. KhalifaR.A. NasserM.S. GomaaA.A. OsmanN.M. SalemH.M. Resazurin Microtiter Assay Plate method for detection of susceptibility of multidrug resistant Mycobacterium tuberculosis to second-line anti-tuberculous drugs.Egypt. J. Chest Dis. Tuberc.201362224124710.1016/j.ejcdt.2013.05.008
    [Google Scholar]
  68. HopkinsA.L. KeserüG.M. LeesonP.D. ReesD.C. ReynoldsC.H. The role of ligand efficiency metrics in drug discovery.Nat. Rev. Drug Discov.201413210512110.1038/nrd416324481311
    [Google Scholar]
  69. SongL. RisseeuwM.D.P. FroeyenM. KaralicI. GoemanJ. CappoenD. Van der EyckenJ. CosP. Munier-LehmannH. Van CalenberghS. Elaboration of a proprietary thymidylate kinase inhibitor motif towards anti-tuberculosis agents.Bioorg. Med. Chem.201624215172518210.1016/j.bmc.2016.08.04127614917
    [Google Scholar]
  70. Martínez-BotellaG. BreenJ.N. DuffyJ.E.S. DumasJ. GengB. GowersI.K. GreenO.M. GulerS. HentemannM.F. Hernandez-JuanF.A. Joseph-McCarthyD. KawatkarS. LarsenN.A. LazariO. LochJ.T. MacritchieJ.A. McKenzieA.R. NewmanJ.V. OlivierN.B. OttersonL.G. OwensA.P. ReadJ. SheppardD.W. KeatingT.A. Discovery of selective and potent inhibitors of gram-positive bacterial thymidylate kinase (TMK).J. Med. Chem.20125522100101002110.1021/jm301180623043329
    [Google Scholar]
  71. KawatkarS.P. KeatingT.A. OlivierN.B. BreenJ.N. GreenO.M. GulerS.Y. HentemannM.F. LochJ.T. McKenzieA.R. NewmanJ.V. OttersonL.G. Martínez-BotellaG. Antibacterial inhibitors of Gram-positive thymidylate kinase: Structure-activity relationships and chiral preference of a new hydrophobic binding region.J. Med. Chem.201457114584459710.1021/jm500463c24828090
    [Google Scholar]
  72. Martínez-BotellaG. LochJ.T. GreenO.M. KawatkarS.P. OlivierN.B. Boriack-SjodinP.A. KeatingT.A. Sulfonylpiperidines as novel, antibacterial inhibitors of Gram-positive thymidylate kinase (TMK).Bioorg. Med. Chem. Lett.201323116917310.1016/j.bmcl.2012.10.12823206863
    [Google Scholar]
  73. SinghS. KaurG. ManglaV. GuptaM.K. Quinoline and quinolones: Promising scaffolds for future antimycobacterial agents.J. Enzyme Inhib. Med. Chem.201530349250410.3109/14756366.2014.93045425032745
    [Google Scholar]
  74. JianY. RisseeuwM.D.P. FroeyenM. SongL. CappoenD. CosP. Munier-LehmannH. van CalenberghS. 1-(Piperidin-3-yl)thymine amides as inhibitors of M. tuberculosis thymidylate kinase.J. Enzyme Inhib. Med. Chem.20193411730173910.1080/14756366.2019.166279031822127
    [Google Scholar]
  75. FerrerasJ.A. GuptaA. AminN.D. BasuA. SinhaB.N. WorgallS. JayaprakashV. QuadriL.E.N. Chemical scaffolds with structural similarities to siderophores of nonribosomal peptide–polyketide origin as novel antimicrobials against Mycobacterium tuberculosis and Yersinia pestis.Bioorg. Med. Chem. Lett.201121216533653710.1016/j.bmcl.2011.08.05221940166
    [Google Scholar]
  76. MiethkeM. MarahielM.A. Siderophore-based iron acquisition and pathogen control.Microbiol. Mol. Biol. Rev.200771341345110.1128/MMBR.00012‑0717804665
    [Google Scholar]
  77. de LéséleucL. HarrisG. KuoLeeR. ChenW. In vitro and in vivo biological activities of iron chelators and gallium nitrate against Acinetobacter baumannii.Antimicrob. Agents Chemother.201256105397540010.1128/AAC.00778‑1222825117
    [Google Scholar]
  78. ZhengT. NolanE.M. Enterobactin-mediated delivery of β-lactam antibiotics enhances antibacterial activity against pathogenic Escherichia coli.J. Am. Chem. Soc.2014136279677969110.1021/ja503911p24927110
    [Google Scholar]
  79. NeumannW. Sassone-CorsiM. RaffatelluM. NolanE.M. Esterase-catalyzed siderophore hydrolysis activates an enterobactin–ciprofloxacin conjugate and confers targeted antibacterial activity.J. Am. Chem. Soc.2018140155193520110.1021/jacs.8b0104229578687
    [Google Scholar]
  80. GhoshM. MillerP.A. MöllmannU. ClaypoolW.D. SchroederV.A. WolterW.R. SuckowM. YuH. LiS. HuangW. ZajicekJ. MillerM.J. Targeted antibiotic delivery: selective siderophore conjugation with daptomycin confers potent activity against multidrug resistant Acinetobacter baumannii both in vitro and in vivo.J. Med. Chem.201760114577458310.1021/acs.jmedchem.7b0010228287735
    [Google Scholar]
  81. FerreiraD. SecaA.M.L. C G AD. SilvaA.M.S. Targeting human pathogenic bacteria by siderophores: A proteomics review.J. Proteomics201614515316610.1016/j.jprot.2016.04.00627109355
    [Google Scholar]
  82. PrachayasittikulV. PrachayasittikulV. PrachayasittikulS. RuchirawatS. 8-Hydroxyquinolines: A review of their metal chelating properties and medicinal applications.Drug Des. Devel. Ther.201371157117810.2147/DDDT.S4976324115839
    [Google Scholar]
  83. JianY. MerceronR. De MunckS. ForbesH.E. HulpiaF. RisseeuwM.D.P. Van HeckeK. SavvidesS.N. Munier-LehmannH. BoshoffH.I.M. Van CalenberghS. Endeavors towards transformation of M. tuberculosis thymidylate kinase (MtbTMPK) inhibitors into potential antimycobacterial agents.Eur. J. Med. Chem.202020611265910.1016/j.ejmech.2020.11265932823003
    [Google Scholar]
  84. ViveirosM. MartinsM. RodriguesL. MachadoD. CoutoI. AinsaJ. AmaralL. Inhibitors of mycobacterial efflux pumps as potential boosters for anti-tubercular drugs.Expert Rev. Anti Infect. Ther.201210998399810.1586/eri.12.8923106274
    [Google Scholar]
  85. RodriguesL. VillellasC. BailoR. ViveirosM. AínsaJ.A. Role of the Mmr efflux pump in drug resistance in Mycobacterium tuberculosis.Antimicrob. Agents Chemother.201357275175710.1128/AAC.01482‑1223165464
    [Google Scholar]
  86. PiccaroG. PoceG. BiavaM. GiannoniF. FattoriniL. Activity of lipophilic and hydrophilic drugs against dormant and replicating Mycobacterium tuberculosis.J. Antibiot.2015681171171410.1038/ja.2015.5225944535
    [Google Scholar]
  87. de KeijzerJ. MulderA. de HaasP.E.W. de RuA.H. HeerkensE.M. AmaralL. van SoolingenD. van VeelenP.A. Thioridazine alters the cell-envelope permeability of Mycobacterium tuberculosis.J. Proteome Res.20161561776178610.1021/acs.jproteome.5b0103727068340
    [Google Scholar]
  88. NairA. GreenyA. NandanA. SahR.K. JoseA. DyawanapellyS. JunnuthulaV. K vA. SadanandanP. Advanced drug delivery and therapeutic strategies for tuberculosis treatment.J. Nanobiotechnology202321141410.1186/s12951‑023‑02156‑y37946240
    [Google Scholar]
  89. GuardiaA. BaigetJ. CachoM. PérezA. Ortega-GuerraM. NxumaloW. KhanyeS.D. RullasJ. OrtegaF. JiménezE. Pérez-HerránE. Fraile-GabaldónM.T. EsquiviasJ. FernándezR. Porras-De FranciscoE. EncinasL. AlonsoM. GiordanoI. RiveroC. Miguel-SilesJ. OsendeJ.G. BadiolaK.A. RutledgeP.J. ToddM.H. RemuiñánM. AlemparteC. Easy-to-synthesize spirocyclic compounds possess remarkable in vivo activity against Mycobacterium tuberculosis.J. Med. Chem.20186124113271134010.1021/acs.jmedchem.8b0153330457865
    [Google Scholar]
  90. El-ShoukrofyM.S. AttaA. FahmyS. SriramD. ShehatM.G. LaboutaI.M. MahranM.A. Challenging the Biginelli scaffold to surpass the first line antitubercular drugs: Mycobacterium tuberculosis thymidine monophosphate kinase (TMPK mt ) inhibition activity and molecular modelling studies.J. Enzyme Inhib. Med. Chem.2024391238666810.1080/14756366.2024.238666839258667
    [Google Scholar]
  91. UrsbyT. WeikM. FioravantiE. DelarueM. GoeldnerM. BourgeoisD. Cryophotolysis of caged compounds: A technique for trapping intermediate states in protein crystals.Acta Crystallogr. D Biol. Crystallogr.200258460761410.1107/S090744490200213511914484
    [Google Scholar]
  92. FioravantiE. HaouzA. UrsbyT. Munier-LehmannH. DelarueM. BourgeoisD. Mycobacterium tuberculosis thymidylate kinase: Structural studies of intermediates along the reaction pathway.J. Mol. Biol.200332751077109210.1016/S0022‑2836(03)00202‑X12662932
    [Google Scholar]
  93. FioravantiE. AdamV. Munier-LehmannH. BourgeoisD. The crystal structure of Mycobacterium tuberculosis thymidylate kinase in complex with 3′-azidodeoxythymidine monophosphate suggests a mechanism for competitive inhibition.Biochemistry200544113013710.1021/bi048416315628853
    [Google Scholar]
  94. MerceronR. SongL. Munier-LehmannH. Van CalenberghS. SavvidesS. Mtb TMK crystal structure in complex with compound LS3080.To Be Published10.2210/pdb5NRN/pdb
    [Google Scholar]
  95. MerceronR. SongL. Munier-LehmannH. Van CalenberghS. SavvidesS. Mtb TMK crystal structure in complex with compound LS3112.To Be Published10.2210/pdb5nrq/pdb
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266372955250514075248
Loading
/content/journals/ctmc/10.2174/0115680266372955250514075248
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test