Skip to content
2000
image of Unraveling Neurodegenerative Disorders: The Potential of Indole and Imidazole-Based Heterocycles

Abstract

Neurodegenerative diseases present a considerable challenge to healthcare systems worldwide, prompting the exploration of innovative treatment strategies. Heterocyclic compounds, specifically those originating from the indole and imidazole structures, have garnered increasing interest due to their potential to protect neurons. Based on an in-depth literature survey, this review explores the Structure-Activity Relationship (SAR) and pharmacokinetics to reveal the active pharmacophores of various indole and imidazole analogs. We delve into the underlying molecular and cellular mechanisms involved in neurodegeneration, highlighting how indole and imidazole derivatives exert neuroprotective effects by modulating oxidative stress, inflammation, protein misfolding, inhibiting cholinesterase, and neuroinflammation. Finally, we address the challenges and prospects in translating these findings into clinical therapies, underscoring the need for continued research to optimize the safety and efficacy of heterocyclic compounds in the treatment of neurodegenerative disorders.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266356937250527075734
2025-06-02
2025-10-25
Loading full text...

Full text loading...

References

  1. Ransohoff R.M. How neuroinflammation contributes to neurodegeneration. Science 2016 353 6301 777 783 10.1126/science.aag2590 27540165
    [Google Scholar]
  2. Canter R.G. Penney J. Tsai L.H. The road to restoring neural circuits for the treatment of Alzheimer’s disease. Nature 2016 539 7628 187 196 10.1038/nature20412 27830780
    [Google Scholar]
  3. Balestrino R. Schapira A.H.V. Parkinson disease. Eur. J. Neurol. 2020 27 1 27 42 10.1111/ene.14108 31631455
    [Google Scholar]
  4. Finkbeiner S. Huntington’s disease. Cold Spring Harb. Perspect. Biol. 2011 3 6 a007476 10.1101/cshperspect.a007476 21441583
    [Google Scholar]
  5. Kiernan M.C. Vucic S. Cheah B.C. Turner M.R. Eisen A. Hardiman O. Burrell J.R. Zoing M.C. Amyotrophic lateral sclerosis. Lancet 2011 377 9769 942 955 10.1016/S0140‑6736(10)61156‑7 21296405
    [Google Scholar]
  6. Przedborski S. Vila M. Jackson-Lewis V. Series introduction: Neurodegeneration: What is it and where are we? J. Clin. Invest. 2003 111 1 3 10 10.1172/JCI200317522 12511579
    [Google Scholar]
  7. Burns A. Citicoline in the treatment of acute ischaemic stroke: An international, randomised, multicentre, placebo-controlled study (ICTUS trial). Lancet 2020 396 10248 413 446 32738937
    [Google Scholar]
  8. Avan A. Hachinski V. Global, regional, and national trends of dementia incidence and risk factors, 1990–2019: A Global Burden of Disease study. Alzheimers Dement. 2023 19 4 1281 1291 10.1002/alz.12764 36044376
    [Google Scholar]
  9. Zhao L. 2020 Alzheimer’s disease facts and figures. Alzheimers Dement. 2020 16 3 391 460 10.1002/alz.12068
    [Google Scholar]
  10. Ou Z. Pan J. Tang S. Duan D. Yu D. Nong H. Wang Z. Global trends in the incidence, prevalence, and years lived with disability of Parkinson’s disease in 204 countries/territories from 1990 to 2019. Front. Public Health 2021 9 776847 10.3389/fpubh.2021.776847 34950630
    [Google Scholar]
  11. Saini M.S. A review: Biological significances of heterocyclic compounds. Int. J. Pharm. Sci. Res. 2013 4 3 66 77
    [Google Scholar]
  12. Lino C.I. Gonçalves de Souza I. Borelli B.M. Silvério Matos T.T. Santos Teixeira I.N. Ramos J.P. Maria de Souza Fagundes E. de Oliveira Fernandes P. Maltarollo V.G. Johann S. de Oliveira R.B. Synthesis, molecular modeling studies and evaluation of antifungal activity of a novel series of thiazole derivatives. Eur. J. Med. Chem. 2018 151 248 260 10.1016/j.ejmech.2018.03.083 29626797
    [Google Scholar]
  13. Rawat B.S. Shukla S.K. Synthesis and evaluation of some new thiazole/oxazole derivatives for their biological activities. World J. Pharm. Pharm. Sci. 2016 5 8 1473 1482
    [Google Scholar]
  14. Sharma D. Narasimhan B. Kumar P. Judge V. Narang R. De Clercq E. Balzarini J. Synthesis, antimicrobial and antiviral evaluation of substituted imidazole derivatives. Eur. J. Med. Chem. 2009 44 6 2347 2353 10.1016/j.ejmech.2008.08.010 18851889
    [Google Scholar]
  15. Polish N. Nesterkina M. Marintsova N. Karkhut A. Kravchenko I. Novikov V. Khairulin A. Synthesis and evaluation on anticonvulsant and antidepressant activities of naphthoquinone derivatives containing pyrazole and pyrimidine fragments. Acta Chim. Slov. 2020 67 3 934 939 10.17344/acsi.2020.5938 33533434
    [Google Scholar]
  16. Jin Q. Fu Z. Guan L. Jiang H. Syntheses of benzo[d]thiazol-2(3h)-one derivatives and their antidepressant and anticonvulsant effects. Mar. Drugs 2019 17 7 430 10.3390/md17070430 31340514
    [Google Scholar]
  17. Sağlık B.N. Osmaniye D. Acar Çevik U. Levent S. Kaya Çavuşoğlu B. Özkay Y. Kaplancıklı Z.A. Design, Synthesis, and structure–activity relationships of thiazole analogs as anticholinesterase agents for Alzheimer’s disease. Molecules 2020 25 18 4312 10.3390/molecules25184312 32962239
    [Google Scholar]
  18. Shahidpour S. Panahi F. Yousefi R. Nourisefat M. Nabipoor M. Khalafi-Nezhad A. Design and synthesis of new antidiabetic α-glucosidase and α-amylase inhibitors based on pyrimidine-fused heterocycles. Med. Chem. Res. 2015 24 7 3086 3096 10.1007/s00044‑015‑1356‑2
    [Google Scholar]
  19. Joshi S. Bisht A.S. Synthesis and characterization of novel 1, 3-oxazole derivatives and study of their in-vitro antidiabetic and antioxidant activity. Inter J. Pharma Biolog Sci. 2019 9 2 879 887
    [Google Scholar]
  20. Liu P. Yang Y. Tang Y. Yang T. Sang Z. Liu Z. Zhang T. Luo Y. Design and synthesis of novel pyrimidine derivatives as potent antitubercular agents. Eur. J. Med. Chem. 2019 163 169 182 10.1016/j.ejmech.2018.11.054 30508666
    [Google Scholar]
  21. Karale U.B. Krishna V.S. Krishna E.V. Choudhari A.S. Shukla M. Gaikwad V.R. Mahizhaveni B. Chopra S. Misra S. Sarkar D. Sriram D. Dusthackeer V.N.A. Rode H.B. Synthesis and biological evaluation of 2,4,5-trisubstituted thiazoles as antituberculosis agents effective against drug-resistant tuberculosis. Eur. J. Med. Chem. 2019 178 315 328 10.1016/j.ejmech.2019.05.082 31195172
    [Google Scholar]
  22. Leoni A. Locatelli A. Morigi R. Rambaldi M. Novel thiazole derivatives: A patent review (2008 – 2012; Part 1). Expert Opin. Ther. Pat. 2014 24 2 201 216 10.1517/13543776.2014.858121 24215328
    [Google Scholar]
  23. Hernández-Rodríguez M. Correa-Basurto J. Gutiérrez A. Vitorica J. Rosales-Hernández M.C. Asp32 and Asp228 determine the selective inhibition of BACE1 as shown by docking and molecular dynamics simulations. Eur. J. Med. Chem. 2016 124 1142 1154 10.1016/j.ejmech.2016.08.028 27639619
    [Google Scholar]
  24. Martins P. Jesus J. Santos S. Raposo L. Roma-Rodrigues C. Baptista P. Fernandes A. Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules 2015 20 9 16852 16891 10.3390/molecules200916852 26389876
    [Google Scholar]
  25. Buccellato F.R. D’Anca M. Fenoglio C. Scarpini E. Galimberti D. Role of oxidative damage in alzheimer’s disease and neurodegeneration: From pathogenic mechanisms to biomarker discovery. Antioxidants 2021 10 9 1353 10.3390/antiox10091353 34572985
    [Google Scholar]
  26. Trojsi F. Behavioural and cognitive changes in neurodegenerative diseases and brain injury. London, UK Hindawi 2018 10.1155/2018/4935915]
    [Google Scholar]
  27. Spencer P.S. Palmer V.S. Kisby G.E. Seeking environmental causes of neurodegenerative disease and envisioning primary prevention. Neurotoxicology 2016 56 269 283 10.1016/j.neuro.2016.03.017 27050202
    [Google Scholar]
  28. Muddapu V.R. Dharshini S.A.P. Chakravarthy V.S. Gromiha M.M. Neurodegenerative diseases–is metabolic deficiency the root cause? Front. Neurosci. 2020 14 213 10.3389/fnins.2020.00213 32296300
    [Google Scholar]
  29. Hung C.W. Chen Y.C. Hsieh W.L. Chiou S.H. Kao C.L. Ageing and neurodegenerative diseases. Ageing Res. Rev. 2010 9 Suppl. 1 S36 S46 10.1016/j.arr.2010.08.006 20732460
    [Google Scholar]
  30. Jeong S. Molecular and cellular basis of neurodegeneration in Alzheimer’s disease. Mol. Cells 2017 40 9 613 620 10.14348/molcells.2017.0096 28927263
    [Google Scholar]
  31. Zhang Y. Xu H. Molecular and cellular mechanisms for Alzheimer’s disease: Understanding APP metabolism. Curr. Mol. Med. 2007 7 7 687 696 10.2174/156652407782564462 18045146
    [Google Scholar]
  32. Drouet B. Pinçon-Raymond M. Chambaz J. Pillot T. Molecular basis of Alzheimer’s disease. Cell. Mol. Life Sci. 2000 57 5 705 715 10.1007/s000180050035 10892337
    [Google Scholar]
  33. Ghosal K. Vogt D.L. Liang M. Shen Y. Lamb B.T. Pimplikar S.W. Alzheimer’s disease-like pathological features in transgenic mice expressing the APP intracellular domain. Proc. Natl. Acad. Sci. USA 2009 106 43 18367 18372 10.1073/pnas.0907652106 19837693
    [Google Scholar]
  34. Boutajangout A. Sigurdsson E.M. Krishnamurthy P.K. Tau as a therapeutic target for Alzheimer’s disease. Curr. Alzheimer Res. 2011 8 6 666 677 10.2174/156720511796717195 21679154
    [Google Scholar]
  35. Muresan V. Ladescu Muresan Z. Shared molecular mechanisms in Alzheimer’s disease and amyotrophic lateral sclerosis: Neurofilament-Dependent transport of sAPP, FUS, TDP-43 and SOD1, with endoplasmic reticulum-like tubules. Neurodegener. Dis. 2016 16 1-2 55 61 10.1159/000439256 26605911
    [Google Scholar]
  36. Ochneva A. Zorkina Y. Abramova O. Pavlova O. Ushakova V. Morozova A. Zubkov E. Pavlov K. Gurina O. Chekhonin V. Protein misfolding and aggregation in the brain: Common pathogenetic pathways in neurodegenerative and mental disorders. Int. J. Mol. Sci. 2022 23 22 14498 10.3390/ijms232214498 36430976
    [Google Scholar]
  37. Shadrina M.I. Slominsky P.A. Limborska S.A. Molecular mechanisms of pathogenesis of Parkinson’s disease. Int. Rev. Cell Mol. Biol. 2010 281 229 266 10.1016/S1937‑6448(10)81006‑8 20460187
    [Google Scholar]
  38. Zeng X.S. Geng W.S. Jia J.J. Chen L. Zhang P.P. Cellular and molecular basis of neurodegeneration in Parkinson disease. Front. Aging Neurosci. 2018 10 109 10.3389/fnagi.2018.00109 29719505
    [Google Scholar]
  39. Yoon J.H. Mo J.S. Kim M.Y. Ann E.J. Ahn J.S. Jo E.H. Lee H.J. Lee Y.C. Seol W. Yarmoluk S.M. Gasser T. Kahle P.J. Liu G.H. Belmonte J.C.I. Park H.S. LRRK2 functions as a scaffolding kinase of ASK1-mediated neuronal cell death. Biochim. Biophys. Acta Mol. Cell Res. 2017 1864 12 2356 2368 10.1016/j.bbamcr.2017.09.001 28888991
    [Google Scholar]
  40. Gomez-Gutierrez R. Morales R. The prion-like phenomenon in Alzheimer’s disease: Evidence of pathology transmission in humans. PLoS Pathog. 2021 16 10 e1009004 10.1371/journal.ppat.1009004].
    [Google Scholar]
  41. Miljković D. Spasojević I. Multiple sclerosis: Molecular mechanisms and therapeutic opportunities. Antioxid. Redox Signal. 2013 19 18 2286 2334 10.1089/ars.2012.5068 23473637
    [Google Scholar]
  42. Akhtar A. Andleeb A. Waris T.S. Bazzar M. Moradi A.R. Awan N.R. Yar M. Neurodegenerative diseases and effective drug delivery: A review of challenges and novel therapeutics. J. Control. Release 2021 330 1152 1167 10.1016/j.jconrel.2020.11.021 33197487
    [Google Scholar]
  43. Krol S. Challenges in drug delivery to the brain: Nature is against us. J. Control. Release 2012 164 2 145 155 10.1016/j.jconrel.2012.04.044 22609350
    [Google Scholar]
  44. Deardorff W.J. Feen E. Grossberg G.T. The use of cholinesterase inhibitors across all stages of Alzheimer’s disease. Drugs Aging 2015 32 7 537 547 10.1007/s40266‑015‑0273‑x 26033268
    [Google Scholar]
  45. Emamzadeh F.N. Surguchov A. Parkinson’s disease: Biomarkers, treatment, and risk factors. Front. Neurosci. 2018 12 612 10.3389/fnins.2018.00612 30214392
    [Google Scholar]
  46. Walsh S. Aducanumab for Alzheimer’s disease? London British Medical Journal Publishing Group 2021
    [Google Scholar]
  47. Gribble G.W. Novel chemistry of indole in the synthesis of heterocycles. Pure Appl. Chem. 2003 75 10 1417 1432 10.1351/pac200375101417].
    [Google Scholar]
  48. Nagendrappa G. Johann friedrich wilhelm adolf von baeyer: A pioneer of synthetic organic chemistry. Resonance 2014 19 6 489 522 10.1007/s12045‑014‑0055‑5].
    [Google Scholar]
  49. Rosales P.F. Bordin G.S. Gower A.E. Moura S. Indole alkaloids: 2012 until now, highlighting the new chemical structures and biological activities. Fitoterapia 2020 143 104558 10.1016/j.fitote.2020.104558 32198108
    [Google Scholar]
  50. Liu Y. Cui Y. Lu L. Gong Y. Han W. Piao G. Natural indole‐containing alkaloids and their antibacterial activities. Arch. Pharm. 2020 353 10 2000120 10.1002/ardp.202000120 32557757
    [Google Scholar]
  51. Özdemir A. Altıntop M.D. Turan-Zitouni G. Çiftçi G.A. Ertorun İ. Alataş Ö. Kaplancıklı Z.A. Synthesis and evaluation of new indole-based chalcones as potential antiinflammatory agents. Eur. J. Med. Chem. 2015 89 304 309 10.1016/j.ejmech.2014.10.056 25462246
    [Google Scholar]
  52. Kanwal; Khan, K.M.; Chigurupati, S.; Ali, F.; Younus, M.; Aldubayan, M.; Wadood, A.; Khan, H.; Taha, M.; Perveen, S. Indole-3-acetamides: As potential antihyperglycemic and antioxidant agents; synthesis, in vitro α-amylase inhibitory activity, structure–activity relationship, and in silico studies. ACS Omega 2021 6 3 2264 2275 10.1021/acsomega.0c05581 33521466
    [Google Scholar]
  53. Prakash B. Amuthavalli A. Edison D. Sivaramkumar M.S. Velmurugan R. Novel indole derivatives as potential anticancer agents: Design, synthesis and biological screening. Med. Chem. Res. 2018 27 1 321 331 10.1007/s00044‑017‑2065‑9].
    [Google Scholar]
  54. Denya I. Malan S.F. Enogieru A.B. Omoruyi S.I. Ekpo O.E. Kapp E. Zindo F.T. Joubert J. Design, synthesis and evaluation of indole derivatives as multifunctional agents against Alzheimer’s disease. MedChemComm 2018 9 2 357 370 10.1039/C7MD00569E 30108930
    [Google Scholar]
  55. Chiu Y.J. Lin C.H. Lin C.Y. Yang P.N. Lo Y.S. Chen Y.C. Chen C.M. Wu Y.R. Yao C.F. Chang K.H. Lee-Chen G.J. Investigating therapeutic effects of indole derivatives targeting inflammation and oxidative stress in neurotoxin-induced cell and mouse models of parkinson’s disease. Int. J. Mol. Sci. 2023 24 3 2642 10.3390/ijms24032642 36768965
    [Google Scholar]
  56. Süzen S. Antioxidant activities of synthetic indole derivatives and possible activity mechanisms. Bioactive Heterocycles V Topics in Heterocyclic Chemistry. Berlin Springer 2007 145 178 10.1007/7081_2007_074]
    [Google Scholar]
  57. Roche S.P. Youte Tendoung J-J. Tréguier B. Advances in dearomatization strategies of indoles. Tetrahedron 2015 71 22 3549 3591 10.1016/j.tet.2014.06.054].
    [Google Scholar]
  58. Wang Z.Y. Xu S. Wang K-K. Kong N. Liu X. Recent studies of bifunctionalization of simple indoles. Asian J. Org. Chem. 2021 10 7 1580 1594 10.1002/ajoc.202100280].
    [Google Scholar]
  59. Sundberg R.J. Electrophilic substitution reactions of indoles. In:Heterocyclic Scaffolds II: Topics in Heterocyclic Chemistry. Berlin Springer 2010 47 115 10.1007/7081_2010_52]
    [Google Scholar]
  60. Bandini M. Eichholzer A. Catalytic functionalization of indoles in a new dimension. Angew. Chem. Int. Ed. 2009 48 51 9608 9644 10.1002/anie.200901843 19946913
    [Google Scholar]
  61. Kumar A. Sharma S. Maurya R.A. A novel multi-component reaction of indole, formaldehyde, and tertiary aromatic amines. Tetrahedron Lett. 2009 50 43 5937 5940 10.1016/j.tetlet.2009.08.046].
    [Google Scholar]
  62. Ma J. Feng R. Dong Z.B. Recent advances in indole synthesis and the related alkylation. Asian J. Org. Chem. 2023 12 6 202300092 10.1002/ajoc.202300092].
    [Google Scholar]
  63. Thompson M.J. Borsenberger V. Louth J.C. Judd K.E. Chen B. Design, synthesis, and structure-activity relationship of indole-3-glyoxylamide libraries possessing highly potent activity in a cell line model of prion disease. J. Med. Chem. 2009 52 23 7503 7511 10.1021/jm900920x 19842664
    [Google Scholar]
  64. Behl T. Kaur D. Sehgal A. Singh S. Sharma N. Zengin G. Andronie-Cioara F.L. Toma M.M. Bungau S. Bumbu A.G. Role of monoamine oxidase activity in Alzheimer’s disease: An insight into the therapeutic potential of inhibitors. Molecules 2021 26 12 3724 10.3390/molecules26123724 34207264
    [Google Scholar]
  65. Elbatrawy A.A. Ademoye T.A. Alnakhala H. Tripathi A. Zami A. Ostafe R. Dettmer U. Fortin J.S. Discovery of small molecule benzothiazole and indole derivatives tackling tau 2N4R and α-synuclein fibrils. Bioorg. Med. Chem. 2024 100 117613 10.1016/j.bmc.2024.117613 38330847
    [Google Scholar]
  66. Wang W.W. Liu T. Lv Y.M. Zhang W.Y. Liu Z.G. Gao J.M. Li D. Design, synthesis, and biological evaluation of novel 3-aminomethylindole derivatives as potential multifunctional anti-inflammatory and neurotrophic agents. ACS Chem. Neurosci. 2021 12 9 1593 1605 10.1021/acschemneuro.1c00079 33884870
    [Google Scholar]
  67. Buemi M.R. De Luca L. Chimirri A. Ferro S. Gitto R. Alvarez-Builla J. Alajarin R. Indole derivatives as dual-effective agents for the treatment of neurodegenerative diseases: Synthesis, biological evaluation, and molecular modeling studies. Bioorg. Med. Chem. 2013 21 15 4575 4580 10.1016/j.bmc.2013.05.044 23777828
    [Google Scholar]
  68. Shao Y.M. Ma X. Paira P. Tan A. Herr D.R. Lim K.L. Ng C.H. Venkatesan G. Klotz K.N. Federico S. Spalluto G. Cheong S.L. Chen Y.Z. Pastorin G. Discovery of indolylpiperazinylpyrimidines with dual-target profiles at adenosine A2A and dopamine D2 receptors for Parkinson’s disease treatment. PLoS One 2018 13 1 0188212 10.1371/journal.pone.0188212 29304113
    [Google Scholar]
  69. Wang H. Cui E. Li J. Ma X. Jiang X. Du S. Qian S. Du L. Design and synthesis of novel indole and indazole-piperazine pyrimidine derivatives with anti-inflammatory and neuroprotective activities for ischemic stroke treatment. Eur. J. Med. Chem. 2022 241 114597 10.1016/j.ejmech.2022.114597 35931005
    [Google Scholar]
  70. Frölich L. Atri A. Ballard C. Tariot P.N. Molinuevo J.L. Boneva N. Geist M.A. Raket L.L. Cummings J.L. Open-label, multicenter, phase III extension study of idalopirdine as adjunctive to donepezil for the treatment of mild-moderate Alzheimer’s disease. J. Alzheimers Dis. 2019 67 1 303 313 10.3233/JAD‑180595 30636738
    [Google Scholar]
  71. Iba M. Kim C. Kwon S. Szabo M. Horan-Portelance L. Peer C.J. Figg W.D. Reed X. Ding J. Lee S.J. Rissman R.A. Cookson M.R. Overk C. Wrasidlo W. Masliah E. Inhibition of p38α MAPK restores neuronal p38γ MAPK and ameliorates synaptic degeneration in a mouse model of DLB/PD. Sci. Transl. Med. 2023 15 695 eabq6089 10.1126/scitranslmed.abq6089 37163617
    [Google Scholar]
  72. Muth F. Günther M. Bauer S.M. Döring E. Fischer S. Maier J. Drückes P. Köppler J. Trappe J. Rothbauer U. Koch P. Laufer S.A. Tetra-substituted pyridinylimidazoles as dual inhibitors of p38α mitogen-activated protein kinase and c-Jun N-terminal kinase 3 for potential treatment of neurodegenerative diseases. J. Med. Chem. 2015 58 1 443 456 10.1021/jm501557a 25475894
    [Google Scholar]
  73. Johnston T.H. Fox S.H. Piggott M.J. Savola J.M. Brotchie J.M. The α 2 adrenergic antagonist fipamezole improves quality of levodopa action in Parkinsonian primates. Mov. Disord. 2010 25 13 2084 2093 10.1002/mds.23172 20824735
    [Google Scholar]
  74. Acar M.F. Sari S. Dalkara S. Synthesis, in vivo anticonvulsant testing, and molecular modeling studies of new nafimidone derivatives. Drug Dev. Res. 2019 80 5 606 616 10.1002/ddr.21538 30973979
    [Google Scholar]
  75. Liaquat Z. Xu X. Zilundu P.L.M. Fu R. Zhou L. The current role of dexmedetomidine as neuroprotective agent: An updated review. Brain Sci. 2021 11 7 846 10.3390/brainsci11070846 34202110
    [Google Scholar]
  76. Ning Q. Liu Z. Wang X. Zhang R. Zhang J. Yang M. Sun H. Han F. Zhao W. Zhang X. Neurodegenerative changes and neuroapoptosis induced by systemic lipopolysaccharide administration are reversed by dexmedetomidine treatment in mice. Neurol. Res. 2017 39 4 357 366 10.1080/01616412.2017.1281197 28173746
    [Google Scholar]
  77. Wei P.-C. Neuroprotection of indole-derivative compound NC001-8 by the regulation of the NRF2 pathway in Parkinson’s disease cell models. Oxid. Med. Cell. Longev. 2019 2019 5074367 10.1155/2019/5074367].
    [Google Scholar]
  78. Galimberti D. Scarpini E. Idalopirdine as a treatment for Alzheimer’s disease. Expert Opin. Investig. Drugs 2015 24 7 981 987 10.1517/13543784.2015.1052402 26022777
    [Google Scholar]
  79. Nirogi R. Jayarajan P. Shinde A. Mohammed A.R. Grandhi V.R. Benade V. Goyal V.K. Abraham R. Jasti V. Cummings J. Progress in investigational agents targeting serotonin-6 receptors for the treatment of brain disorders. Biomolecules 2023 13 2 309 10.3390/biom13020309 36830678
    [Google Scholar]
  80. Enomoto M. Endo A. Yatsushige H. Fushimi K. Otomo Y. Clinical effects of early edaravone use in acute ischemic stroke patients treated by endovascular reperfusion therapy. Stroke 2019 50 3 652 658 10.1161/STROKEAHA.118.023815 30741623
    [Google Scholar]
  81. Hardiman O. van den Berg L.H. Edaravone: A new treatment for ALS on the horizon? Lancet Neurol. 2017 16 7 490 491 10.1016/S1474‑4422(17)30163‑1 28522180
    [Google Scholar]
  82. Koola M.M. Galantamine-Memantine combination in the treatment of Alzheimer’s disease and beyond. Psychiatry Res. 2020 293 113409 10.1016/j.psychres.2020.113409 32829072
    [Google Scholar]
  83. Meng Q. Ma J. Suo L. Pruekprasert N. Chakrapani P. Cooney R.N. Galantamine improves glycemic control and diabetic nephropathy in Leprdb/db mice. Sci. Rep. 2023 13 1 15544 10.1038/s41598‑023‑42665‑2 37731032
    [Google Scholar]
  84. Pippi B. Machado G.R.M. Bergamo V.Z. Alves R.J. Andrade S.F. Fuentefria A.M. Clioquinol is a promising preventive morphological switching compound in the treatment of Candida infections linked to the use of intrauterine devices. J. Med. Microbiol. 2018 67 11 1655 1663 10.1099/jmm.0.000850 30256190
    [Google Scholar]
  85. Grossi C. Francese S. Casini A. Rosi M.C. Luccarini I. Fiorentini A. Gabbiani C. Messori L. Moneti G. Casamenti F. Clioquinol decreases amyloid-β burden and reduces working memory impairment in a transgenic mouse model of Alzheimer’s disease. J. Alzheimers Dis. 2009 17 2 423 440 10.3233/JAD‑2009‑1063 19363260
    [Google Scholar]
  86. Lin G. Zhu F. Kanaan N.M. Asano R. Shirafuji N. Sasaki H. Yamaguchi T. Enomoto S. Endo Y. Ueno A. Ikawa M. Hayashi K. Yamamura O. Yen S.H. Nakamoto Y. Hamano T. Clioquinol decreases levels of phosphorylated, truncated, and oligomerized tau protein. Int. J. Mol. Sci. 2021 22 21 12063 10.3390/ijms222112063 34769495
    [Google Scholar]
  87. Wang J. Ho L. Chen L. Zhao Z. Zhao W. Qian X. Humala N. Seror I. Bartholomew S. Rosendorff C. Pasinetti G.M. Valsartan lowers brain β-amyloid protein levels and improves spatial learning in a mouse model of Alzheimer disease. J. Clin. Invest. 2007 117 11 3393 3402 10.1172/JCI31547 17965777
    [Google Scholar]
  88. Saeed N.M. Valsartan ameliorated cognitive decline, oxidative stress and inflammation in AlCl3-induced Alzheimer’s disease in rats. ERU Res. J. 2024 3 2 1038 1057 10.21608/ERURJ.2024.221868.1053].
    [Google Scholar]
  89. Malik A.H. Aronow W.S. Efficacy of sacubitril/valsartan in hypertension. Netherlands LWW 2022 e322 e333
    [Google Scholar]
  90. Ho C.Y. Day S.M. Axelsson A. Russell M.W. Zahka K. Lever H.M. Pereira A.C. Colan S.D. Margossian R. Murphy A.M. Canter C. Bach R.G. Wheeler M.T. Rossano J.W. Owens A.T. Bundgaard H. Benson L. Mestroni L. Taylor M.R.G. Patel A.R. Wilmot I. Thrush P. Vargas J.D. Soslow J.H. Becker J.R. Seidman C.E. Lakdawala N.K. Cirino A.L. Krieger J.E. Sacilotto L. Arteaga E. Antunes M.O. Hall E.K. Choudhury L. Pahl E. Lin K.Y. Lewis G.D. Desai A.S. Burns K.M. McMurray J.J.V. MacRae C.A. Solomon S.D. Orav E.J. Braunwald E. Valsartan in early-stage hypertrophic cardiomyopathy: A randomized phase 2 trial. Nat. Med. 2021 27 10 1818 1824 10.1038/s41591‑021‑01505‑4 34556856
    [Google Scholar]
  91. Halliday M. Radford H. Zents K.A.M. Molloy C. Moreno J.A. Verity N.C. Smith E. Ortori C.A. Barrett D.A. Bushell M. Mallucci G.R. Repurposed drugs targeting eIF2α-P-mediated translational repression prevent neurodegeneration in mice. Brain 2017 140 6 1768 1783 10.1093/brain/awx074 28430857
    [Google Scholar]
  92. Wang J. Liu S. Zhao C. Han H. Chen X. Tao J. Lu Z. Effects of trazodone on sleep quality and cognitive function in arteriosclerotic cerebral small vessel disease comorbid with chronic insomnia. Front. Psychiatry 2020 11 620 10.3389/fpsyt.2020.00620 32714220
    [Google Scholar]
  93. Li C. Xue L. Liu Y. Yang Z. Chi S. Xie A. Zonisamide for the treatment of Parkinson disease: A current update. Front. Neurosci. 2020 14 574652 10.3389/fnins.2020.574652 33408605
    [Google Scholar]
  94. Janković S.M. Evaluation of zonisamide for the treatment of focal epilepsy: A review of pharmacokinetics, clinical efficacy and adverse effects. Expert Opin. Drug Metab. Toxicol. 2020 16 3 169 177 10.1080/17425255.2020.1736035 32116059
    [Google Scholar]
  95. Lucey B.P. Liu H. Toedebusch C.D. Freund D. Redrick T. Chahin S.L. Mawuenyega K.G. Bollinger J.G. Ovod V. Barthélemy N.R. Bateman R.J. Suvorexant acutely decreases tau phosphorylation and Aβ in the human CNS. Ann. Neurol. 2023 94 1 27 40 10.1002/ana.26641 36897120
    [Google Scholar]
  96. Rhyne D.N. Anderson S.L. Suvorexant in insomnia: Efficacy, safety and place in therapy. Ther. Adv. Drug Saf. 2015 6 5 189 195 10.1177/2042098615595359 26478806
    [Google Scholar]
  97. Videnovic A. Treatment of huntington disease. Curr. Treat. Options Neurol. 2013 15 4 424 438 10.1007/s11940‑013‑0219‑8 23417276
    [Google Scholar]
  98. Kishi T. Ikuta T. Matsuda Y. Sakuma K. Okuya M. Mishima K. Iwata N. Mood stabilizers and/or antipsychotics for bipolar disorder in the maintenance phase: A systematic review and network meta-analysis of randomized controlled trials. Mol. Psychiatry 2021 26 8 4146 4157 10.1038/s41380‑020‑00946‑6 33177610
    [Google Scholar]
  99. Mano-Sousa B.J. Pedrosa A.M. Alves B.C. Galduróz J.C.F. Belo V.S. Chaves V.E. Duarte-Almeida J.M. Effects of risperidone in autistic children and young adults: A systematic review and meta-analysis. Curr. Neuropharmacol. 2021 19 4 538 552 10.2174/1570159X18666200529151741 32469700
    [Google Scholar]
  100. Garcia-Montojo M. Fathi S. Norato G. Smith B.R. Rowe D.B. Kiernan M.C. Vucic S. Mathers S. van Eijk R.P.A. Santamaria U. Rogers M.L. Malaspina A. Lombardi V. Mehta P.R. Westeneng H.J. van den Berg L.H. Al-Chalabi A. Gold J. Nath A. Inhibition of HERV-K (HML-2) in amyotrophic lateral sclerosis patients on antiretroviral therapy. J. Neurol. Sci. 2021 423 117358 10.1016/j.jns.2021.117358 33653604
    [Google Scholar]
  101. Sivasubramanian G. Frempong-Manso E. Macarthur R.D. Abacavir/lamivudine combination in the treatment of HIV: A review. Ther. Clin. Risk Manag. 2010 6 83 94 20234788
    [Google Scholar]
  102. Jacobs B.M. Ammoscato F. Giovannoni G. Baker D. Schmierer K. Cladribine: Mechanisms and mysteries in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2018 89 12 1266 1271 10.1136/jnnp‑2017‑317411 29991490
    [Google Scholar]
  103. Johnston J.B. Mechanism of action of pentostatin and cladribine in hairy cell leukemia. Leuk. Lymphoma 2011 Suppl 2 43 5 10.3109/10428194.2011.570394].
    [Google Scholar]
  104. Ketabforoush A.H.M.E. Chegini R. Barati S. Tahmasebi F. Moghisseh B. Joghataei M.T. Faghihi F. Azedi F. Masitinib: The promising actor in the next season of the Amyotrophic Lateral Sclerosis treatment series. Biomed. Pharmacother. 2023 160 114378 10.1016/j.biopha.2023.114378 36774721
    [Google Scholar]
  105. Hahn K.A. Oglivie G. Rusk T. Devauchelle P. Leblanc A. Legendre A. Powers B. Leventhal P.S. Kinet J.P. Palmerini F. Dubreuil P. Moussy A. Hermine O. Masitinib is safe and effective for the treatment of canine mast cell tumors. J. Vet. Intern. Med. 2008 22 6 1301 1309 10.1111/j.1939‑1676.2008.0190.x 18823406
    [Google Scholar]
  106. Palpagama T.H. Current and possible future therapeutic options for huntington’s disease. J. Cent. Nerv. Syst. Dis. 2022 14 11795735221092517 10.1177/11795735221092517].
    [Google Scholar]
  107. Monahan C. McCoy L. Powell J. Gums J.G. Olanzapine/samidorphan: New drug approved for treating bipolar I disorder and schizophrenia. Ann. Pharmacother. 2022 56 9 1049 1057 10.1177/10600280211070330 35040357
    [Google Scholar]
  108. Frimayanti N. In silico analysis towards exploring potential β secretase 1 (BACE1) inhibitors; the cause of Alzhemier diseaseJournal of Physics: Conference Series. Bristol, England IOP Publishing 2021
    [Google Scholar]
  109. Citrome L. Brexpiprazole for schizophrenia and as adjunct for major depressive disorder: A systematic review of the efficacy and safety profile for this newly approved antipsychotic - what is the number needed to treat, number needed to harm and likelihood to be hel. Int. J. Clin. Pract. 2015 69 9 978 997 10.1111/ijcp.12714 26250067
    [Google Scholar]
  110. Iversen D.H. Wein W. Lindseth F. Unsgård G. Reinertsen I. Automatic intraoperative correction of brain shift for accurate neuronavigation. World Neurosurg. 2018 120 e1071 e1078 10.1016/j.wneu.2018.09.012 30213682
    [Google Scholar]
  111. Guttuso T. Andrzejewski K.L. Lichter D.G. Andersen J.K. Targeting kinases in Parkinson’s disease: A mechanism shared by LRRK2, neurotrophins, exenatide, urate, nilotinib and lithium. J. Neurol. Sci. 2019 402 121 130 10.1016/j.jns.2019.05.016 31129265
    [Google Scholar]
  112. Saglio G. Kim D.W. Issaragrisil S. le Coutre P. Etienne G. Lobo C. Pasquini R. Clark R.E. Hochhaus A. Hughes T.P. Gallagher N. Hoenekopp A. Dong M. Haque A. Larson R.A. Kantarjian H.M. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N. Engl. J. Med. 2010 362 24 2251 2259 10.1056/NEJMoa0912614 20525993
    [Google Scholar]
  113. Goodman A.D. Gyang T. Smith A.D. Ibudilast for the treatment of multiple sclerosis. Expert Opin. Investig. Drugs 2016 25 10 1231 1237 10.1080/13543784.2016.1221924 27501293
    [Google Scholar]
  114. Ledeboer A. Hutchinson M.R. Watkins L.R. Johnson K.W. Ibudilast (AV-411). Expert Opin. Investig. Drugs 2007 16 7 935 950 10.1517/13543784.16.7.935 17594181
    [Google Scholar]
  115. Hama A.T. Broadhead A. Lorrain D.S. Sagen J. The antinociceptive effect of the asthma drug ibudilast in rat models of peripheral and central neuropathic pain. J. Neurotrauma 2012 29 3 600 610 10.1089/neu.2011.1863 21806469
    [Google Scholar]
  116. Kawabe K. Takazawa T. Yanagihashi Y. Ishikawa Y. Hirayama T. Murata K. Kano O. Ikeda K. Iwasaki Y. Ibudilast inhibits Th17 differentiation. J. Neurol. Sci. 2013 333 185 10.1016/j.jns.2013.07.753].
    [Google Scholar]
  117. Berger A.A. Winnick A. Welschmeyer A. Kaneb A. Berardino K. Cornett E.M. Kaye A.D. Viswanath O. Urits I. Istradefylline to treat patients with Parkinson’s disease experiencing “off” episodes: A comprehensive review. Neurol. Int. 2020 12 3 109 129 10.3390/neurolint12030017 33302331
    [Google Scholar]
  118. Shalini K. Sharma P.K. Kumar N. Imidazole and its biological activities: A review. Der Chemica Sinica 2010 1 3 36 47
    [Google Scholar]
  119. Bhatnagar A. Sharma P. Kumar N. A review on “Imidazoles”: Their chemistry and pharmacological potentials. Int. J. Pharm. Tech. Res. 2011 3 1 268 282
    [Google Scholar]
  120. Verma A. Joshi S. Singh D. Imidazole: Having versatile biological activities. J. Chem. 2013 2013 2 1 6 10.1155/2013/329412].
    [Google Scholar]
  121. Tolomeu H.V. Fraga C.A.M. Imidazole: Synthesis, functionalization and physicochemical properties of a privileged structure in medicinal chemistry. Molecules 2023 28 2 838 10.3390/molecules28020838 36677894
    [Google Scholar]
  122. Devi N. Rawal R.K. Singh V. Diversity-oriented synthesis of fused-imidazole derivatives via Groebke–Blackburn–Bienayme reaction: A review. Tetrahedron 2015 71 2 183 232 10.1016/j.tet.2014.10.032].
    [Google Scholar]
  123. Karaaslan C. Doganc F. Alp M. Koc A. Karabay A.Z. Göker H. Regioselective N-alkylation of some imidazole-containing heterocycles and their in vitro anticancer evaluation. J. Mol. Struct. 2020 1205 127673 10.1016/j.molstruc.2019.127673].
    [Google Scholar]
  124. Atia A.J.K. Synthesis and antibacterial activities of new metronidazole and imidazole derivatives. Molecules 2009 14 7 2431 2446 10.3390/molecules14072431 19633614
    [Google Scholar]
  125. Jiang J. Hu Z. Boucetta H. Liu J. Song M. Hang T. Lu Y. Identification of degradation products in flumazenil using LC-Q-TOF/MS and NMR: Degradation pathway elucidation. J. Pharm. Biomed. Anal. 2022 215 114764 10.1016/j.jpba.2022.114764 35447492
    [Google Scholar]
  126. Al-Adilee K.J. Jawad S.H. Kyhoiesh H.A.K. Hassan H.M. Synthesis, characterization, biological applications, and molecular docking studies of some transition metal complexes with azo dye ligand derived from 5-methyl imidazole. J. Mol. Struct. 2024 1295 136695 10.1016/j.molstruc.2023.136695].
    [Google Scholar]
  127. Chaudhry F. Munir R. Ashraf M. Mehr-un-Nisa; Huma, R.; Malik, N.; Hussain, S.; Ali Munawar, M.; Ain Khan, M. Exploring facile synthesis and cholinesterase inhibiting potential of heteroaryl substituted imidazole derivatives for the treatment of Alzheimer’s disease. Arab. J. Chem. 2023 16 1 104384 10.1016/j.arabjc.2022.104384].
    [Google Scholar]
  128. Saify Z.S. Sultana N. Role of acetylcholinesterase inhibitors and alzheimer disease. In:Drug design and discovery in Alzheimer’s disease. Amsterdam, Netherlands Elsevier 2014 387 425 10.1016/B978‑0‑12‑803959‑5.50007‑6]
    [Google Scholar]
  129. Cornec A.S. Monti L. Kovalevich J. Makani V. James M.J. Vijayendran K.G. Oukoloff K. Yao Y. Lee V.M.Y. Trojanowski J.Q. Smith A.B. Brunden K.R. Ballatore C. Multitargeted imidazoles: Potential therapeutic leads for Alzheimer’s and other neurodegenerative diseases. J. Med. Chem. 2017 60 12 5120 5145 10.1021/acs.jmedchem.7b00475 28530811
    [Google Scholar]
  130. Wu J. Liu Q. Hu Y. Wang W. Gao X. Discovery of novel procaine‐imidazole derivative as inhibitor of monoamine oxidase‐b for potential benefit in parkinson’s disease. ChemistrySelect 2020 5 35 10928 10932 10.1002/slct.202002303].
    [Google Scholar]
  131. Xu Y. Wang H. Li X. Dong S. Liu W. Gong Q. Wang T. Tang Y. Zhu J. Li J. Zhang H. Mao F. Discovery of novel propargylamine-modified 4-aminoalkyl imidazole substituted pyrimidinylthiourea derivatives as multifunctional agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2018 143 33 47 10.1016/j.ejmech.2017.08.025 29172081
    [Google Scholar]
  132. Gurjar A.S. Darekar M.N. Yeong K.Y. Ooi L. In silico studies, synthesis and pharmacological evaluation to explore multi-targeted approach for imidazole analogues as potential cholinesterase inhibitors with neuroprotective role for Alzheimer’s disease. Bioorg. Med. Chem. 2018 26 8 1511 1522 10.1016/j.bmc.2018.01.029 29429576
    [Google Scholar]
  133. Li M. Dong Y. Yu X. Li Y. Zou Y. Zheng Y. He Z. Liu Z. Quan J. Bu X. Wu H. Synthesis and evaluation of diphenyl conjugated imidazole derivatives as potential glutaminyl cyclase inhibitors for treatment of Alzheimer’s disease. J. Med. Chem. 2017 60 15 6664 6677 10.1021/acs.jmedchem.7b00648 28700245
    [Google Scholar]
  134. Ramrao S.P. Verma A. Waiker D.K. Tripathi P.N. Shrivastava S.K. Design, synthesis, and evaluation of some novel biphenyl imidazole derivatives for the treatment of Alzheimer’s disease. J. Mol. Struct. 2021 1246 131152 10.1016/j.molstruc.2021.131152].
    [Google Scholar]
  135. Alomar M. Palaian S. Al-tabakha M.M. Pharmacovigilance in perspective: Drug withdrawals, data mining and policy implications. F1000 Res. 2019 8 2109 10.12688/f1000research.21402.1 32161643
    [Google Scholar]
  136. Taylor A.P. Robinson R.P. Fobian Y.M. Blakemore D.C. Jones L.H. Fadeyi O. Modern advances in heterocyclic chemistry in drug discovery. Org. Biomol. Chem. 2016 14 28 6611 6637 10.1039/C6OB00936K 27282396
    [Google Scholar]
  137. Husain A. Balushi K.A. Akhtar M.J. Khan S.A. Coumarin linked heterocyclic hybrids: A promising approach to develop multi target drugs for Alzheimer’s disease. J. Mol. Struct. 2021 1241 130618 10.1016/j.molstruc.2021.130618].
    [Google Scholar]
  138. Wang X. Song K. Li L. Chen L. Structure-based drug design strategies and challenges. Curr. Top. Med. Chem. 2018 18 12 998 1006 10.2174/1568026618666180813152921 30101712
    [Google Scholar]
  139. Scott D.E. Coyne A.G. Hudson S.A. Abell C. Fragment-based approaches in drug discovery and chemical biology. Biochemistry 2012 51 25 4990 5003 10.1021/bi3005126 22697260
    [Google Scholar]
  140. Stamford A. Strickland C. Inhibitors of BACE for treating Alzheimer’s disease: A fragment-based drug discovery story. Curr. Opin. Chem. Biol. 2013 17 3 320 328 10.1016/j.cbpa.2013.04.016 23683349
    [Google Scholar]
  141. Hampel H. Vassar R. De Strooper B. Hardy J. Willem M. Singh N. Zhou J. Yan R. Vanmechelen E. De Vos A. Nisticò R. Corbo M. Imbimbo B.P. Streffer J. Voytyuk I. Timmers M. Tahami Monfared A.A. Irizarry M. Albala B. Koyama A. Watanabe N. Kimura T. Yarenis L. Lista S. Kramer L. Vergallo A. The β-secretase BACE1 in Alzheimer’s disease. Biol. Psychiatry 2021 89 8 745 756 10.1016/j.biopsych.2020.02.001 32223911
    [Google Scholar]
  142. Chitramuthu B.P. Bennett H.P.J. Bateman A. Progranulin: A new avenue towards the understanding and treatment of neurodegenerative disease. Brain 2017 140 12 3081 3104 10.1093/brain/awx198 29053785
    [Google Scholar]
  143. Sivandzade F. Cucullo L. Regenerative stem cell therapy for neurodegenerative diseases: An overview. Int. J. Mol. Sci. 2021 22 4 2153 10.3390/ijms22042153 33671500
    [Google Scholar]
  144. Asefy Z. Hoseinnejhad S. Ceferov Z. Nanoparticles approaches in neurodegenerative diseases diagnosis and treatment. Neurol. Sci. 2021 42 7 2653 2660 10.1007/s10072‑021‑05234‑x 33846881
    [Google Scholar]
  145. Vissers C. Ming G. Song H. Nanoparticle technology and stem cell therapy team up against neurodegenerative disorders. Adv. Drug Deliv. Rev. 2019 148 239 251 10.1016/j.addr.2019.02.007 30797953
    [Google Scholar]
  146. Melo A. Oxidative stress in neurodegenerative diseases: Mechanisms and therapeutic perspectives. Oxid. Med. Cell. Longev. 2011 2011 467180 10.1155/2011/467180].
    [Google Scholar]
  147. Singh N. Vayer P. Tanwar S. Poyet J-L. Tsaioun K. Villoutreix B.O. Drug discovery and development: Introduction to the general public and patient groups. Front. Drug Discov. 2023 3 Lausanne 1201419 10.3389/fddsv.2023.1201419
    [Google Scholar]
  148. Tamimi N.A.M. Ellis P. Drug development: From concept to marketing! Nephron Clin. Pract. 2009 113 3 c125 c131 10.1159/000232592 19729922
    [Google Scholar]
  149. Fenster A. Clinical translation. Handbook of Medical Image Computing and Computer Assisted Intervention. Amsterdam, Netherlands Elsevier 2020 893 907 10.1016/B978‑0‑12‑816176‑0.00041‑7]
    [Google Scholar]
  150. Lean M.E.J. Mann J.I. Hoek J.A. Elliot R.M. Schofield G. Translational research BMJ 2008 337 aug28 1 a863 10.1136/bmj.a863 18755767
    [Google Scholar]
  151. Hua S. de Matos M.B.C. Metselaar J.M. Storm G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: Pathways for translational development and commercialization. Front. Pharmacol. 2018 9 790 10.3389/fphar.2018.00790 30065653
    [Google Scholar]
  152. Lam Y. Scientific challenges and implementation barriers to translation of pharmacogenomics in clinical practice. ISRN Pharmacol. 2013 2013 641089 10.1155/2013/641089].
    [Google Scholar]
  153. Cavalli A. Bolognesi M.L. Minarini A. Rosini M. Tumiatti V. Recanatini M. Melchiorre C. Multi-target-directed ligands to combat neurodegenerative diseases. J. Med. Chem. 2008 51 3 347 372 10.1021/jm7009364 18181565
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266356937250527075734
Loading
/content/journals/ctmc/10.2174/0115680266356937250527075734
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: SAR ; neuroprotective ; indole ; alzheimer’s ; heterocyclic ; Neurodegenerative disease ; imidazole
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test