Skip to content
2000
image of MEF2C: A Novel Transcription Factor Implicated in Human Malignant Tumors

Abstract

Background

Myocyte enhancer factor 2C (MEF2C) is a pivotal transcription factor that is responsible for maintaining myocyte differentiation. MEF2C is multifunctional, participating in diverse biological processes, including cardiac morphogenesis, angiogenesis, neurogenesis, and cortical development. Emerging evidence has identified MEF2C as a novel oncogene with dual regulatory functions in tumorigenesis. However, the mechanisms by which MEF2C regulates the progression of various malignant tumors are unknown. Therefore, it is crucial to further investigate the multiple signaling pathways under different expression levels of MEF2C. In this review, the expression level of MEF2C in various malignant tumors and its specific pathways are described.

Methods

This review systematically summarizes and critically analyzes the current studies on MEF2C’s biological function in malignant tumors by comprehensively searching them in PubMed databases.

Results

MEF2C demonstrates aberrant expression patterns across multiple tumor types, spanning both solid tumors (., glioma, breast cancer, hepatocellular carcinoma) and hematological malignancies (., leukemia). MEF2C orchestrates multiple oncogenic processes, including tumor cell proliferation, migration, and invasion, while also modulating cancer drug resistance and systemic manifestations, like cachexia and apoptosis resistance.

Conclusion

Given its multifaceted roles in tumor initiation, progression, and clinical aspects, MEF2C has the potential to serve as both a diagnostic biomarker and a therapeutic target for various malignancies.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266359306250619210412
2025-07-02
2025-09-08
Loading full text...

Full text loading...

References

  1. Taylor M.V. Hughes S.M. Mef2 and the skeletal muscle differentiation program. Semin. Cell Dev. Biol. 2017 72 33 44 10.1016/j.semcdb.2017.11.020 29154822
    [Google Scholar]
  2. Yi Y.C. Chen X.Y. Zhang J. Zhu J.S. Novel insights into the interplay between m6A modification and noncoding RNAs in cancer. Mol. Cancer 2020 19 1 121 10.1186/s12943‑020‑01233‑2 32767982
    [Google Scholar]
  3. Qiao X.H. Wang F. Zhang X.L. Huang R.T. Xue S. Wang J. Qiu X.B. Liu X.Y. Yang Y.Q. MEF2C loss-of-function mutation contributes to congenital heart defects. Int. J. Med. Sci. 2017 14 11 1143 1153 10.7150/ijms.21353 29104469
    [Google Scholar]
  4. Molkentin J.D. Black B.L. Martin J.F. Olson E.N. Mutational analysis of the DNA binding, dimerization, and transcriptional activation domains of MEF2C. Mol. Cell. Biol. 1996 16 6 2627 2636 10.1128/MCB.16.6.2627 8649370
    [Google Scholar]
  5. Shore P. Sharrocks A.D. The MADS-box family of transcription factors. Eur. J. Biochem. 1995 229 1 1 13 10.1111/j.1432‑1033.1995.tb20430.x 7744019
    [Google Scholar]
  6. Chen X. Gao B. Ponnusamy M. Lin Z. Liu J. MEF2 signaling and human diseases. Oncotarget 2017 8 67 112152 112165 10.18632/oncotarget.22899 29340119
    [Google Scholar]
  7. Potthoff M.J. Arnold M.A. McAnally J. Richardson J.A. Bassel-Duby R. Olson E.N. Regulation of skeletal muscle sarcomere integrity and postnatal muscle function by Mef2c. Mol. Cell. Biol. 2007 27 23 8143 8151 10.1128/MCB.01187‑07 17875930
    [Google Scholar]
  8. Ridgeway A.G. Wilton S. Skerjanc I.S. Myocyte enhancer factor 2C and myogenin up-regulate each other’s expression and induce the development of skeletal muscle in P19 cells. J. Biol. Chem. 2000 275 1 41 46 10.1074/jbc.275.1.41 10617583
    [Google Scholar]
  9. Harrington A.J. Bridges C.M. Berto S. Blankenship K. Cho J.Y. Assali A. Siemsen B.M. Moore H.W. Tsvetkov E. Thielking A. Konopka G. Everman D.B. Scofield M.D. Skinner S.A. Cowan C.W. MEF2C Hypofunction in Neuronal and Neuroimmune Populations Produces MEF2C Haploinsufficiency Syndrome–like Behaviors in Mice. Biol. Psychiatry 2020 88 6 488 499 10.1016/j.biopsych.2020.03.011 32418612
    [Google Scholar]
  10. Li H. Radford J.C. Ragusa M.J. Shea K.L. McKercher S.R. Zaremba J.D. Soussou W. Nie Z. Kang Y.J. Nakanishi N. Okamoto S. Roberts A.J. Schwarz J.J. Lipton S.A. Transcription factor MEF2C influences neural stem/progenitor cell differentiation and maturation in vivo. Proc. Natl. Acad. Sci. USA 2008 105 27 9397 9402 10.1073/pnas.0802876105 18599437
    [Google Scholar]
  11. Lin Q. Schwarz J. Bucana C. Olson E.N. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 1997 276 5317 1404 1407 10.1126/science.276.5317.1404 9162005
    [Google Scholar]
  12. Wen M.Y. Yin B. Zhang Y.Z. Ye J.W. Liao W.Q. Yu C.A. Ke Y.N. MEF2C regulates DOK5 gene expression. Basic Clin. Med. 2009 29 04 342 346
    [Google Scholar]
  13. Barbosa A.C. Kim M.S. Ertunc M. Adachi M. Nelson E.D. McAnally J. Richardson J.A. Kavalali E.T. Monteggia L.M. Bassel-Duby R. Olson E.N. MEF2C, a transcription factor that facilitates learning and memory by negative regulation of synapse numbers and function. Proc. Natl. Acad. Sci. USA 2008 105 27 9391 9396 10.1073/pnas.0802679105 18599438
    [Google Scholar]
  14. Di Giorgio E. Hancock W.W. Brancolini C. MEF2 and the tumorigenic process, hic sunt leones. Biochim. Biophys. Acta Rev. Cancer 2018 1870 2 261 273 10.1016/j.bbcan.2018.05.007 29879430
    [Google Scholar]
  15. Canté-Barrett K. Pieters R. Meijerink J.P.P. Myocyte enhancer factor 2C in hematopoiesis and leukemia. Oncogene 2014 33 4 403 410 10.1038/onc.2013.56 23435431
    [Google Scholar]
  16. Canté-Barrett K. Meijer M.T. Cordo’ V. Hagelaar R. Yang W. Yu J. Smits W.K. Nulle M.E. Jansen J.P. Pieters R. Yang J.J. Haigh J.J. Goossens S. Meijerink J.P.P. MEF2C opposes Notch in lymphoid lineage decision and drives leukemia in the thymus. JCI Insight 2022 7 13 e150363 10.1172/jci.insight.150363 35536646
    [Google Scholar]
  17. Liu N. Nelson B.R. Bezprozvannaya S. Shelton J.M. Richardson J.A. Bassel-Duby R. Olson E.N. Requirement of MEF2A, C, and D for skeletal muscle regeneration. Proc. Natl. Acad. Sci. USA 2014 111 11 4109 4114 10.1073/pnas.1401732111 24591619
    [Google Scholar]
  18. Mokalled M.H. Johnson A.N. Creemers E.E. Olson E.N. MASTR directs MyoD-dependent satellite cell differentiation during skeletal muscle regeneration. Genes Dev. 2012 26 2 190 202 10.1101/gad.179663.111 22279050
    [Google Scholar]
  19. Potthoff M.J. Olson E.N. MEF2: a central regulator of diverse developmental programs. Development 2007 134 23 4131 4140 10.1242/dev.008367 17959722
    [Google Scholar]
  20. Baracos V.E. Martin L. Korc M. Guttridge D.C. Fearon K.C.H. Cancer-associated cachexia. Nat. Rev. Dis. Primers 2018 4 1 17105 10.1038/nrdp.2017.105 29345251
    [Google Scholar]
  21. Loumaye A. Lause P. Zhong X. Zimmers T.A. Bindels L.B. Thissen J.P. Activin A. Activin A. Causes Muscle Atrophy through MEF2C-Dependent Impaired Myogenesis. Cells 2022 11 7 1119 10.3390/cells11071119 35406681
    [Google Scholar]
  22. Su X.X. Immunological role mining and prognostic modeling of bioinformatics-based MEF2C in ovarian cancer. 2023
    [Google Scholar]
  23. Guo Q. Zhang L. Zhao L. Pang X. Wang P. Sun H. Liu S. MEF2C-AS1 regulates its nearby gene MEF2C to mediate cervical cancer cell malignant phenotypes in vitro. Biochem. Biophys. Res. Commun. 2022 632 48 54 10.1016/j.bbrc.2022.09.091 36198203
    [Google Scholar]
  24. Ni J. Liang S. Shan B. Tian W. Wang H. Ren Y. Methylation associated silencing of miR 638 promotes endometrial carcinoma progression by targeting MEF2C. Int. J. Mol. Med. 2020 45 6 1753 1770 10.3892/ijmm.2020.4540 32186750
    [Google Scholar]
  25. Bai X.L. Zhang Q. Ye L.Y. Liang F. Sun X. Chen Y. Hu Q.D. Fu Q.H. Su W. Chen Z. Zhuang Z.P. Liang T.B. Myocyte enhancer factor 2C regulation of hepatocellular carcinoma via vascular endothelial growth factor and Wnt/β-catenin signaling. Oncogene 2015 34 31 4089 4097 10.1038/onc.2014.337 25328135
    [Google Scholar]
  26. Chen G. Han N. Li G. Li X. Li G. Li Z. Li Q. Time course analysis based on gene expression profile and identification of target molecules for colorectal cancer. Cancer Cell Int. 2016 16 1 22 10.1186/s12935‑016‑0296‑3 27013928
    [Google Scholar]
  27. Zhang J.J. Zhu Y. Xie K.L. Peng Y.P. Tao J.Q. Tang J. Li Z. Xu Z.K. Dai C.C. Qian Z.Y. Jiang K.R. Wu J.L. Gao W.T. Du Q. Miao Y. Yin Yang-1 suppresses invasion and metastasis of pancreatic ductal adenocarcinoma by downregulating MMP10 in a MUC4/ErbB2/p38/MEF2C-dependent mechanism. Mol. Cancer 2014 13 1 130 10.1186/1476‑4598‑13‑130 24884523
    [Google Scholar]
  28. Min W. Dai D. Wang J. Zhang D. Zhang Y. Han G. Zhang L. Chen C. Li X. Li Y. Yue Z. Long noncoding RNA miR210HG as a potential biomarker for the diagnosis of glioma. PLoS One 2016 11 9 e0160451 10.1371/journal.pone.0160451 27673330
    [Google Scholar]
  29. Xi J. Sun Q. Ma L. Kang J. Long non-coding RNAs in glioma progression. Cancer Lett. 2018 419 203 209 10.1016/j.canlet.2018.01.041 29355660
    [Google Scholar]
  30. Peng Z. Liu C. Wu M. New insights into long noncoding RNAs and their roles in glioma. Mol. Cancer 2018 17 1 61 10.1186/s12943‑018‑0812‑2 29458374
    [Google Scholar]
  31. Xue W.S. Mechanisms by which long-chain noncoding RNA-PVT1 regulates miR-190a-5p and miR-488-3p to affect the biological behavior of glioma cells. 2016
    [Google Scholar]
  32. Jin X. Cai L. Wang C. Deng X. Yi S. Lei Z. Xiao Q. Xu H. Luo H. Sun J. CASC2/miR-24/miR-221 modulates the TRAIL resistance of hepatocellular carcinoma cell through caspase-8/caspase-3. Cell Death Dis. 2018 9 3 318 10.1038/s41419‑018‑0350‑2 29476051
    [Google Scholar]
  33. Zhu C. Mao X. Zhao H. The circ_VCAN with radioresistance contributes to the carcinogenesis of glioma by regulating microRNA-1183. Medicine 2020 99 8 e19171 10.1097/MD.0000000000019171 32080097
    [Google Scholar]
  34. Li J. Ma J. Huang S. Li J. Zhou L. Sun J. Chen L. Circ TTLL13 promotes TMZ resistance in glioma via modulating OLR1 -mediated activation of the Wnt/β-Catenin pathway. Mol. Cell. Biol. 2023 43 7 354 369 10.1080/10985549.2023.2210032 37427890
    [Google Scholar]
  35. Li F. Wu L. Liu B. An X. Du X. Circular RNA circTIE1 drives proliferation, migration, and invasion of glioma cells through regulating miR-1286/TEAD1 axis. Am. J. Cancer Res. 2023 13 7 2906 2921 37560005
    [Google Scholar]
  36. Liu Z. Wang J. Wang J. Niu J. Wang J. Tong H. CircVCAN/SUB1 up-regulates MYC/HSP90β to enhance the proliferation and migration of glioma cells. Brain Res. Bull. 2021 177 332 339 10.1016/j.brainresbull.2021.09.003 34534637
    [Google Scholar]
  37. Deng Y. Xu L. Li Y. Knockdown of circEXOC6 inhibits cell progression and glycolysis by sponging miR-433-3p and mediating FZD6 in glioma. Transl. Neurosci. 2023 14 1 20220294 10.1515/tnsci‑2022‑0294 37554539
    [Google Scholar]
  38. Yang S. Gao S. Dong Z. CircVCAN promotes glioma progression through the miR ‐488‐3p/ MEF2C‐JAGGED1 axis. Environ. Toxicol. 2024 39 9 4417 4430 10.1002/tox.24328
    [Google Scholar]
  39. Rahnama S. Bakhshinejad B. Farzam F. Bitaraf A. Ghazimoradi M.H. Babashah S. Identification of dysregulated competing endogenous RNA networks in glioblastoma: A way toward improved therapeutic opportunities. Life Sci. 2021 277 119488 10.1016/j.lfs.2021.119488 33862117
    [Google Scholar]
  40. Lei X. Cai F. Lu F.F. Yang Q. Gao G.D. Expression of myocyte enhancer factor 2C in glioblastoma and study of its effects. Chin. J. Neurol. 2018 34 02 170 174
    [Google Scholar]
  41. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 Cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  42. Kim J. Bae J.S. Tumor-associated macrophages and neutrophils in tumor microenvironment. Mediators Inflamm. 2016 2016 1 11 10.1155/2016/6058147 26966341
    [Google Scholar]
  43. Pascual G. Avgustinova A. Mejetta S. Martín M. Castellanos A. Attolini C.S.O. Berenguer A. Prats N. Toll A. Hueto J.A. Bescós C. Di Croce L. Benitah S.A. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 2017 541 7635 41 45 10.1038/nature20791 27974793
    [Google Scholar]
  44. Qian S. Lin S. Xu X. Bai H. Yeerken A. Ying X. Li Z. Fei X. Yang J. Tang M. Wang J. Jin M. Chen K. Hypermethylation of tumor suppressor lncRNA MEF2C-AS1 frequently happened in patients at all stages of colorectal carcinogenesis. Clin. Epigenetics 2022 14 1 111 10.1186/s13148‑022‑01328‑1 36064442
    [Google Scholar]
  45. Risbridger G.P. Davis I.D. Birrell S.N. Tilley W.D. Breast and prostate cancer: More similar than different. Nat. Rev. Cancer 2010 10 3 205 212 10.1038/nrc2795 20147902
    [Google Scholar]
  46. Hernandez R.K. Wade S.W. Reich A. Pirolli M. Liede A. Lyman G.H. Incidence of bone metastases in patients with solid tumors: Analysis of oncology electronic medical records in the United States. BMC Cancer 2018 18 1 44 10.1186/s12885‑017‑3922‑0 29306325
    [Google Scholar]
  47. Tian Q. Lu Y. Yan B. Wu C. Integrative bioinformatics analysis reveals that miR-524-5p/MEF2C regulates bone metastasis in prostate cancer and breast cancer. Comput. Math. Methods Med. 2022 2022 1 13 10.1155/2022/5211329 36128051
    [Google Scholar]
  48. Sereno M. Haskó J. Molnár K. Medina S.J. Reisz Z. Malhó R. Videira M. Tiszlavicz L. Booth S.A. Wilhelm I. Krizbai I.A. Brito M.A. Downregulation of circulating miR 802‐5p and miR 194‐5p and upregulation of brain MEF2C along breast cancer brain metastasization. Mol. Oncol. 2020 14 3 520 538 10.1002/1878‑0261.12632 31930767
    [Google Scholar]
  49. Galego S. Kauppila L.A. Malhó R. Pimentel J. Brito M.A. Myocyte enhancer factor 2C as a new player in human breast cancer brain metastases. Cells 2021 10 2 378 10.3390/cells10020378 33673112
    [Google Scholar]
  50. Custódio-Santos T. Videira M. Brito M.A. Brain metastasization of breast cancer. Biochim. Biophys. Acta Rev. Cancer 2017 1868 1 132 147 10.1016/j.bbcan.2017.03.004 28341420
    [Google Scholar]
  51. Winters S. Martin C. Murphy D. Shokar N.K. Breast cancer epidemiology, prevention, and screening. Prog. Mol. Biol. Transl. Sci. 2017 151 1 32 10.1016/bs.pmbts.2017.07.002 29096890
    [Google Scholar]
  52. Waks A.G. Winer E.P. Breast cancer treatment. JAMA 2019 321 3 316 10.1001/jama.2018.20751 30667503
    [Google Scholar]
  53. Caetano S. Garcia A.R. Figueira I. Brito M.A. MEF2C and miR-194-5p: New players in triple negative breast cancer tumorigenesis. Int. J. Mol. Sci. 2023 24 18 14297 10.3390/ijms241814297 37762600
    [Google Scholar]
  54. Torre L.A. Trabert B. DeSantis C.E. Miller K.D. Samimi G. Runowicz C.D. Gaudet M.M. Jemal A. Siegel R.L. Ovarian cancer statistics, 2018. CA Cancer J. Clin. 2018 68 4 284 296 10.3322/caac.21456 29809280
    [Google Scholar]
  55. Lampert E.J. Zimmer A. Padget M. Cimino-Mathews A. Nair J.R. Liu Y. Swisher E.M. Hodge J.W. Nixon A.B. Nichols E. Bagheri M.H. Levy E. Radke M.R. Lipkowitz S. Annunziata C.M. Taube J.M. Steinberg S.M. Lee J.M. Combination of PARP inhibitor olaparib, and PD-L1 inhibitor durvalumab, in recurrent ovarian cancer: A proof-of-concept phase II study. Clin. Cancer Res. 2020 26 16 4268 4279 10.1158/1078‑0432.CCR‑20‑0056 32398324
    [Google Scholar]
  56. Zhang C.Y. RNA-binding protein YTHDF2 regulates the expression of MEF2C in an m6A-dependent manner to mediate the mechanism of platinum resistance in epithelial ovarian cancer. 2023
    [Google Scholar]
  57. Zheng N. Zhang S. Wu W. Zhang N. Wang J. Regulatory mechanisms and therapeutic targeting of vasculogenic mimicry in hepatocellular carcinoma. Pharmacol. Res. 2021 166 105507 10.1016/j.phrs.2021.105507 33610718
    [Google Scholar]
  58. Zhang H. Liu W. Wang Z. Meng L. Wang Y. Yan H. Li L. MEF2C promotes gefitinib resistance in hepatic cancer cells through regulating MIG6 transcription. Tumori 2018 104 3 221 231 10.1177/0300891618765555 29714661
    [Google Scholar]
  59. Chen M.H. Qi B. Cai Q.Q. Sun J.W. Fu L.S. Kang C.L. Fan F. Ma M.Z. Wu X.Z. LncRNA lncAY is upregulated by sulfatide via Myb/MEF2C acetylation to promote the tumorigenicity of hepatocellular carcinoma cells. Biochim. Biophys. Acta. Gene Regul. Mech. 2022 1865 1 194777 10.1016/j.bbagrm.2021.194777 34843988
    [Google Scholar]
  60. Konantz M. Alghisi E. Müller J.S. Lenard A. Esain V. Carroll K.J. Kanz L. North T.E. Lengerke C. Evi1 regulates Notch activation to induce zebrafish hematopoietic stem cell emergence. EMBO J. 2016 35 21 2315 2331 10.15252/embj.201593454 27638855
    [Google Scholar]
  61. Menshawy N.E. El-Ghonemy M.S. Ebrahim M.A. Fahmi M.W. Saif M. Denewer M. El-Ashwah S. Aberrant ecotropic viral integration site-1 (EVI-1) and myocyte enhancer factor 2 C gene (MEF2C) in adult acute myeloid leukemia are associated with adverse t (9:22) & 11q23 rearrangements. Ann. Hematol. 2024 103 7 2355 2364 10.1007/s00277‑024‑05779‑9 38710877
    [Google Scholar]
  62. Brown F.C. Still E. Koche R.P. Yim C.Y. Takao S. Cifani P. Reed C. Gunasekera S. Ficarro S.B. Romanienko P. Mark W. McCarthy C. de Stanchina E. Gonen M. Seshan V. Bhola P. O’Donnell C. Spitzer B. Stutzke C. Lavallée V.P. Hébert J. Krivtsov A.V. Melnick A. Paietta E.M. Tallman M.S. Letai A. Sauvageau G. Pouliot G. Levine R. Marto J.A. Armstrong S.A. Kentsis A. MEF2C phosphorylation is required for chemotherapy resistance in acute myeloid leukemia. Cancer Discov. 2018 8 4 478 497 10.1158/2159‑8290.CD‑17‑1271 29431698
    [Google Scholar]
  63. Tarumoto Y. Lu B. Somerville T.D.D. Huang Y.H. Milazzo J.P. Wu X.S. Klingbeil O. El Demerdash O. Shi J. Vakoc C.R. LKB1, salt-inducible kinases, and MEF2C are linked dependencies in acute myeloid leukemia. Mol. Cell 2018 69 6 1017 1027.e6 10.1016/j.molcel.2018.02.011 29526696
    [Google Scholar]
  64. Tarumoto Y. Lin S. Wang J. Milazzo J.P. Xu Y. Lu B. Yang Z. Wei Y. Polyanskaya S. Wunderlich M. Gray N.S. Stegmaier K. Vakoc C.R. Salt-inducible kinase inhibition suppresses acute myeloid leukemia progression in vivo. Blood 2020 135 1 56 70 10.1182/blood.2019001576 31697837
    [Google Scholar]
  65. Eagle K. Harada T. Kalfon J. Perez M.W. Heshmati Y. Ewers J. Koren J.V. Dempster J.M. Kugener G. Paralkar V.R. Lin C.Y. Dharia N.V. Stegmaier K. Orkin S.H. Pimkin M. Transcriptional plasticity drives leukemia immune escape. Blood Cancer Discov. 2022 3 5 394 409 10.1158/2643‑3230.BCD‑21‑0207 35709529
    [Google Scholar]
  66. Homminga I. Pieters R. Langerak A.W. de Rooi J.J. Stubbs A. Verstegen M. Vuerhard M. Buijs-Gladdines J. Kooi C. Klous P. van Vlierberghe P. Ferrando A.A. Cayuela J.M. Verhaaf B. Beverloo H.B. Horstmann M. de Haas V. Wiekmeijer A.S. Pike-Overzet K. Staal F.J.T. de Laat W. Soulier J. Sigaux F. Meijerink J.P.P. Integrated transcript and genome analyses reveal NKX2-1 and MEF2C as potential oncogenes in T cell acute lymphoblastic leukemia. Cancer Cell 2011 19 4 484 497 10.1016/j.ccr.2011.02.008 21481790
    [Google Scholar]
  67. Kumari S. Singh J. Arora M. Ali M.S. Pandey A.K. Benjamin M. Palanichamy J.K. Bakhshi S. Qamar I. Chopra A. Copy number alterations in CDKN2A/2B and MTAP genes are associated With Low MEF2C expression in T-cell acute lymphoblastic leukemia. Cureus 2022 14 12 e32151 10.7759/cureus.32151 36601176
    [Google Scholar]
  68. Zhao X. Qian M. Goodings C. Zhang Y. Yang W. Wang P. Xu B. Tian C. Pui C.H. Hunger S.P. Raetz E.A. Devidas M. Relling M.V. Loh M.L. Savic D. Li C. Yang J.J. Molecular mechanisms of ARID5B- mediated genetic susceptibility to acute lymphoblastic leukemia. J. Natl. Cancer Inst. 2022 114 9 1287 1295 10.1093/jnci/djac101 35575404
    [Google Scholar]
  69. Wang Z. Zhang Y. Zhu S. Peng H. Chen Y. Cheng Z. Liu S. Luo Y. Li R. Deng M. Xu Y. Hu G. Chen L. Zhang G. A small molecular compound CC1007 induces cross-lineage differentiation by inhibiting HDAC7 expression and HDAC7/MEF2C interaction in BCR-ABL1− pre-B-ALL. Cell Death Dis. 2020 11 9 738 10.1038/s41419‑020‑02949‑1 32913188
    [Google Scholar]
  70. Li Y. Wang Z. Zhao F. Zeng J. Yang X. MicroRNA 190b expression predicts a good prognosis and attenuates the malignant progression of pancreatic cancer by targeting MEF2C and TCF4. Oncol. Rep. 2021 47 1 12 10.3892/or.2021.8223 34779502
    [Google Scholar]
  71. Judge S.M. Deyhle M.R. Neyroud D. Nosacka R.L. D’Lugos A.C. Cameron M.E. Vohra R.S. Smuder A.J. Roberts B.M. Callaway C.S. Underwood P.W. Chrzanowski S.M. Batra A. Murphy M.E. Heaven J.D. Walter G.A. Trevino J.G. Judge A.R. MEF2c-dependent downregulation of myocilin mediates cancer-induced muscle wasting and associates with cachexia in patients with cancer. Cancer Res. 2020 80 9 1861 1874 10.1158/0008‑5472.CAN‑19‑1558 32132110
    [Google Scholar]
  72. Neal R.D. Sun F. Emery J.D. Callister M.E. Lung cancer. BMJ 2019 365 l1725 10.1136/bmj.l1725 31160279
    [Google Scholar]
  73. Thai A.A. Solomon B.J. Sequist L.V. Gainor J.F. Heist R.S. Lung cancer. Lancet 2021 398 10299 535 554 10.1016/S0140‑6736(21)00312‑3 34273294
    [Google Scholar]
  74. Chen X. Kang R. Kroemer G. Tang D. Broadening horizons: The role of ferroptosis in cancer. Nat. Rev. Clin. Oncol. 2021 18 5 280 296 10.1038/s41571‑020‑00462‑0 33514910
    [Google Scholar]
  75. Xiong R. He R. Liu B. Jiang W. Wang B. Li N. Geng Q. Ferroptosis: A new promising target for lung cancer therapy. Oxid. Med. Cell. Longev. 2021 2021 1 8457521 10.1155/2021/8457521 34616505
    [Google Scholar]
  76. Peng M. Hu Q. Wu Z. Wang B. Wang C. Yu F. Mutation of TP53 confers ferroptosis resistance in lung cancer through the FOXM1/MEF2C axis. Am. J. Pathol. 2023 193 10 1587 1602 10.1016/j.ajpath.2023.05.003 37236507
    [Google Scholar]
  77. Bao Z. Hua L. Ye Y. Wang D. Li C. Xie Q. Wakimoto H. Gong Y. Ji J. MEF2C silencing downregulates NF2 and E-cadherin and enhances Erastin-induced ferroptosis in meningioma. Neuro-oncol. 2021 23 12 2014 2027 10.1093/neuonc/noab114 33984142
    [Google Scholar]
  78. Di Giorgio E. Wang L. Xiong Y. Christensen L.M. Akimova T. Han R. Samanta A. Trevisanut M. Brancolini C. Beier U.H. Hancock W.W. A biological circuit involving Mef2c, Mef2d, and Hdac9 controls the immunosuppressive functions of CD4+Foxp3+ T-regulatory cells. Front. Immunol. 2021 12 703632 703632 10.3389/fimmu.2021.703632 34290714
    [Google Scholar]
  79. Wu N.X. Ying S. Ge W. Li Y. Ruan Y.T. Wang W.M. Li Y. Zhang Q. Qiu W. Wang Y.W. Zhao C.H. Interleukin 17 promotes PC9 cell programmed death ligand 1 expression through upregulation of myocyte enhancer factor 2C. Zhongguo Yaolixue Yu Dulixue Zazhi 2023 37 05 331 342
    [Google Scholar]
  80. Ma R. Wu Y. Zhai Y. Hu B. Ma W. Yang W. Yu Q. Chen Z. Workman J.L. Yu X. Li S. Exogenous pyruvate represses histone gene expression and inhibits cancer cell proliferation via the NAMPT–NAD+–SIRT1 pathway. Nucleic Acids Res. 2019 47 21 11132 11150 10.1093/nar/gkz864 31598701
    [Google Scholar]
  81. Wang X. Zhang C. Gong M. Jiang C. A novel identified long non-coding RNA, lncRNA MEF2C-AS1, inhibits cervical cancer via regulation of miR-592/RSPO1. Front. Mol. Biosci. 2021 8 687113 10.3389/fmolb.2021.687113 34169096
    [Google Scholar]
  82. Crosbie E.J. Kitson S.J. McAlpine J.N. Mukhopadhyay A. Powell M.E. Singh N. Endometrial cancer. Lancet 2022 399 10333 1412 1428 10.1016/S0140‑6736(22)00323‑3 35397864
    [Google Scholar]
  83. Cosgrove D. Whitton L. Fahey L. Ó Broin P. Donohoe G. Morris D.W. Genes influenced by MEF2C contribute to neurodevelopmental disease via gene expression changes that affect multiple types of cortical excitatory neurons. Hum. Mol. Genet. 2021 30 11 961 970 10.1093/hmg/ddaa213 32975584
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266359306250619210412
Loading
/content/journals/ctmc/10.2174/0115680266359306250619210412
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: tumorigenesis ; mechanism ; MEF2C ; prognosis ; Malignant tumors ; treatment
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test