Skip to content
2000
image of Leveraging Tubulin Isotype Structural Differences to Design Less Hematotoxic β5 Selective Covalent Inhibitors for NSCLC

Abstract

Aim

This study aims to discover and design β-5 tubulin-specific covalent inhibitors for non-small cell lung cancer (NSCLC) that can minimize hematotoxicity, a major side effect of current microtubule-targeting agents (MTAs).

Background

Current microtubule-targeting drugs cause toxicities such as hematotoxicity and multidrug resistance (MDR). The colchicine binding site in β-5 has Cys-239, whereas β-1 has Ser-239, allowing selective inhibition based on the reactivity differences for covalent reactions.

Methods

β-5 and β-1 tubulin models were developed, and covalent docking and virtual screening were conducted to identify selective inhibitors targeting the β-5 tubulin colchicine binding site. Twenty hits were selected, and a comparative study was carried out between β-5 and β-1 to evaluate the selectivity and binding potential of the inhibitors.

Results

Among the 20 identified hits, four compounds demonstrated selective inhibition of β-5 tubulin, exhibiting stronger binding affinity for β-5 over β-1 tubulin. Molecular dynamics studies further confirmed their stability and enhanced binding, highlighting their potential as promising candidates for further drug development.

Conclusion

The study identified four novel β-5 tubulin-specific covalent inhibitors that may act as potential therapeutic agents for NSCLC, with the possibility of reduced hematotoxicity. These findings suggest that selective inhibition could help minimize side effects, addressing a critical need in cancer treatment.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266367194250619053553
2025-07-02
2025-09-13
Loading full text...

Full text loading...

References

  1. Knossow M. Campanacci V. Khodja L.A. Gigant B. The mechanism of tubulin assembly into microtubules: Insights from structural studies. iScience 2020 23 9 101511 10.1016/j.isci.2020.101511 32920486
    [Google Scholar]
  2. Goodson H.V. Jonasson E.M. Microtubules and microtubule-associated proteins. Cold Spring Harb. Perspect. Biol. 2018 10 6 a022608 10.1101/cshperspect.a022608 29858272
    [Google Scholar]
  3. Horio T. Murata T. The role of dynamic instability in microtubule organization. Front Plant. Sci. 2014 5 511 10.3389/fpls.2014.00511 25339962
    [Google Scholar]
  4. Burbank K.S. Mitchison T.J. Microtubule dynamic instability. Curr. Biol. 2006 16 14 R516 R517 10.1016/j.cub.2006.06.044 16860721
    [Google Scholar]
  5. Alushin G.M. Lander G.C. Kellogg E.H. Zhang R. Baker D. Nogales E. High-resolution microtubule structures reveal the structural transitions in αβ-tubulin upon GTP hydrolysis. Cell 2014 157 5 1117 1129 10.1016/j.cell.2014.03.053 24855948
    [Google Scholar]
  6. Ginsburg A. Shemesh A. Millgram A. Dharan R. Levi-Kalisman Y. Ringel I. Raviv U. Structure of dynamic, Taxol-stabilized, and GMPPCP-stabilized microtubule. J. Phys. Chem. B 2017 121 36 8427 8436 10.1021/acs.jpcb.7b01057 28820593
    [Google Scholar]
  7. McLoughlin E.C. O’Boyle N.M. Colchicine-binding site inhibitors from chemistry to clinic: A review. Pharmaceuticals 2020 13 1 8 10.3390/ph13010008 31947889
    [Google Scholar]
  8. Cormier A. Marchand M. Ravelli R.B.G. Knossow M. Gigant B. Structural insight into the inhibition of tubulin by vinca domain peptide ligands. EMBO Rep. 2008 9 11 1101 1106 10.1038/embor.2008.171 18787557
    [Google Scholar]
  9. Kellogg E.H. Hejab N.M.A. Howes S. Northcote P. Miller J.H. Díaz J.F. Downing K.H. Nogales E. Insights into the distinct mechanisms of action of taxane and non-taxane microtubule stabilizers from cryo-EM structures. J. Mol. Biol. 2017 429 5 633 646 10.1016/j.jmb.2017.01.001 28104363
    [Google Scholar]
  10. Estévez-Gallego J. Álvarez-Bernad B. Pera B. Wullschleger C. Raes O. Menche D. Chemical modulation of microtubule structure through the laulimalide/peloruside site. Structure 2023 31 1 88 95 10.1016/j.str.2022.11.006
    [Google Scholar]
  11. Yang J. Wang Y. Wang T. Jiang J. Botting C.H. Liu H. Chen Q. Yang J. Naismith J.H. Zhu X. Chen L. Pironetin reacts covalently with cysteine-316 of α-tubulin to destabilize microtubule. Nat. Commun. 2016 7 1 12103 10.1038/ncomms12103 27357539
    [Google Scholar]
  12. Yang J. Yu Y. Li Y. Yan W. Ye H. Niu L. Tang M. Wang Z. Yang Z. Pei H. Wei H. Zhao M. Wen J. Yang L. Ouyang L. Wei Y. Chen Q. Li W. Chen L. Cevipabulin-tubulin complex reveals a novel agent binding site on α-tubulin with tubulin degradation effect. Sci. Adv. 2021 7 21 eabg4168 10.1126/sciadv.abg4168 34138737
    [Google Scholar]
  13. Dominguez-Brauer C. Thu K.L. Mason J.M. Blaser H. Bray M.R. Mak T.W. Targeting mitosis in cancer: Emerging strategies. Mol. Cell 2015 60 4 524 536 10.1016/j.molcel.2015.11.006 26590712
    [Google Scholar]
  14. Ferlay J. Colombet M. Soerjomataram I. Parkin D.M. Piñeros M. Znaor A. Bray F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021 149 4 778 789 10.1002/ijc.33588 33818764
    [Google Scholar]
  15. Siegel R.L. Miller K.D. Fuchs H.E. Jemal A. Cancer statistics, 2022. CA Cancer J. Clin. 2022 72 1 7 33 10.3322/caac.21708 35020204
    [Google Scholar]
  16. Current knowledge of small cell lung cancer transformation from non-small cell lung cancer. Giaccone, G.; He, Y., Eds.; Semin Cancer Biol 2023 94 1 10 10.1016/j.semcancer.2023.05.006
    [Google Scholar]
  17. Wordeman L. Vicente J.J. Microtubule targeting agents in disease: Classic drugs, novel roles. Cancers 2021 13 22 5650 10.3390/cancers13225650 34830812
    [Google Scholar]
  18. Shuai W. Wang G. Zhang Y. Bu F. Zhang S. Miller D.D. Li W. Ouyang L. Wang Y. Recent progress on tubulin inhibitors with dual targeting capabilities for cancer therapy. J. Med. Chem. 2021 64 12 7963 7990 10.1021/acs.jmedchem.1c00100 34101463
    [Google Scholar]
  19. Sun K. Sun Z. Zhao F. Shan G. Meng Q. Recent advances in research of colchicine binding site inhibitors and their interaction modes with tubulin. Future Med. Chem. 2021 13 9 839 858 10.4155/fmc‑2020‑0376 33821673
    [Google Scholar]
  20. Dodd D.O. Mechaussier S. Yeyati P.L. McPhie F. Anderson J.R. Khoo C.J. Shoemark A. Gupta D.K. Attard T. Zariwala M.A. Legendre M. Bracht D. Wallmeier J. Gui M. Fassad M.R. Parry D.A. Tennant P.A. Meynert A. Wheway G. Fares-Taie L. Black H.A. Mitri-Frangieh R. Faucon C. Kaplan J. Patel M. McKie L. Megaw R. Gatsogiannis C. Mohamed M.A. Aitken S. Gautier P. Reinholt F.R. Hirst R.A. O’Callaghan C. Heimdal K. Bottier M. Escudier E. Crowley S. Descartes M. Jabs E.W. Kenia P. Amiel J. Bacci G.M. Calogero C. Palazzo V. Tiberi L. Blümlein U. Rogers A. Wambach J.A. Wegner D.J. Fulton A.B. Kenna M. Rosenfeld M. Holm I.A. Quigley A. Hall E.A. Murphy L.C. Cassidy D.M. von Kriegsheim A. Papon J.F. Pasquier L. Murris M.S. Chalmers J.D. Hogg C. Macleod K.A. Urquhart D.S. Unger S. Aitman T.J. Amselem S. Leigh M.W. Knowles M.R. Omran H. Mitchison H.M. Brown A. Marsh J.A. Welburn J.P.I. Ti S.C. Horani A. Rozet J.M. Perrault I. Mill P. Ciliopathy patient variants reveal organelle-specific functions for TUBB4B in axonemal microtubules. Science 2024 384 6694 eadf5489 10.1126/science.adf5489 38662826
    [Google Scholar]
  21. Nsamba E.T. Gupta M.L. Tubulin isotypes – functional insights from model organisms. J. Cell Sci. 2022 135 9 jcs259539 10.1242/jcs.259539 35522156
    [Google Scholar]
  22. Aiken J. Buscaglia G. Bates E.A. Moore J.K. The α-tubulin gene TUBA1A in brain development: a key ingredient in the neuronal isotype blend. J. Dev. Biol. 2017 5 3 8 10.3390/jdb5030008 29057214
    [Google Scholar]
  23. Prassanawar S.S. Panda D. Tubulin heterogeneity regulates functions and dynamics of microtubules and plays a role in the development of drug resistance in cancer. Biochem. J. 2019 476 9 1359 1376 10.1042/BCJ20190123 31085712
    [Google Scholar]
  24. Lecine P. Italiano J.E. Kim S.W. Villeval J.L. Shivdasani R.A. Hematopoietic-specific β1 tubulin participates in a pathway of platelet biogenesis dependent on the transcription factor NF-E2. Blood 2000 96 4 1366 1373 10.1182/blood.V96.4.1366 10942379
    [Google Scholar]
  25. Leandro-García L.J. Leskelä S. Landa I. Montero-Conde C. López-Jiménez E. Letón R. Cascón A. Robledo M. Rodríguez-Antona C. Tumoral and tissue‐specific expression of the major human β‐tubulin isotypes. Cytoskeleton (Hoboken) 2010 67 4 214 223 10.1002/cm.20436 20191564
    [Google Scholar]
  26. Yu W. Zhang S. Yin B. Dong C. Zhang V.W. Zhang C. Identification of TUBB8 variants in 5 primary infertile women with multiple phenotypes in oocytes and early embryos. Reprod. Sci. 2023 30 4 1376 1382 10.1007/s43032‑022‑01079‑7 36197634
    [Google Scholar]
  27. Christoph D.C. Kasper S. Gauler T.C. Loesch C. Engelhard M. Theegarten D. Poettgen C. Hepp R. Peglow A. Loewendick H. Welter S. Stamatis G. Hirsch F.R. Schuler M. Eberhardt W.E.E. Wohlschlaeger J. βV-tubulin expression is associated with outcome following taxane-based chemotherapy in non-small cell lung cancer. Br. J. Cancer 2012 107 5 823 830 10.1038/bjc.2012.324 22836512
    [Google Scholar]
  28. Escuin D. Burke P.A. McMahon-Tobin G. Hembrough T. Wang Y. Alcaraz A.A. Leandro-García L.J. Rodríguez-Rieiro C. Snyder J.P. LaVallee T.M. Giannakakou P. The hematopoietic-specific β1-tubulin is naturally resistant to 2-Methoxyestradiol and protects patients from drug-induced myelosuppression. Cell Cycle 2009 8 23 3914 3924 10.4161/cc.8.23.10105 19901556
    [Google Scholar]
  29. Kumari S. Sobhia M.E. Targeting an old foe for cancer: A molecular dynamics perspective to unravel the specific binding nature of 2-methoxy estradiol to human β-tubulin isotypes. J. Chem. Inf. Model. 2024 64 10 4121 4133 10.1021/acs.jcim.4c00438 38706255
    [Google Scholar]
  30. Horgan M.J. Zell L. Siewert B. Stuppner H. Schuster D. Temml V. Identification of Novel β-tubulin inhibitors using a combined in silico/in vitro approach. J. Chem. Inf. Model. 2023 63 20 6396 6411 10.1021/acs.jcim.3c00939 37774242
    [Google Scholar]
  31. Mah R. Thomas J.R. Shafer C.M. Drug discovery considerations in the development of covalent inhibitors. Bioorg. Med. Chem. Lett. 2014 24 1 33 39 10.1016/j.bmcl.2013.10.003 24314671
    [Google Scholar]
  32. Ghosh A.K. Samanta I. Mondal A. Liu W.R. Covalent inhibition in drug discovery. ChemMedChem 2019 14 9 889 906 10.1002/cmdc.201900107 30816012
    [Google Scholar]
  33. Yang J. Li Y. Yan W. Li W. Qiu Q. Ye H. Chen L. Covalent modification of Cys-239 in β-tubulin by small molecules as a strategy to promote tubulin heterodimer degradation. J. Biol. Chem. 2019 294 20 8161 8170 10.1074/jbc.RA118.006325 30940730
    [Google Scholar]
  34. Du L. Yee S.S. Ramachandran K. Risinger A.L. Elucidating target specificity of the taccalonolide covalent microtubule stabilizers employing a combinatorial chemical approach. Nat. Commun. 2020 11 1 654 10.1038/s41467‑019‑14277‑w 32005831
    [Google Scholar]
  35. Grzywa R. Psurski M. Gajda A. Gajda T. Janczewski Ł. Isothiocyanates as tubulin polymerization inhibitors—synthesis and structure–activity relationship studies. Int. J. Mol. Sci. 2023 24 18 13674 10.3390/ijms241813674 37761977
    [Google Scholar]
  36. Yang J. Yan W. Li Y. Niu L. Ye H. Chen L. The natural compound withaferin A covalently binds to Cys239 of β-tubulin to promote tubulin degradation. Mol. Pharmacol. 2019 96 6 711 719 10.1124/mol.119.117812 31585985
    [Google Scholar]
  37. Zhang C. Zhao M. Wang G. Li Y. Recent progress on microtubule degradation agents. J. Med. Chem. 2023 66 19 13354 13368 10.1021/acs.jmedchem.3c00517 37748178
    [Google Scholar]
  38. Jumper J Evans R Pritzel A Green T Figurnov M Ronneberger O Highly accurate protein structure prediction with AlphaFold. Nature 2021 596 (7873) 583 10.1038/s41586‑021‑03819‑2.
    [Google Scholar]
  39. Colovos C. Yeates T.O. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci. 1993 2 9 1511 1519 10.1002/pro.5560020916 8401235
    [Google Scholar]
  40. Laskowski R.A. MacArthur M.W. Moss D.S. Thornton J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Cryst. 1993 26 2 283 291 10.1107/S0021889892009944
    [Google Scholar]
  41. Laskowski R. Rullmann J.A.C. MacArthur M. Kaptein R. Thornton J. AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 1996 8 4 477 486 10.1007/BF00228148 9008363
    [Google Scholar]
  42. Zhu K. Borrelli K.W. Greenwood J.R. Day T. Abel R. Farid R.S. Harder E. Docking covalent inhibitors: A parameter free approach to pose prediction and scoring. J. Chem. Inf. Model. 2014 54 7 1932 1940 10.1021/ci500118s 24916536
    [Google Scholar]
  43. Dixon S.L. Smondyrev A.M. Knoll E.H. Rao S.N. Shaw D.E. Friesner R.A. PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J. Comput. Aided Mol. Des. 2006 20 10-11 647 671 10.1007/s10822‑006‑9087‑6 17124629
    [Google Scholar]
  44. Dixon S.L. Smondyrev A.M. Rao S.N. PHASE: a novel approach to pharmacophore modeling and 3D database searching. Chem. Biol. Drug Des. 2006 67 5 370 372 10.1111/j.1747‑0285.2006.00384.x 16784462
    [Google Scholar]
  45. Nain Z. Sayed S.B. Karim M.M. Islam M.A. Adhikari U.K. Energy-optimized pharmacophore coupled virtual screening in the discovery of quorum sensing inhibitors of LasR protein of Pseudomonas aeruginosa. J. Biomol. Struct. Dyn. 2020 38 18 5374 5388 10.1080/07391102.2019.1700168 31787031
    [Google Scholar]
  46. Gandhe A. Kumari S. Elizabeth Sobhia M. Rational design of FXR agonists: A computational approach for NASH therapy. Mol. Divers. 2023 1 14 [PMID: 38055145
    [Google Scholar]
  47. Toledo Warshaviak D. Golan G. Borrelli K.W. Zhu K. Kalid O. Structure-based virtual screening approach for discovery of covalently bound ligands. J. Chem. Inf. Model. 2014 54 7 1941 1950 10.1021/ci500175r 24932913
    [Google Scholar]
  48. Jacobson M.P. Pincus D.L. Rapp C.S. Day T.J.F. Honig B. Shaw D.E. Friesner R.A. A hierarchical approach to all‐atom protein loop prediction. Proteins 2004 55 2 351 367 10.1002/prot.10613 15048827
    [Google Scholar]
  49. Muddagoni N. Bathula R. Dasari M. Potlapally S.R. Homology modeling, virtual screening, prime-MMGBSA, AutoDock-identification of inhibitors of FGR protein. Biointerface Res. Appl. Chem. 2021 11 4 11088 11103
    [Google Scholar]
  50. Gregersen B.A. Scalable algorithms for molecular dynamics simulations on commodity clusters. Bowers, K.J.; Chow, E.; Xu, H.; Dror, R.O.; Eastwood, M.P. Gregersen B.A. Proceedings of the 2006 ACM/IEEE Conference on Supercomputing Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, Tampa, FL, USA 11- 17 November 2006, 43 43 10.1109/SC.2006.54
    [Google Scholar]
  51. Kavallaris M. Microtubules and resistance to tubulin-binding agents. Nat. Rev. Cancer 2010 10 3 194 204 10.1038/nrc2803 20147901
    [Google Scholar]
  52. Person F. Wilczak W. Hube-Magg C. Burdelski C. Möller-Koop C. Simon R. Noriega M. Sauter G. Steurer S. Burdak-Rothkamm S. Jacobsen F. Prevalence of βIII-tubulin (TUBB3) expression in human normal tissues and cancers. Tumour Biol. 2017 39 10 10.1177/1010428317712166 29022485
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266367194250619053553
Loading
/content/journals/ctmc/10.2174/0115680266367194250619053553
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test