Skip to content
2000
image of Traditional Chinese Medicines for Alzheimer's Disease: Current Knowledge, Clinical Applications, and Future Directions

Abstract

Alzheimer's disease (AD) is a prevalent neurodegenerative disorder that poses a significant challenge to the health of the global aging population. Despite extensive research, the complex mechanisms underlying AD pathogenesis remain largely elusive. In recent years, a growing number of clinical studies have demonstrated the preventive and therapeutic potential of Traditional Chinese Medicine (TCM) against AD through multiple pathways, targets, and compounds. In this study, we conducted a review of the literature published over the past 20 years through international and domestic databases, including PubMed, Medline, Cochrane Library, CNKI, SinoMed, Wanfang, and VIP Journal Integration Platform. This review systematically evaluates current research advancements regarding single-herb preparations, bioactive constituents, and compound formulations in Traditional Chinese Medicine (TCM), with focused analysis on three therapeutic categories: tonifying herbs, blood-activating and stasis-eliminating agents, as well as orifice-opening, phlegm-resolving, and mind-stabilizing medicinal substances. Furthermore, this review discusses the potential mechanisms underpinning the anti-AD effects of TCMs. By integrating these insights, this review aims to establish a theoretical foundation for the application of TCMs in AD treatment and provide a reference for future pharmacological studies and the development of health-related products.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266347052250407110353
2025-05-12
2025-09-13
Loading full text...

Full text loading...

References

  1. Giau V.V. Vo T.K. Nguyen T.T. Current advances in transdermal delivery of drugs for alzheimer’s disease. Indian J. Pharmacol. 2017 49 2 145 154 10.4103/0253‑7613.208143 28706327
    [Google Scholar]
  2. Ji Q Zhu F Liu X Li Q Su SB Recent advance in applications of proteomics technologies on traditional Chinese medicine research. Evid. Based. Complement. Altern. Med. eCAM, 2015 2015 983139 10.1155/2015/983139
    [Google Scholar]
  3. Zeng K. Li M. Hu J. Mahaman Y.A.R. Bao J. Huang F. Xia Y. Liu X. Wang Q. Wang J.Z. Yang Y. Liu R. Wang X. Ginkgo biloba extract EGb761 Attenuates hyperhomocysteinemia-induced AD like Tau hyperphosphorylation and cognitive impairment in rats. Curr. Alzheimer Res. 2017 15 1 89 99 10.2174/1567205014666170829102135 28847282
    [Google Scholar]
  4. Zhou L. Tan S. Shan Y. Wang Y.G. Cai W. Huang X. Liao X. Li H. Zhang L. Zhang B. Lu Z. Baicalein improves behavioral dysfunction induced by Alzheimer’s disease in rats. Neuropsychiatr. Dis. Treat. 2016 12 3145 3152 10.2147/NDT.S117469 28003750
    [Google Scholar]
  5. Maione F. Piccolo M. De Vita S. Chini M.G. Cristiano C. De Caro C. Lippiello P. Miniaci M.C. Santamaria R. Irace C. De Feo V. Calignano A. Mascolo N. Bifulco G. Down regulation of pro-inflammatory pathways by tanshinone IIA and cryptotanshinone in a non-genetic mouse model of Alzheimer’s disease. Pharmacol. Res. 2018 129 482 490 10.1016/j.phrs.2017.11.018 29158049
    [Google Scholar]
  6. Damar U. Gersner R. Johnstone J.T. Schachter S. Rotenberg A. Huperzine A. Huperzine A. A promising anticonvulsant, disease modifying, and memory enhancing treatment option in Alzheimer’s disease. Med. Hypotheses 2017 99 57 62 10.1016/j.mehy.2016.12.006 28110700
    [Google Scholar]
  7. Rotenberg A. Huperzine A. Research progress of blood-activating and blood-stasis-removing traditional Chinese medicines in the treatment of Alzheimer’s disease>. J. Pharm. Res. 2021 40 7
    [Google Scholar]
  8. Wang S. Hao Y. LI, J. Progress of neuroprotective effects of qi-benefiting and phlegm-resolving traditional Chinese medicine compound on Alzheimer’s disease. Chin. J. Exp. Tradit. Med. Formulae. 2023 29 13 222 229 [J]
    [Google Scholar]
  9. Mi C.Y. Wang H.P. Advances in the research on the immunoinflammatory mechanisms of Alzheimer’s Disease. J. Global 2022 42 11 2837 2841
    [Google Scholar]
  10. Naseri N.N. Wang H. Guo J. Sharma M. Luo W. The complexity of tau in Alzheimer’s disease. Neurosci. Lett. 2019 705 183 194 10.1016/j.neulet.2019.04.022 31028844
    [Google Scholar]
  11. Tiwari S. Atluri V. Kaushik A. Yndart A. Nair M. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics. Int. J. Nanomedicine 2019 14 5541 5554 10.2147/IJN.S200490 31410002
    [Google Scholar]
  12. Ferreira-Vieira T.H. Guimaraes I.M. Silva F.R. Ribeiro F.M. Alzheimer’s disease: Targeting the cholinergic system. Curr. Neuropharmacol. 2016 14 1 101 115 10.2174/1570159X13666150716165726 26813123
    [Google Scholar]
  13. Chen S.Y. Sun J. Guo A. Chen Y.L. Song Q.J. Deng Y.Q. Synaptic plasticity and Alzheimer’s disease. Chem Life 2017 37 4 607 611
    [Google Scholar]
  14. Skaper S.D. Facci L. Zusso M. Giusti P. Synaptic plasticity, dementia and Alzheimer disease. CNS Neurol. Disord. Drug Targets 2017 16 3 220 233 10.2174/1871527316666170113120853 28088900
    [Google Scholar]
  15. Rodríguez-Giraldo M. González-Reyes R.E. Ramírez-Guerrero S. Bonilla-Trilleras C.E. Guardo-Maya S. Nava-Mesa M.O. Astrocytes as a therapeutic target in Alzheimer’s Disease: Comprehensive review and recent developments. Int. J. Mol. Sci. 2022 23 21 13630 10.3390/ijms232113630 36362415
    [Google Scholar]
  16. Kamat P.K. Kalani A. Rai S. Swarnkar S. Tota S. Nath C. Tyagi N. Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of Alzheimer’s Disease: Understanding the therapeutics strategies. Mol. Neurobiol. 2016 53 1 648 661 10.1007/s12035‑014‑9053‑6 25511446
    [Google Scholar]
  17. Joshi M. Joshi S. Khambete M. Degani M. Role of calcium dysregulation in Alzheimer’s disease and its therapeutic implications. Chem. Biol. Drug Des. 2023 101 2 453 468 10.1111/cbdd.14175 36373976
    [Google Scholar]
  18. Uddin M.S. Rahman M.M. Jakaria M. Rahman M.S. Hossain M.S. Islam A. Ahmed M. Mathew B. Omar U.M. Barreto G.E. Ashraf G.M. Estrogen signaling in Alzheimer’s Disease: Molecular insights and therapeutic targets for Alzheimer’s Dementia. Mol. Neurobiol. 2020 57 6 2654 2670 10.1007/s12035‑020‑01911‑8 32297302
    [Google Scholar]
  19. Shoshan-Barmatz V. Nahon-Crystal E. Shteinfer-Kuzmine A. Gupta R. VDAC1, mitochondrial dysfunction, and Alzheimer’s disease. Pharmacol. Res. 2018 131 87 101 10.1016/j.phrs.2018.03.010 29551631
    [Google Scholar]
  20. Sędzikowska A. Szablewski L. Insulin and insulin resistance in Alzheimer’s disease. Int. J. Mol. Sci. 2021 22 18 9987 10.3390/ijms22189987 34576151
    [Google Scholar]
  21. Angelucci F. Cechova K. Amlerova J. Hort J. Antibiotics, gut microbiota, and Alzheimer’s disease. J. Neuroinflammation 2019 16 1 108 10.1186/s12974‑019‑1494‑4 31118068
    [Google Scholar]
  22. Huang Z.H. Fang Y. Yu Q. Wang X.Q. Xu X.T. Wang T. Exploring the pathogenesis and treatment of Alzheimer’s disease based on the view of the oneness of form and spirit. Forum Tradit Chin Med 2022 37 05 16 18 [J]
    [Google Scholar]
  23. Zhang H. Zhang Y.L. Current situation, dilemma and progress of research on prevention and treatment of Alzheimer’s disease by Traditional Chinese Medicine in China. World TCM 2023 18 08 1202 1205
    [Google Scholar]
  24. Diagnosis and Treatment guidelines for Alzheimer’s disease (2020 Edition). Clin. Education. Gen Pract 2021 19 1 4 6
    [Google Scholar]
  25. Gong J. Qian J.Y. Wang Y.X. Qian K. Ming Y. Dong H.Y. Analysis of medication patterns of Traditional Chinese Medicine in the treatment of Alzheimer’s disease. J. Qiqihar Med Coll 2020 41 16 3
    [Google Scholar]
  26. Su G.H. Liu L.H. Chen H.L. Han R.K. Cao Q.H. Effects of Astragalus polysaccharide on oxidative stress response and wnt signaling pathway in an Alzheimer’s disease rat model. Chin. J. Coal Ind. Med. 2020 23 1 21 26
    [Google Scholar]
  27. Liu P. Zhao H. Luo Y. Anti-Aging implications of Astragalus Membranaceus (Huangqi): A well-known Chinese tonic. Aging Dis. 2017 8 6 868 886 10.14336/AD.2017.0816 29344421
    [Google Scholar]
  28. Zhang Y.B. Fei H.X. Effects of Formononetin on blood-brain barrier permeability and hippocampal Claudin-1 expression in Alzheimer’s disease mice. J. GLOBAL 2019 39 12 3037 3040
    [Google Scholar]
  29. Yan W. Analysis and study on the effective components of Ginseng in treating Alzheimer’s disease. Thesis Jilin Agricultural University 2018
    [Google Scholar]
  30. Zhao H F Li Q Li Y Long-term ginsenoside administration prevents memory loss in aged female C57BL/6J mice by modulating the redox status and up-regulating the plasticity-related proteins in hippocampus. Neuroscience 2011 183 189 202 10.1016/j.neuroscience.2011.03.048.
    [Google Scholar]
  31. Liu S.N. Efficacy study of Ginseng polysaccharides and its components in anti-senile dementia. Thesis Jilin University 2014
    [Google Scholar]
  32. Zhang H. Su Y. Sun Z. Chen M. Han Y. Li Y. Dong X. Ding S. Fang Z. Li W. Li W. Ginsenoside Rg1 alleviates Aβ deposition by inhibiting NADPH oxidase 2 activation in APP/PS1 mice. J. Ginseng Res. 2021 45 6 665 675 10.1016/j.jgr.2021.03.003 34764721
    [Google Scholar]
  33. Dan Y.L. Zhang S.N. Cui L.J. Wu S.H. Li G.L. Li H.B. Exploring the anti-Alzheimer’s disease effects and mechanisms of 20(S)-protopanaxadiol based on Aβ and Tau transgenic nematodes. Chin. J. Tradit. Chin. Med. Pharm. 2023 38 10 4907 4912
    [Google Scholar]
  34. Du H. He W.S. Hu H.L. Li H. Progress on the pharmacological effects of the active ingredients of Atractylodes macrocephala. Jiangsu. J. Tradit. Chin. Med. 2022 54 05 76 80
    [Google Scholar]
  35. Fu X. Wang Q. Wang Z. Kuang H. Jiang P. Danggui-Shaoyao-San: New hope for Alzheimer’s disease. Aging Dis. 2016 7 4 502 513 10.14336/AD.2015.1220 27493835
    [Google Scholar]
  36. Feng X. Wang Z.L. Lin Y.C. Zhou Y. Liu Y.Z. Yang H.Z. Effects of biatractylolide on Aβ(1-40)-Induced Dementia Model in Rats. Chin. Pharmacol. Bull 2009 25 07 949 951
    [Google Scholar]
  37. Hu Q. Liu Y.C. Mao S.Y. Feng X. Mechanistic study of Atractylodes macrocephala in the treatment of Alzheimer’s disease based on network pharmacology. Cent. South. Pharm 2020 18 3 427 434
    [Google Scholar]
  38. Gao Q. Yu X.Y. Effects of Atractylodes macrocephala on cognitive abilities and expression of related signaling proteins in aging mice. J. Heze. Med. Coll 2016 28 1 1
    [Google Scholar]
  39. Li N.Q. Research progress on the pharmacological effects of active components of prepared Rehmannia root. J. Chin. Prescr. Drug 2017 15 1 14 15
    [Google Scholar]
  40. Hu P.Y. Li G.W. Xie Y. Research progress on the mechanism of prepared Rehmannia Root and Acorus Tatarinowii in the treatment of Alzheimer’s disease. J. Shanghai. Univ. Chin. Med 2020 34 6 6
    [Google Scholar]
  41. Li X. He R. Wang H.Y. Tong J. Xu X.Y. Downregulation of Erythropoietin expression and reversal by prepared rehmannia root in D-galactose-induced aging rats. Chin. Pharm. J. 2016 51 18 1562 1568
    [Google Scholar]
  42. Miao M.S. Sun Y.H. Fang X.Y. Antioxidant effects of (Huai) prepared rehmannia root polysaccharides. J. Tradit. Chin. Med. Sci. 2002 9 10 32 33
    [Google Scholar]
  43. Cui Y. Hou S.L. Yan Z.H. Chang Z.F. Effect of Shu Di-huang on the expression of c-fos and NGF in the hippocampus and learning and memory of rats with thalamic arcuate nucleus damage. Chin. J. Chin. Mater. Med 2003 28 4 166 169
    [Google Scholar]
  44. Hu H.Y. Jin G.Q. Zhang X.L. Xu Y.W. Xia H.Y. Zheng J. Traditional Chinese medicine affects Aβ_The protective effect of SH-SY5Y cells injured by (25-35). J. Shanghai. Univ. Chin. Med. 2013 27 05 77 81
    [Google Scholar]
  45. Zhao Z.Y. Wang W.X. Guo H.Z. Guang Z.Q. Zhou D.F. Antidepressant effects of liquiritin in a chronic stress-induced rat model of depression. Chin. J. Clinical Rehabilit. 2006 10 27 69 72
    [Google Scholar]
  46. Liu R.T. Bian G.X. Neuroprotective and Acetylcholinesterase inhibitory effects of liquiritin. Chin. J. New. Drug. 2008 117 7 574 581
    [Google Scholar]
  47. Yuan X. Wang Z. Zhang L. Sui R. Khan S. Exploring the inhibitory effects of liquiritigenin against tau fibrillation and related neurotoxicity as a model of preventive care in Alzheimer’s disease. Int. J. Biol. Macromol. 2021 183 1 1184 1190 10.1016/j.ijbiomac.2021.05.041 33965487
    [Google Scholar]
  48. Cheng W. Li Y.Y. Deng H.B. Zhang P. Tian W. Influence of Polygonatum sibiricum polysaccharides on synaptic interface in the hippocampal CA1 region of Alzheimer’s disease mice. J Clin Pathological Research 2014 34 4 400 404
    [Google Scholar]
  49. Ma J.Q. Improvement mechanism of Alpiniae Oxyphyllae Fructus essential oil on learning and memory impairment in mice with cognitive dysfunction. Thesis Hebei University of Chinese Medicine 2019
    [Google Scholar]
  50. Rifaai R.A. Mokhemer S.A. Saber E.A. El-Aleem S.A.A. El-Tahawy N.F.G. Neuroprotective effect of quercetin nanoparticles: A possible prophylactic and therapeutic role in alzheimer’s disease. J. Chem. Neuroanat. 2020 107 1 101795 10.1016/j.jchemneu.2020.101795 32464160
    [Google Scholar]
  51. Wu C.R. Lin H.C. Su M.H. Reversal by aqueous extracts of Cistanche tubulosa from behavioral deficits in Alzheimer’s disease-like rat model: Relevance for amyloid deposition and central neurotransmitter function. BMC Complement. Altern. Med. 2014 14 1 202 10.1186/1472‑6882‑14‑202 24968859
    [Google Scholar]
  52. Yin G. Gong D.K. Liu B.H. Yao C.J. Experimental study on the effects of Cistanche deserticola polysaccharides on learning and memory and oxidative stress in rat models with Alzheimer’s Disease. J. Apoplexy Nerv Diseases 2013 30 6 504 507
    [Google Scholar]
  53. Li X.B. Stilbene glycoside alleviates MPP+-Induced PC12 cell apoptosis by regulating the ROS-related JNK and mitochondrial pathways [D] Xi’an. Di Si Jun Yi Da Xue 2010 2010 35 50
    [Google Scholar]
  54. Liu J.H. Ho S.C. Lai T.H. Liu T.H. Chi P.Y. Wu R.Y. Protective effects of Chinese herbs on D-galactose-induced oxidative damage. Methods Find. Exp. Clin. Pharmacol. 2003 25 6 447 452 10.1358/mf.2003.25.6.769650 12949630
    [Google Scholar]
  55. Li G.D. Yan W.H. Xing Y. Effects of schisandrin B on the phosphorylation level of Tau protein in neural stem cells of APP transgenic mice. CJTER 2009 13 23 4490 4494
    [Google Scholar]
  56. Wang Q. Liu L. Guan H. Zhou Y. Li Q. Schizandrin A ameliorates cognitive functions via modulating microglial polarisation in Alzheimer’s disease mice. Pharm. Biol. 2021 59 1 858 865 10.1080/13880209.2021.1941132 34214019
    [Google Scholar]
  57. Gao J. Deng Y. Yin C. Liu Y. Zhang W. Shi J. Gong Q. Icariside II, a novel phosphodiesterase 5 inhibitor, protects against H 2 O 2 ‐induced PC 12 cells death by inhibiting mitochondria‐mediated autophagy. J. Cell. Mol. Med. 2017 21 2 375 386 10.1111/jcmm.12971 27642051
    [Google Scholar]
  58. Wang H. Li Q. Sun S. Chen S. Neuroprotective effects of Salidroside in a mouse model of Alzheimer’s disease. Cell. Mol. Neurobiol. 2020 40 7 1133 1142 10.1007/s10571‑020‑00801‑w 32002777
    [Google Scholar]
  59. Gao J. He H. Jiang W. Chang X. Zhu L. Luo F. Zhou R. Ma C. Yan T. Salidroside ameliorates cognitive impairment in a d-galactose-induced rat model of Alzheimer’s disease. Behav. Brain Res. 2015 293 27 33 10.1016/j.bbr.2015.06.045 26192909
    [Google Scholar]
  60. Zhang J. Zhang B. Clinical study of the Bushen-Yizhi formula in the treatment of mild cognitive impairment with memory loss in elderly individuals in 31 cases. Jiangsu J. Tradit Chin Med 2016 48 5 33 34
    [Google Scholar]
  61. Hou X.Q. Zhang L. Yang C. Rong C.P. He W.Q. Zhang C.X. Li S. Su R.Y. Chang X. Qin J.H. Chen Y.B. Xian S.X. Wang Q. Alleviating effects of Bushen-Yizhi formula on ibotenic acid-induced cholinergic impairments in rat. Rejuvenation Res. 2015 18 2 111 127 10.1089/rej.2014.1603 25482164
    [Google Scholar]
  62. Cai H. Luo Y. Yan X. Ding P. Huang Y. Fang S. Zhang R. Chen Y. Guo Z. Fang J. Wang Q. Xu J. The mechanisms of Bushen-Yizhi formula as a therapeutic agent against Alzheimer’s Disease. Sci. Rep. 2018 8 1 3104 10.1038/s41598‑018‑21468‑w 29449587
    [Google Scholar]
  63. Wang G.F. Effects and mechanisms of the Bushen-Yizhi formula on D-Galactose combined with β-Amyloid 25-35-induced Alzheimer’s disease model in rats. Chin J. Tissue. Engineering. Res. 2016 20 49 7307 7313
    [Google Scholar]
  64. Gu X.Q. Yu L. Wu X. Bai Y. Xu X.R. Zhang J. Zhou C.M. Zhang B. Effects and mechanisms of the Bushen-Yizhi formula in the treatment of Alzheimer’s disease in Zebrafish Model. J. Nanjing. Univ. Chin. Med 2020 36 1 56 62
    [Google Scholar]
  65. Jia Q. Luo H. Xu W. Miu Y.R. Observation on the efficacy of modified Rehmannia decoction in the treatment of Alzheimer’s Disease. Evaluation. Analys. Drug-Use. Hospital. China 2018 18 4 499 500
    [Google Scholar]
  66. Zhang L. Wang Y.Y. Zhou J.B. Ke B. Yang Y.B. Qin J. Huang Y.J. Efficacy observation and mechanism exploration of rehmannia decoction in the treatment of patients with Alzheimer’s disease. Chin J. Tradit. Chin. Med. Pharm 2018 33 11 4948 4952
    [Google Scholar]
  67. Ma T. Wang X.X. Zhang Y.L. Zheng H. Zhang W.S. Effects of rehmannia decoction on learning and memory as well as brain tissue energy metabolism in Alzheimer’s disease model of Mice. Int J. Trad. Chin. Med 2014 36 6 539 543
    [Google Scholar]
  68. Li M.Y. Study on the effects of Liuwei Dihuang Decoction and its active components on neurogenesis in Alzheimer’s Disease mouse models. Thesis, Guangxi Medical University 2018
    [Google Scholar]
  69. Wang J. Zhang X. Cheng X. Cheng J. Liu F. Xu Y. Zeng J. Qiao S. Zhou W. Zhang Y.L.W-A.F.C. A new formula derived from Liuwei Dihuang Decoction, Ameliorates Cognitive deterioration and modulates neuroendocrine-immune system in SAMP8 mouse. Curr. Alzheimer Res. 2017 14 2 221 238 10.2174/1567205013666160603001637 27335033
    [Google Scholar]
  70. Cheng X. Huang Y. Zhang Y. Zhou W.L.W-A.F.C. a new formula from the traditional Chinese medicine Liuwei Dihuang decoction, as a promising therapy for Alzheimer’s disease: Pharmacological effects and mechanisms. Adv. Pharmacol. 2020 87 159 177 10.1016/bs.apha.2019.10.005 32089232
    [Google Scholar]
  71. Chen Y. Huang M. Wang H. Sun G.B. Li P. Guo Z.L. Effects of modified Shuyu Pill on gut microbiota and HMGB1 pathway-related proteins in a mouse model of Alzheimer’s disease. Pharm. Clin. Chin. Materia. Med 2023 39 03 15 19
    [Google Scholar]
  72. Chan Y. Chen W. Chen Y. Lv Z. Wan W. Li Y. Zhang C. Yi-Zhi-Fang-Dai Formula exerts a protective effect on the injury of tight junction scaffold proteins in vitro and in vivo by mediating autophagy through regulation of the RAGE/CaMKKβ/AMPK/mTOR pathway. Biol. Pharm. Bull. 2020 43 12 1847 1858 10.1248/bpb.b20‑00379 33268702
    [Google Scholar]
  73. Ma J.J. Zhang Y.L. Zhou C.X. Exploring the essence of kidney nourishment and marrow generation by improving TCD-Related parameters in Alzheimer’s disease patients with Guilu Erxian Jiao. Modernization. Tradit. Chin. Med. Materia. Medica. 2014 16 2 398 401
    [Google Scholar]
  74. Yang F. Yang X.P. Xu Y. Qiu X.M. Chen W.Y. Li W.H. Clinical observation of huanshaodan in the treatment of mild to moderate Alzheimer’s disease of spleen and kidney deficiency type. Hebei. J. Tradit. Chin. Med. 2020 42 4 538 542
    [Google Scholar]
  75. Peng K.Y. Gu J.F. Su S.L. Zhu Y. Guo J.M. Qian D.W. Duan J.A. Salvia miltiorrhiza stems and leaves total phenolic acids combination with tanshinone protect against DSS-induced ulcerative colitis through inhibiting TLR4/PI3K/AKT/mTOR signaling pathway in mice. J. Ethnopharmacol. 2021 264 113052 10.1016/j.jep.2020.113052 32535239
    [Google Scholar]
  76. Zhang M.Y. Metabolomics and blood-brain barrier transport mechanisms of Salvia miltiorrhiza in the prevention and treatment of Alzheimer’s Disease. Naval Medical University 2019
    [Google Scholar]
  77. Zhang S.L. Wei W. Study on the neuroprotective activity of total Salvia miltiorrhiza polysaccharides in Alzheimer’s disease mice. Researc. Practice. Chin. Med. 2016 30 6 38 41
    [Google Scholar]
  78. Ding H. Kan S. Wang X. Du B. Mou Y. Dong R. Geng D. Pang Q. Cryptotanshinone against vascular dementia through inhibition of Aβ aggregation and inflammatory responses in cerebrovascular endothelial cells. Arab. J. Chem. 2022 15 12 104328 10.1016/j.arabjc.2022.104328
    [Google Scholar]
  79. Wei H. Research progress on the chemical constituents and pharmacological effects of Ligusticum wallichii in Modern Chinese Medicine. Mod Chin Med 2017 19 9 9
    [Google Scholar]
  80. Zhang X.J. Zhang Y.L. Zuo D.D. Research progress on chemical constituents and pharmacological effects of Ligusticum Chuanxiong Hort. Inf. Tradit. Chin. Med 2020 37 6 128 133 10.19656/j.cnki.1002‑2406.200177
    [Google Scholar]
  81. Zhang X.Y. Ye H.X. Zheng Y.J. Hu Y.L. Effects of ligustrazine on cognitive function and neuroinflammation in LPS-induced dementia in Mice. Pharm. Clin. Chin. Materia. Med 2020 38 04 96 101
    [Google Scholar]
  82. Zhang C. Wang S.Z. Wang T. Effects of Ligustrazine on the cholinergic system in the hippocampus of Alzheimer’s disease model mice. J. Capit. Med. Univ. 2008 01 15 18
    [Google Scholar]
  83. Liu C.A. Zhu J. Cai B. Huang J.L. Ligustrazine alleviates inflammation in the brain tissues of Alzheimer’s Disease rats by inhibiting the RAGE-ERK1/2-p38-NFκB signaling pathway and oxidative stress. Chin. J. Chin. Mater. Med. 2014 49 13 1126 1132
    [Google Scholar]
  84. Zhang R. Zhang J.L. Li B.T. Hua C.L. Liu R.Q. Mechanism of the anti-Alzheimer’s disease effect of Gardenia Jasminoides based on network pharmacology research. Chin J. Chin. Mater. Med. 2020 45 11 2601 2610
    [Google Scholar]
  85. Zuo Y.M. Cai M.T. Zhang Z.L. Luo G.M. Effects of Gardenia Jasminoides extract on spatial learning and memory in heterogeneous and multifactorial Alzheimer’s disease model rats. Lishizhen. Med. Mater. Med. Res 2014 25 9 2055 2057
    [Google Scholar]
  86. Dong L.M. Pharmacological study of Traditional Chinese Medicine Gardenia Jasminoides on APP/PS1/Tau triple transgenic mice with Alzheimer's Disease model Thesis Zunyi Medical University 2018
    [Google Scholar]
  87. Zhang L. Zhou Z. Zhai W. Pang J. Mo Y. Yang G. Qu Z. Hu Y. Safflower yellow attenuates learning and memory deficits in amyloid β-induced Alzheimer’s disease rats by inhibiting neuroglia cell activation and inflammatory signaling pathways. Metab. Brain Dis. 2019 34 3 927 939 10.1007/s11011‑019‑00398‑0 30830599
    [Google Scholar]
  88. Pang W. Zhou C. Chen Y. Clinical evaluation of Donepezil combined with Rhodiola crenulata for the treatment of Alzheimer’s Disease. Chin. Med. Pharm 2017 7 7 59 61
    [Google Scholar]
  89. Tong Q.H. Yan T.Y. Tao T. Zhang L. Xie L.Q. Lu H.J. Reductive amination combining dimethylation for quantitative analysis of early-stage glycated proteins. Anal. Chem. 2018 90 6 3752 3758 10.1021/acs.analchem.7b03668 29465980
    [Google Scholar]
  90. Zhou N. Tang Y. Keep R.F. Ma X. Xiang J. Antioxidative effects of Panax notoginseng saponins in brain cells. Phytomedicine 2014 21 10 1189 1195 10.1016/j.phymed.2014.05.004 24916704
    [Google Scholar]
  91. Zhang C. M Efficacy of Buyang Huanwu Decoction in the treatment of Alzheimer’s disease and its impact on MMSE score and ADL score. Mod Doctor China 2016 54 31 126 126
    [Google Scholar]
  92. Fei H.X. Han Y.S. Du H. Zhong L.L. Li B.L. Pu C.Y. Zhang Y.B. Liao T. Bai Y. Jiang B. Zhou Z.G. Effects of Buyang Huanwu Decoction on Hippocampal Morphology and β-Amyloid levels in Alzheimer’s disease mouse models. Chin J. Exp. Tradit. Med. Form 2014 20 23 142 145
    [Google Scholar]
  93. Yu X.F. Lei X. Cao L. Liu H.Y. Liu G.L. Wang J.Z. Geng F. Zhang G.N. Effects of Buyang Huanwu Decoction on apoptotic factors and learning and memory abilities in Alzheimer’s Disease mouse models. Chin. J. Exp. Tradit. Med. Form 2018 24 3 109 113
    [Google Scholar]
  94. Liu B. Liu G. Wang Y. Yao Y. Wang G. Lei X. Zhang N. Dong X. Protective effect of Buyang Huanwu Decoction on neurovascular unit in Alzheimer’s disease cell model via inflammation and RAGE/LRP1 pathway. Med. Sci. Monit. 2019 25 25 7813 7825 10.12659/MSM.917020 31625533
    [Google Scholar]
  95. Fei H.X. Zhou Z.G. Han Y.S. Liu X. Pu C.Y. Jiang B. Du H. Zhang Y.B. Li B.L. Zhong L.L. Bai Y. Effects of Buyang Huanwu Decoction on blood-brain barrier permeability in Alzheimer’s disease mouse models. Lishizhen. Med. Mater. Med. Res. 2015 26 5 1028 1031
    [Google Scholar]
  96. Cheng Y.L. Effects of Tongqiaohuoxue decoction on peripheral blood BDNF and NGF expression in patients with senile dementia. Nei. Meng. Gu. J. Chin. Mater Med 2019 38 6 53 54
    [Google Scholar]
  97. Xu S. Clinical study of modified Tongqiaohuoxue Decoction in the Treatment of senile dementia. Chin. Med. Nat. Products 2014 29 5 754 755
    [Google Scholar]
  98. Jiang Y.Q. Cai C.Q. Effects of Tongqiaohuoxue decoction combined with galantamine on brainstem auditory evoked potentials and cognitive function in patients with Alzheimer’s disease. Chin Mod Med 2021 28 4 192 195
    [Google Scholar]
  99. Zhang W. Hu C.Y. Lv Y. Fu M. Liang M. Clinical efficacy of compound Danshen tablet combined with donepezil in the treatment of Alzheimer’s Disease. Chin J Mod Med 2018 28 25 37 40 10.4103/0366‑6999.221268
    [Google Scholar]
  100. Hu H. Li C.Y. Zhou D.S. Li S. Chen Y. Liu L.J. Li Z. Effects of Compound Danshen tablet on the expression of LRP-1/RAGE in the mouse model of Alzheimer’s Disease. Chin J. Tradit. Med. Sci. Tech. 2016 23 6 662 665
    [Google Scholar]
  101. Zhou Z.K. Zeng H.B. Chen C. Experimental study on Huangqi Sanxian decoction in regulating cellular immune function via Hippocampal Neuropeptide Y. J Anhui. J Anhui Tradit Chin Med 2005 24 4 37 39
    [Google Scholar]
  102. Song L.M. Wei D.F. Yang J. Li F. Lv X.Y. Wei C.Z. Pang D.Y. Effects of Tianqi Yizhi Granules on learning and memory and central neurotransmitters in rapidly aging mice. Liaoning J. Tradit. Chin. Med 2015 42 12 2442 2445
    [Google Scholar]
  103. Gao A.S. Du H. Fan Y.C. Wang X.Y. Effects of oral solution Tongluo Jiunao on RAGE and Aβ in the rapidly aging model mice. Tradit. Chin. Drug. Research. Clin. Pharmacology 2016 27 4 533 536
    [Google Scholar]
  104. Zhan K. Zhou L.J. Liu R.Q. Wu X.L. Liu J.H. Huang Y.J. Neuroprotective effects and mechanisms of Bushen Huatan Quyu Decoction. Guid. J. Tradit. Chin. Med. Pharm 2022 28 10 12 17
    [Google Scholar]
  105. Zhang C.W. Zhang Y. Su S. Cheng L. Research progress on pharmacognosy, chemical constituents, and pharmacological effects of poria cocos medicinal materials. Hubei. Agric. Sci. 2021 60 2 9 14
    [Google Scholar]
  106. Qin S.C. Wang A.M. Li R.Y. Study on the antagonistic effect of pachymic acid on TNF-a induced inflammation, oxidative stress, and apoptosis in SH-SY5Y cells. Chin J. Tradit. Med. Sci. and Technol 2019 26 6 854 858
    [Google Scholar]
  107. Feng Y.R. Preparation of Carboxymethylpachymaran with different molecular weights and their antioxidant activity. Thesis South China University of Technology 2019
    [Google Scholar]
  108. Xu Y.B. Xu Z.L. Li M.Y. Dou De Q. Pharmacological studies on the taste and properties of Poria Cocos and its chemically dissected components in learning and memory, sedation, and hypnosis. Chin. Herb. Med. 2014 45 11 1577 1584
    [Google Scholar]
  109. Lee S.G. Kim M.M. Pachymic acid promotes induction of autophagy related to IGF-1 signaling pathway in WI-38 cells. Phytomedicine 2017 36 82 87 10.1016/j.phymed.2017.09.020 29157832
    [Google Scholar]
  110. Chen K.Z. Chen S. Ren J.Y. Lin S. Xiao M.J. Cheng Y. Ye X.C. Antidepressant effect of acidic polysaccharide of Poria Cocos and its mechanism of regulating neurotransmitters and NLRP3 pathway. Chin J. Chin. Mater. Med 2021 46 19 5088 5095 34738405
    [Google Scholar]
  111. Wang W.Q. Wang L. Wang W. Effects of Acorus Tatarinowii essential oil on memory impairment in mice and acute toxicity. J. Pharm. Res. 2019 38 2 76 79,124
    [Google Scholar]
  112. Jiang Z.K. Li X. Chen Z. Effects of essential oil of Acorus Tatarinowii on learning and memory ability of rats with streptozotocin-induced dementia. Chin. J. Gerontol 2018 38 2 263 265
    [Google Scholar]
  113. Lin C. An H.M. Study on the pharmacological effects of Acorus Tatarinowii in the central nervous system. J. Chuangchun. Univ. Chin. Med 2014 30 2 230 233
    [Google Scholar]
  114. Wang D.H. Tian X.H. Li D.M. Effects of Acorus Tatarinowii combined with Oxiracetam on neurorelated proteins and inflammatory factors in rat models with Alzheimer’s Disease. Chin. J. Gerontol 2022 42 5 1189 1191
    [Google Scholar]
  115. Geng Y. Li C. Liu J. Xing G. Zhou L. Dong M. Li X. Niu Y. Beta-asarone improves cognitive function by suppressing neuronal apoptosis in the beta-amyloid hippocampus injection rats. Biol. Pharm. Bull. 2010 33 5 836 843 10.1248/bpb.33.836 20460763
    [Google Scholar]
  116. Shin J.W. Cheong Y.J. Koo Y.M. Kim S. Noh C.K. Son Y.H. Kang C. Sohn N.W. α-Asarone ameliorates memory deficit in lipopolysaccharide-treated mice via suppression of pro-inflammatory cytokines and microglial activation. Biomol. Ther. (Seoul) 2014 22 1 17 26 10.4062/biomolther.2013.102 24596617
    [Google Scholar]
  117. Deng M.Z. Huang L.P. Fang Y.Q. Effects of total ginsenosides and volatile oil of Acorus Tatarinowii co-administration on ability of learning and memory and apoptosis in alzheimer’s disease mice model induced by D-Galactose and Aluminium chloride. Chin. Med. Mater 2015 38 5 1018 1023 26767299
    [Google Scholar]
  118. Chang S.S. Liu L.L. Hou M.M. He Z.F. Li X.Y. Research progress on the mechanisms of Acorus Tatarinowii and its compound in the prevention and treatment of alzheimer’s Disease. Chin. J. Integr Med. Cardio-/Cerebrovascuiar. Dis 2021 19 21 3708 3710
    [Google Scholar]
  119. Ling Y.K. Chinese Materia Medica. Shanghai Shanghai Science and Technology Press 2003 192 193
    [Google Scholar]
  120. Guo X.M. Effects of Tenuigenin on Learning and memory function and acetylcholinesterase level in brain tissues of rapidly aging mice. J. Chin. Practical. Diagnosis. Therap. 2016 6 578 580
    [Google Scholar]
  121. Ye H.Y. Chen Q. Study on the protective effect of Tenuigenin on learning and memory dysfunction in rat models with Alzheimer’s disease induced by AB(1-40). Chin J New Drug 2013 22 22 2674 2678
    [Google Scholar]
  122. Braidy N. Behzad S. Habtemariam S. Ahmed T. Daglia M. Nabavi S.M. Sobarzo-Sanchez E. Nabavi S.F. Neuroprotective effects of citrus fruit-derived flavonoids, Nobiletin and Tangeretin in Alzheimer’s and Parkinson’s disease. CNS Neurol Disord-DR 2017 16 4 387 397 28474543
    [Google Scholar]
  123. Zhang M. Ma Y. Chai L. Mao H. Zhang J. Fan X. Storax protected oxygen-glucose deprivation/Reoxygenation induced primary astrocyte injury by inhibiting NF-κB activation in vitro. Front. Pharmacol. 2019 9 1527 10.3389/fphar.2018.01527 30687092
    [Google Scholar]
  124. Liu Y. Bian H. Xu S. Shu S. Jia J. Chen J. Cao X. Bao X. Gu Y. Xia S. Yang H. Yu L. Xu Y. Zhu X. Muscone ameliorates synaptic dysfunction and cognitive deficits in APP/PS1 Mice. J. Alzheimers Dis. 2020 76 2 491 504 10.3233/JAD‑200188 32538849
    [Google Scholar]
  125. Liu Y. Wang J. Yao H.W. Wang D.D. Zeng N. Xia H.L. Effects of orifice-opening medicine on PC12 Cells under ischemic hypoxic injury and its mechanisms of action. Pharm. Clin. Chin. Materia. Med 2010 26 4 35 38
    [Google Scholar]
  126. Feng X.X. Wang B.B. Chen D. Chou F. Gong M.X. Li Z.X. Pharmacokinetic study of Kaixin powder in rats of Alzheimer’s Disease model. Chin. Herb. Med. 2022 53 14 4388 4398
    [Google Scholar]
  127. Feng Q. Yao J.C. Fan Y.L. Chen G.L. Li X. Guan Y.X. Zhang G.M. Prediction analysis of Quality Markers (Q-Markers) for Kaixin powder based on the “Five Principles”. Chin. Herb. Med. 2022 53 11 3550 3556
    [Google Scholar]
  128. Lu Z.Y. Zhao C.Y. Yang G. Tong Y.T. Ba Z.T. Re A.L. Yang J.M. Xu Y. Mechanism study of modified Kaixin Powder in alleviating memory impairment in Alzheimer’s Disease model mice by inhibiting neuroinflammation and regulating αCaMKII-PSD95 protein binding. Chin. J. Chin. Mater. Med 2022 47 22 6217 6226
    [Google Scholar]
  129. Yin Y.Y. Liao W.L. Wang P. Effects of Ditan Decoction and its decomposed recipes on behavior and Tau protein phosphorylation in rat models with Alzheimer’s Disease. Chin J. Chin. Mater. Med 2020 35 6 2799 2802
    [Google Scholar]
  130. Peng J. Liu L. Chen G. Hu J.J. Li B.N. Effects of Ditan Decoction on blood lipids and oxidative stress indices in rats with Mild Cognitive Impairment (MCI) of turbid-phlegm blocking orifice syndrome. Lishizhen. Med. Mater. Med. Res 2018 29 3 530 533
    [Google Scholar]
  131. Yin Y.Y. Wang P. Study on the neuroprotective effects of Ditan Decoction and its decomposed recipes in rat moedels with Alzheimer’s Disease. Chin. J. Integr. Med. 2019 39 11 1385 1389
    [Google Scholar]
  132. Wang D.K. Diwu Y.C. Gou Y.R. Zhang H.X. Zhu X.F. Wang W. Liu Q. Zhou Y. Effects of Xixin Decoction on the expression of BDNF and TrkB proteins in the hippocampus and gut microbiota diversity in rat models with Alzheimer’s Disease. J. Tradit. Chin. Med. 2021 62 15 1362 1369
    [Google Scholar]
  133. Xun Y.R. Diwu Y.C. Wang D.K. Zhou H.X. Zhu X.F. Wang W. Liu Q. Zhou Y. Effects of component compatibility of Xixin Decoction on learning and memory abilities of rats in an Alzheimer’s Disease model induced by D-Galactose combined with Aβ (25-35) and its main mechanisms. Lishizhen. Med. Mater. Med. Res 2021 32 11 2585 2589
    [Google Scholar]
  134. Shao Y.R. Diwu Y.C. Zeng J. Wang F. Zhai J.M. Li, T Effects of Xixin decoction on mitochondrial function in hippocampal neurons induced by Aβ (1-42). Liaoning J. Tradit. Chin. Med 2018 45 6 1281 1284
    [Google Scholar]
  135. Qiang W.J. Chen Y. He F.Y. Xiao M.F. Cai W.Y. Dai Y.F. Yang Q. Li Y.J. Weng X.G. Li Q. Wang Y.J. Zhu X.X. Molecular biological mechanisms of Yuan Zhi Powder in the treatment of Alzheimer’s Disease: an Analysis Based on Network Pharmacology. Digital Chinese. Med. 2018 1 1 90 101 10.1016/S2589‑3777(19)30011‑4
    [Google Scholar]
  136. Wang X.B. Zhao Y. Yuan X.X. Effects of Anshen Dingzhi Formula on MiR-103a-3p and the Mediated Tau Protein Phosphorylation in Hippocampal Tissue of Rat Models with Alzheimer’s Disease. Chin. J. Inf. Tradit. Chin. Med 2021 28 2 62 68
    [Google Scholar]
  137. Gu Y.L. Clinical Observation on the treatment of Alzheimer’s Disease with Phlegm and Stagnation syndrome by modified Diankuang Mengxing Decoction. Thesis, Hunan University of Chinese Medicine 2019
    [Google Scholar]
  138. Hu W.H. Mak S.H. Zheng Z.Y. Xia Y.J. Xu M.L. Duan R. Dong T.T.X. Li S.P. Zhan C.S. Shang X.H. Tsim K.W.K. Shexiang Baoxin Pill, a traditional Chinese herbal formula, rescues the cognitive impairments in APP/PS1 transgenic mice. Front. Pharmacol. 2020 11 1045 10.3389/fphar.2020.01045 32765267
    [Google Scholar]
  139. Liu X.Y. Zhao W.K. Xu P.C. Lin S.M. Effects of Tiaoxin recipe on rat models with Alzheimer’s disease induced by Amyloid-β (25-35) injection in Amygdala. Chin. Tradit. Herbal Drugs 2004 35 1 50 53
    [Google Scholar]
  140. Wang X.W. Deng H.Y. Wang J. Xu Y. Effects of the cyclic adenosine monophosphate response nlm-binding protein/brain-derived neurotrophic factor signaling pathway on the improvement of learning and memory in APP/PS1 mice by Tiaoxin recipe. Chin. J Rehabilit Theory and Practice 2018 24 1 11 16
    [Google Scholar]
  141. Wang X.W. Qian H. Shen C.J. Li Y.J. Yuan H.X. Wang J. Effects of Tiaoxin Recipe on learning and memory, and synaptic plasticity in APP/PS1 double transgenic Alzheimer’s Disease mouse models through the αCaMKII-CREB-BDNF signaling pathway. Rehabilit Med 2020 30 4 299 306 10.3724/SP.J.1329.2020.04010
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266347052250407110353
Loading
/content/journals/ctmc/10.2174/0115680266347052250407110353
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test