Skip to content
2000
image of Design, Synthesis, Molecular Docking, and Biological Evaluation of 7-Phenyl-5-(thiophen-2-yl)pyrido[2,3-d]pyrimidine-2,4(1H,3H)-diones as Antibacterial Agents

Abstract

Background

New antibacterial agents are urgently needed as bacterial diseases, especially urinary tract infections (UTIs), are becoming more common, and antibiotic resistance is increasing.

Aims

This study aimed to design, synthesize, and conduct molecular docking and biological evaluation of pyrido[2,3-]pyrimidine-2,4(1,3)-diones as antibacterial agents.

Methods

7-Phenyl-5-(thiophen-2-yl)pyrido[2,3-d]pyrimidine-2,4(1H,3H)-diones were designed using an approach. The designed compounds were synthesized using reported procedures. Molecular docking studies were carried out using the Maestro 12.9 module of Schrodinger software. QikProp module of the Schrodinger suite was used for ADME evaluation of synthesized compounds. antibacterial activity of these compounds was assessed using the serial dilution method.

Results

Compounds MA-03 and MA-12 showed potent antibacterial activity with MIC values of 1.56, 3.125, 1.56, and 6.25 µg/ml and 1.56, 3.12, 6.25, and 3.12 µg/ml, respectively, against and using controls ciprofloxacin and amoxicillin (0.78, 0.39, 1.56 and 0.39 µg/ml and 0.78, 3.125, 3.125, and 1.56 µg/ml). All the synthesized compounds demonstrated higher binding affinities against bacterial proteins with reference to amoxicillin and ciprofloxacin.

Conclusion

All the compounds exhibited antibacterial activity against all the tested strains of bacteria with optimum ADME profile.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266355090250407105802
2025-05-26
2025-09-13
Loading full text...

Full text loading...

References

  1. Dufrêne Y.F. Persat A. Mechanomicrobiology: how bacteria sense and respond to forces. Nat. Rev. Microbiol. 2020 18 4 227 240 10.1038/s41579‑019‑0314‑2 31959911
    [Google Scholar]
  2. Zhu D. Adebisi W.A. Ahmad F. Sethupathy S. Danso B. Sun J. Recent development of extremophilic bacteria and their application in biorefinery. Frontiers in Bioengineering and Biotechnology 2020 8 483 10.3389/fbioe.2020.00483 32596215
    [Google Scholar]
  3. Byron J.K. Urinary tract infection. Vet. Clin. North Am. Small Anim. Pract. 2019 49 2 211 221 10.1016/j.cvsm.2018.11.005 30591189
    [Google Scholar]
  4. Warren J.W. Abrutyn E. Hebel J.R. Johnson J.R. Schaeffer A.J. Stamm W.E. Guidelines for antimicrobial treatment of uncomplicated acute bacterial cystitis and acute pyelonephritis in women. Clin. Infect. Dis. 1999 29 4 745 758 10.1086/520427 10589881
    [Google Scholar]
  5. Vasudevan R. Urinary tract infection: an overview of the infection and the associated risk factors. J. Microbiol. Exp. 2014 1 2 00008 10.15406/jmen.2014.01.00008
    [Google Scholar]
  6. Sahu R. Sahoo R.K. Prusty S.K. Sahu P.K. Urinary Tract Infection and its management. Systematic Reviews in Pharmacy 2018 10 1 42 48 10.5530/srp.2019.1.7
    [Google Scholar]
  7. Bajracharya A.M Shrestha A Poudel A Sapkota A Shrestha S S Giri Pachhai C. Bhusal H. Antibiotic susceptibility patterns and multidrug resistance Gram negative isolates causing urinary tract infection. Antimicrob. Resist. Infect. Control 2010 2 1 7 11
    [Google Scholar]
  8. Foxman B. The epidemiology of urinary tract infection. Nat. Rev. Urol. 2010 7 12 653 660 10.1038/nrurol.2010.190 21139641
    [Google Scholar]
  9. Shaheen G. Akram M. Jabeen F. Ali Shah S.M. Munir N. Daniyal M. Riaz M. Tahir I.M. Ghauri A.O. Sultana S. Zainab R. Khan M. Therapeutic potential of medicinal plants for the management of urinary tract infection: A systematic review. Clin. Exp. Pharmacol. Physiol. 2019 46 7 613 624 10.1111/1440‑1681.13092 30932202
    [Google Scholar]
  10. Kouhkan M. Javahershenas R. Khalafy J. Biological evaluation of Pyrrolo [3, 2-d] pyrimidine derivatives as antibacterial agents against pathogenic bacteria. J. Biotech 2021 2 8 2766 2314
    [Google Scholar]
  11. Kumar A. Bhagat K.K. Singh A.K. Singh H. Angre T. Verma A. Khalilullah H. Jaremko M. Emwas A.H. Kumar P. Medicinal chemistry perspective of pyrido[2,3- d]pyrimidines as anticancer agents. RSC Advances 2023 13 10 6872 6908 10.1039/D3RA00056G 36865574
    [Google Scholar]
  12. Elagamey A.G. Sattar S.A. El-Taweel F. Said S. An efficient synthesis and antibacterial activity of pyrido [2, 3‐d] pyrimidine, chromeno [3, 4‐c] pyridine, pyridine, pyrimido [2, 3‐c] pyridazine, enediamines, and pyridazine derivatives. J. Heterocycl. Chem. 2016 53 6 1801 1806 10.1002/jhet.2487
    [Google Scholar]
  13. Abu-Hashem A.A. Yousif M.N.M. El-Gazzar A.R.B.A. Hafez H.N. Synthesis, design, and antimicrobial activity of pyrido[2,3‐ d][1,2,4]triazolo[4,3‐a]pyrimidinones based on quinoline derivatives. J. Chin. Chem. Soc. 2023 70 12 2187 2205 10.1002/jccs.202300212
    [Google Scholar]
  14. Abdelhameed R.M. Darwesh O.M. El-Shahat M. Synthesis of arylidene hydrazinylpyrido[2,3-d]pyrimidin-4-ones as potent anti-microbial agents. Heliyon 2020 6 9 e04956 10.1016/j.heliyon.2020.e04956 32995633
    [Google Scholar]
  15. Alshareef F.M. Al-Harbi S.A. Allehyani E.S. Abdullah O. Ibrahim M.A. Design, synthesis and antimicrobial activity of heteroannulated chromeno[3′,2′:5,6]pyrido[2,3- d][1,3]thiazolo[3,2- a]pyrimidines. Synth. Commun. 2024 54 2 133 143 10.1080/00397911.2023.2287654
    [Google Scholar]
  16. Faidallah H.M. Rostom S.A. Khan K.A. Synthesis of some polysubstituted nicotinonitriles and derived Pyrido [2, 3‐d] pyrimidines as in vitro cytotoxic and antimicrobial candidates. J. Chem. 2016 2016 1 2135893
    [Google Scholar]
  17. Rai S. Bishnoi A. Fatma S. Shukla S. Devi P. Singh V. An expedient three-component synthesis of novel pyrido-pyrimidine derivatives: Antimicrobial activity, molecular docking, and ADME studies. Polycycl. Aromat. Compd. 2024 44 4 2752 2774 10.1080/10406638.2023.2222210
    [Google Scholar]
  18. Bhutani P. Joshi G. Raja N. Bachhav N. Rajanna P.K. Bhutani H. Paul A.T. Kumar R.US FDA approved drugs from 2015–June 2020: A perspective. J. Med. Chem. 2021 64 5 2339 2381 10.1021/acs.jmedchem.0c01786 33617716
    [Google Scholar]
  19. Andrei S. Droc G. Stefan G. FDA approved antibacterial drugs: 2018-2019. Discoveries 2019 7 4 e102 10.15190/d.2019.15 32309620
    [Google Scholar]
  20. Abusetta A. Alumairi J. Alkaabi M.Y. Ajeil R.A. Shkaidim A.A. Akram D. Pajak J. Ghattas M.A. Atatreh N. AlNeyadi S.S. Design, synthesis, in vitro antibacterial activity, and docking studies of new rhodanine derivatives. Open J. Med. Chem. 2020 10 1 15 34 10.4236/ojmc.2020.101002
    [Google Scholar]
  21. Siziani D. Ziani B.E.C. Abdi Y. Bensouilah N. Boutemeur-Kheddis B. Ziani C. Boukkena L. Hamdi M. Talhi O. Bachari K. Silva A.M.S. Multicomponent synthesis of pyranonicotinonitrile and chromene-3-carbonitrile: Studies on bioactivities and molecular docking. J. Mol. Struct. 2022 1264 133236 10.1016/j.molstruc.2022.133236
    [Google Scholar]
  22. Arzine A. Hadni H. Boujdi K. Chebbac K. Barghady N. Rhazi Y. Chalkha M. Nakkabi A. Chkirate K. Mague J.T. Kawsar S.M.A. Al Houari G.M Alanazi M. El Yazidi M. Efficient synthesis, structural characterization, antibacterial assessment, ADME-Tox analysis, molecular docking and molecular dynamics simulations of new functionalized isoxazoles. Molecules 2024 29 14 3366 10.3390/molecules29143366 39064944
    [Google Scholar]
  23. Lakshmanan Mangalath D. Hassan Mohammed S.A. Ligand binding domain of estrogen receptor alpha preserve a conserved structural architecture similar to bacterial taxis receptors. Front. Ecol. Evol. 2021 9 681913 10.3389/fevo.2021.681913
    [Google Scholar]
  24. Barrowcliff M. Carr F.H. Organic Medicinal Chemicals (synthetic and Natural). Baillière, Tindall and Cox 1921 243 244
    [Google Scholar]
  25. Kuday H. Sonmez F. Bilen C. Yavuz E. Gençer N. Kucukislamoglu M. Synthesis and in vitro inhibition effect of new pyrido[2,3-d]pyrimidine derivatives on erythrocyte carbonic anhydrase I and II. BioMed Res. Int. 2014 2014 1 1 8 10.1155/2014/594879 25165709
    [Google Scholar]
  26. Kumar A. Kumar Singh A. Singh H. Narasimhan B. Kumar P. Synthesis and anticancer evaluation of benzylated indole based Alkyl‐Substituted Pyrido[2,3‐ d]pyrimidines targeting thymidylate synthase. ChemistrySelect 2024 9 15 e202400249 10.1002/slct.202400249
    [Google Scholar]
  27. Agrawal S. Kumar A. Singh A.K. Singh H. Kumar P. Antioxidant and antibacterial evaluation of leaf extracts of Prunus cerasoides Buch.-Ham. ex D.Don; An In vitro and in silico study. Pharmacol. Res. -. Nat. Prod. 2024 3 100037 10.1016/j.prenap.2024.100037
    [Google Scholar]
  28. Masadeh M.M. Mhaidat N.M. Alzoubi K.H. Al-Azzam S.I. Shaweesh A.I. Ciprofloxacin-induced antibacterial activity is reversed by vitamin E and vitamin C. Curr. Microbiol. 2012 64 5 457 462 10.1007/s00284‑012‑0094‑7 22349957
    [Google Scholar]
  29. Kumar R. Kumar A. Kumar A. Singh A.K. Kumar P. Design, synthesis and molecular docking studies of pyrazoline derivatives as PI3K inhibitors. Comb. Chem. High Throughput Screen. 2024 27 2 256 272 10.2174/1386207326666230504163312 37143279
    [Google Scholar]
  30. Singh A.K. Novak J. Kumar A. Singh H. Thareja S. Pathak P. Grishina M. Verma A. Yadav J.P. Khalilullah H. Pathania V. Nandanwar H. Jaremko M. Emwas A.H. Kumar P. Gaussian field-based 3D-QSAR and molecular simulation studies to design potent pyrimidine–sulfonamide hybrids as selective BRAF V600E inhibitors. RSC Advances 2022 12 46 30181 30200 10.1039/D2RA05751D 36329938
    [Google Scholar]
  31. Kumar P. Kumar A. Singh A.K. Thareja S. A review of pyridine and pyrimidine derivatives as anti-MRSA agents. Antiinfect. Agents 2023 21 2 e050722206610 10.2174/2211352520666220705085733
    [Google Scholar]
  32. Guleria M. Kumar A. Singh A.K. Kumar P. Synthesis and in silico studies of Quinazolinones as PARP-1 inhibitors. Comb. Chem. High Throughput Screen. 2024 27 9 1329 1343 10.2174/1386207326666230905153443 37691193
    [Google Scholar]
  33. Kumar A. Novak J. Singh A.K. Singh H. Thareja S. Pathak P. Grishina M. Verma A. Kumar P. Virtual screening, structure based pharmacophore mapping, and molecular simulation studies of pyrido[2,3-d]pyrimidines as selective thymidylate synthase inhibitors. J. Biomol. Struct. Dyn. 2023 41 23 14197 14211 10.1080/07391102.2023.2208205 37154748
    [Google Scholar]
  34. Lakshmi Narayana B. Raghu Ram Rao A. Shanthan Rao P. Synthesis of new 2-substituted pyrido[2,3-d]pyrimidin-4(1H)-ones and their antibacterial activity. Eur. J. Med. Chem. 2009 44 3 1369 1376 10.1016/j.ejmech.2008.05.025 18603332
    [Google Scholar]
  35. Al-Mutairi A.A. Hafez H.N. El-Gazzar A.R.B.A. Mohamed M.Y.A. Synthesis and antimicrobial, anticancer and anti-oxidant activities of novel 2, 3-dihydropyrido [2, 3-d] pyrimidine-4-one and pyrrolo [2, 1-b][1, 3] benzothiazole derivatives via microwave-assisted synthesis. Molecules 2022 27 4 1246 10.3390/molecules27041246 35209034
    [Google Scholar]
  36. Sivanandhan M. Parasuraman A. In-silico molecular docking and ADMET predictions of Pyrido[2,3-d]pyrimidine-2,4(1H,3H)-Dione Analogues as promising antimicrobial, antioxidant and anticancer agents. Polycycl. Aromat. Compd. 2024 44 2 1273 1290 10.1080/10406638.2023.2191973
    [Google Scholar]
  37. Alshareef F. Alamshany Z.M. Al-Harbi S.A. Allehyani E.S. Ibrahim M.A. Novel annulated chromeno [3′, 2′: 5, 6] pyrido [2, 3-d][1, 3, 4] thiadiazolo [3, 2-a] pyrimidines and chromeno [3”, 2”: 5′, 6′] pyrido [2′, 3′: 4, 5] pyrimido [2, 1-b][1, 3, 4] thiadiazines: Synthetic approaches and antimicrobial efficiency. Synth. Commun. 2024 54 10 1 10 10.1080/00397911.2024.2346565
    [Google Scholar]
  38. Elsaedany S.K. AbdEllatif zein, M.; AbdElRehim, E.M.; Keshk, R.M. Synthesis and biological activity studies of novel Pyrido[2,3-d]pyrimidines and Pyrido[2,3-d]triazines. Russ. J. Bioorganic Chem. 2021 47 2 552 560 10.1134/S1068162021020114
    [Google Scholar]
  39. Naresh Kumar R. Jitender Dev G. Ravikumar N. Krishna Swaroop D. Debanjan B. Bharath G. Narsaiah B. Nishant Jain S. Gangagni Rao A. Synthesis of novel triazole/isoxazole functionalized 7-(trifluoromethyl)pyrido[2,3- d]pyrimidine derivatives as promising anticancer and antibacterial agents. Bioorg. Med. Chem. Lett. 2016 26 12 2927 2930 10.1016/j.bmcl.2016.04.038 27130357
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266355090250407105802
Loading
/content/journals/ctmc/10.2174/0115680266355090250407105802
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: molecular docking ; ADME ; antibacterial ; pyrido[2,3-d]pyrimidine ; Synthesis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test