Skip to content
2000
image of Highlighting the Therapeutic Potential of an Underexplored Target: Human Dihydroorotate Dehydrogenase in Cancer, Rheumatoid Arthritis and Sclerosis

Abstract

Introduction

The dihydroorotate dehydrogenase (DHODH) enzyme plays a crucial role in the de novo pyrimidine biosynthesis pathway, catalysing the conversion of dihydroorotate to orotate in the cells. This pathway is important for the synthesis of nucleic acids and vital molecules essential for homeostasis, cellular functioning, and survival. So, targeting this enzyme can be an effective approach for the treatment of cancer, arthritis, malaria, viral or microbial infections, and other autoimmune diseases.

Methods

In this review, we have highlighted the therapeutic implications of DHODH inhibition in cancer, rheumatoid arthritis and multiple sclerosis through an extensive literature survey from various scientific databases like PubMed, Google Scholar, Science Direct, Embase, clinical trials.gov.in, Google Patents, .

Results

We have tried to identify the pharmacophores from synthetic, phytochemical, and microbial origins, effective as DHODH inhibitors. The effect of structural changes on activity has been summarised, providing insights into the efficacy and mechanisms of these inhibitors at the molecular level. Furthermore, this review also presents a comprehensive analysis of clinical trials and patents related to DHODH inhibition to extract the valuable information to be used for clinical drug development in cancer, rheumatoid arthritis, and multiple sclerosis.

Conclusion

By integrating data from synthetic, plant, and microbial sources, along with clinical trial and patent outcomes, this review highlights the diverse role of DHODH. Its inhibition offers a more targeted approach to reduce the proliferation of rapidly dividing cells while sparing normal cells, modulating specific immune responses. But, limiting understanding of resistance mechanisms and potential for toxicity are the current challenges. It offers a roadmap for future research and drug discovery endeavours focused on harnessing the beneficial potential of DHODH inhibition, including the development of novel inhibitors with improved selectivity and pharmacokinetics across a wide array of pathological conditions.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266359269250521095346
2025-05-23
2025-11-04
Loading full text...

Full text loading...

References

  1. Garavito M.F. Narváez-Ortiz H.Y. Zimmermann B.H. Pyrimidine metabolism: dynamic and versatile pathways in pathogens and cellular development. J. Genet. Genomics 2015 42 5 195 205 10.1016/j.jgg.2015.04.004 26059768
    [Google Scholar]
  2. Vyas V.K. Ghate M. Recent developments in the medicinal chemistry and therapeutic potential of dihydroorotate dehydrogenase (DHODH) inhibitors. Mini Rev. Med. Chem. 2011 11 12 1039 1055 10.2174/138955711797247707 21861807
    [Google Scholar]
  3. Levine R.L. Hoogenraad N.J. Kretchmer N. A review: Biological and clinical aspects of pyrimidine metabolism. Pediatr. Res. 1974 8 7 724 734 10.1203/00006450‑197407000‑00008 4601347
    [Google Scholar]
  4. Weber G. Reciprocal regulation: Recognition of pattern of gene expression in cancer cells. Adv. Enzyme Regul. 2002 42 83 100 10.1016/S0065‑2571(01)00042‑5 12123708
    [Google Scholar]
  5. Evans D.R. Guy H.I. Mammalian pyrimidine biosynthesis: Fresh insights into an ancient pathway. J. Biol. Chem. 2004 279 32 33035 33038 10.1074/jbc.R400007200 15096496
    [Google Scholar]
  6. Huang M. Graves L.M. De novo synthesis of pyrimidine nucleotides; emerging interfaces with signal transduction pathways. Cell. Mol. Life Sci. 2003 60 2 321 336 10.1007/s000180300027 12678497
    [Google Scholar]
  7. Fairbanks L.D. Bofill M. Ruckemann K. Simmonds H.A. Importance of ribonucleotide availability to proliferating T-lymphocytes from healthy humans. Disproportionate expansion of pyrimidine pools and contrasting effects of de novo synthesis inhibitors. J. Biol. Chem. 1995 270 50 29682 29689 10.1074/jbc.270.50.29682 8530356
    [Google Scholar]
  8. Engelking L. Textbook of veterinary physiological chemistry, updated. Academic Press 2010
    [Google Scholar]
  9. Fang J. Uchiumi T. Yagi M. Matsumoto S. Amamoto R. Takazaki S. Yamaza H. Nonaka K. Kang D. Dihydro-orotate dehydrogenase is physically associated with the respiratory complex and its loss leads to mitochondrial dysfunction. Biosci. Rep. 2013 33 2 e00021 10.1042/BSR20120097 23216091
    [Google Scholar]
  10. Löffler M. Fairbanks L. Zameitat E. Marinaki A. Simmonds H. Pyrimidine pathways in health and disease. Trends Mol. Med. 2005 11 9 430 437 10.1016/j.molmed.2005.07.003 16098809
    [Google Scholar]
  11. Rawls J. Knecht W. Diekert K. Lill R. Löffler M. Requirements for the mitochondrial import and localization of dihydroorotate dehydrogenase. Eur. J. Biochem. 2000 267 7 2079 2087 10.1046/j.1432‑1327.2000.01213.x 10727948
    [Google Scholar]
  12. Lane A.N. Fan T.W.M. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res. 2015 43 4 2466 2485 10.1093/nar/gkv047 25628363
    [Google Scholar]
  13. Wang X. Yang K. Wu Q. Kim L.J.Y. Morton A.R. Gimple R.C. Prager B.C. Shi Y. Zhou W. Bhargava S. Zhu Z. Jiang L. Tao W. Qiu Z. Zhao L. Zhang G. Li X. Agnihotri S. Mischel P.S. Mack S.C. Bao S. Rich J.N. Targeting pyrimidine synthesis accentuates molecular therapy response in glioblastoma stem cells. Sci. Transl. Med. 2019 11 504 eaau4972 10.1126/scitranslmed.aau4972 31391321
    [Google Scholar]
  14. Richards N.G. Humkey R.N. Li K. Meyer M.E. de Sintjago T.C.C. Tunnels and intermediates in the glutamine-dependent amidotransferases. Comprehensive Natural Products II Elsevier 2010 10.1016/B978‑008045382‑8.00640‑7
    [Google Scholar]
  15. Barnes T. Parry P. Hart I. Jones C. Minet M. Patterson D. Regional mapping of the gene encoding dihydroorotate dehydrogenase, an enzyme involved in UMP synthesis, electron transport, and superoxide generation, to human chromosome region 16q22. Somat. Cell Mol. Genet. 1993 19 4 405 411 10.1007/BF01232751 8211381
    [Google Scholar]
  16. Zhou Y. Tao L. Zhou X. Zuo Z. Gong J. Liu X. Zhou Y. Liu C. Sang N. Liu H. Zou J. Gou K. Yang X. Zhao Y. DHODH and cancer: Promising prospects to be explored. Cancer Metab. 2021 9 1 22 10.1186/s40170‑021‑00250‑z 33971967
    [Google Scholar]
  17. Reis R.A.G. Calil F.A. Feliciano P.R. Pinheiro M.P. Nonato M.C. The dihydroorotate dehydrogenases: Past and present. Arch. Biochem. Biophys. 2017 632 175 191 10.1016/j.abb.2017.06.019 28666740
    [Google Scholar]
  18. Inaoka D.K. Sakamoto K. Shimizu H. Shiba T. Kurisu G. Nara T. Aoki T. Kita K. Harada S. Structures of Trypanosoma cruzi dihydroorotate dehydrogenase complexed with substrates and products: Atomic resolution insights into mechanisms of dihydroorotate oxidation and fumarate reduction. Biochemistry 2008 47 41 10881 10891 10.1021/bi800413r 18808149
    [Google Scholar]
  19. Kubota T. Tani O. Yamaguchi T. Namatame I. Sakashita H. Furukawa K. Yamasaki K. Crystal structures of FMN ‐bound and FMN ‐free forms of dihydroorotate dehydrogenase from Trypanosoma brucei. FEBS Open Bio 2018 8 4 680 691 10.1002/2211‑5463.12403 29632820
    [Google Scholar]
  20. Rowland P. Nørager S. Jensen K.F. Larsen S. Structure of dihydroorotate dehydrogenase B: electron transfer between two flavin groups bridged by an iron-sulphur cluster. Structure 2000 8 12 1227 1238 10.1016/S0969‑2126(00)00530‑X 11188687
    [Google Scholar]
  21. Brown J.M. Giaccia A.J. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 1998 58 7 1408 1416 9537241
    [Google Scholar]
  22. Miyazaki Y. Inaoka D.K. Shiba T. Saimoto H. Sakura T. Amalia E. Kido Y. Sakai C. Nakamura M. Moore A.L. Harada S. Kita K. Selective cytotoxicity of dihydroorotate dehydrogenase inhibitors to human cancer cells under hypoxia and nutrient-deprived conditions. Front. Pharmacol. 2018 9 997 10.3389/fphar.2018.00997 30233375
    [Google Scholar]
  23. Enríquez J.A. Supramolecular organization of respiratory complexes. Annu. Rev. Physiol. 2016 78 1 533 561 10.1146/annurev‑physiol‑021115‑105031 26734886
    [Google Scholar]
  24. Popova G. Ladds M.J.G.W. Johansson L. Saleh A. Larsson J. Sandberg L. Sahlberg S.H. Qian W. Gullberg H. Garg N. Gustavsson A.L. Haraldsson M. Lane D. Yngve U. Lain S. Optimization of tetrahydroindazoles as inhibitors of human dihydroorotate dehydrogenase and evaluation of their activity and in vitro metabolic stability. J. Med. Chem. 2020 63 8 3915 3934 10.1021/acs.jmedchem.9b01658 32212728
    [Google Scholar]
  25. Boukalova S. Hubackova S. Milosevic M. Ezrova Z. Neuzil J. Rohlena J. Dihydroorotate dehydrogenase in oxidative phosphorylation and cancer. Biochim. Biophys. Acta Mol. Basis Dis. 2020 1866 6 165759
    [Google Scholar]
  26. Zhu S. Yan X. Xiang Z. Ding H.F. Cui H. Leflunomide reduces proliferation and induces apoptosis in neuroblastoma cells in vitro and in vivo. PLoS One 2013 8 8 e71555 10.1371/journal.pone.0071555 23977077
    [Google Scholar]
  27. Chen Y. Huang Q. Zhou H. Wang Y. Hu X. Li T. Inhibition of canonical WNT/β-catenin signaling is involved in leflunomide (LEF)-mediated cytotoxic effects on renal carcinoma cells. Oncotarget 2016 7 31 50401 50416 10.18632/oncotarget.10409 27391060
    [Google Scholar]
  28. Yin S. Kabashima T. Zhu Q. Shibata T. Kai M. Fluorescence assay of dihydroorotate dehydrogenase that may become a cancer biomarker. Sci. Rep. 2017 7 1 40670 10.1038/srep40670 28084471
    [Google Scholar]
  29. Yang X. Li C. Gou K. Liu X. Zhou Y. Zou J. Chen Q. Luo Y. Zhao Y. A novel and potent dihydroorotate dehydrogenase inhibitor suppresses the proliferation of colorectal cancer by inducing mitochondrial dysfunction and DNA damage. MedComm Oncol. 2022 1 1 e6 10.1002/mog2.6
    [Google Scholar]
  30. Smeitink J. van den Heuvel L. DiMauro S. The genetics and pathology of oxidative phosphorylation. Nat. Rev. Genet. 2001 2 5 342 352 10.1038/35072063 11331900
    [Google Scholar]
  31. Bajzikova M. Kovarova J. Coelho A.R. Boukalova S. Oh S. Rohlenova K. Svec D. Hubackova S. Endaya B. Judasova K. Reactivation of dihydroorotate dehydrogenase-driven pyrimidine biosynthesis restores tumor growth of respiration-deficient cancer cells. Cell Metab. 2019 29 2 399 416 10.1016/j.cmet.2018.10.014
    [Google Scholar]
  32. Mao C. Liu X. Zhang Y. Lei G. Yan Y. Lee H. Koppula P. Wu S. Zhuang L. Fang B. Poyurovsky M.V. Olszewski K. Gan B. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature 2021 593 7860 586 590 10.1038/s41586‑021‑03539‑7 33981038
    [Google Scholar]
  33. Shahhiran M.A.A. Abdul Kadir M.F. Nor Rashid N. Abdul-Rahman P.S. Othman S. Mechanisms of S-phase arrest and mitochondrial dysfunction in complex III by DHODH inhibitors in tumorigenic TNBC cells. Histochem. Cell Biol. 2025 163 1 3 10.1007/s00418‑024‑02339‑0 39557682
    [Google Scholar]
  34. Cheng L. Wang H. Wang Z. Huang H. Zhuo D. Lin J. Leflunomide inhibits proliferation and induces apoptosis via suppressing autophagy and PI3K/Akt signaling pathway in human bladder cancer cells. Drug Des. Devel. Ther. 2020 14 1897 1908 10.2147/DDDT.S252626 32546957
    [Google Scholar]
  35. Kadir M.F.A. Othman S. Nellore K. Dihydroorotate dehydrogenase inhibitors promote cell cycle arrest and disrupt mitochondria bioenergetics in Ramos cells. Curr. Pharm. Biotechnol. 2020 21 15 1654 1665 10.2174/1389201021666200611113734 32525770
    [Google Scholar]
  36. Dorasamy M.S. Choudhary B. Nellore K. Subramanya H. Wong P.F. Dihydroorotate dehydrogenase inhibitors target c-Myc and arrest melanoma, myeloma and lymphoma cells at S-phase. J. Cancer 2017 8 15 3086 3098 10.7150/jca.14835 28928900
    [Google Scholar]
  37. Kamli H. Zaman G.S. Shaikh A. Mobarki A.A. Rajagopalan P. A combined chemical, computational, and in vitro approach identifies SBL-105 as novel DHODH inhibitor in acute myeloid leukemia cells. Oncol. Res. 2021 28 9 899 911 10.3727/096504021X16281573507558 34353411
    [Google Scholar]
  38. Wang F. Min J. DHODH tangoing with GPX4 on the ferroptotic stage. Signal Transduct. Target. Ther. 2021 6 1 244 10.1038/s41392‑021‑00656‑7 34145214
    [Google Scholar]
  39. Lolli M.L. Sainas S. Pippione A.C. Giorgis M. Boschi D. Dosio F. Use of human dihydroorotate dehydrogenase (hDHODH) inhibitors in autoimmune diseases and new perspectives in cancer therapy. Rec. Patents Anticancer Drug Discov. 2018 13 1 86 105 29119937
    [Google Scholar]
  40. Vyas V.K. Variya B. Ghate M.D. Design, synthesis and pharmacological evaluation of novel substituted quinoline-2-carboxamide derivatives as human dihydroorotate dehydrogenase (hDHODH) inhibitors and anticancer agents. Eur. J. Med. Chem. 2014 82 385 393 10.1016/j.ejmech.2014.05.064 24929289
    [Google Scholar]
  41. Leban J. Vitt D. Human dihydroorotate dehydrogenase inhibitors, a novel approach for the treatment of autoimmune and inflammatory diseases. Arzneimittelforschung 2011 61 1 66 72 10.1055/s‑0031‑1296169 21355448
    [Google Scholar]
  42. Singh A. Maqbool M. Mobashir M. Hoda N. Dihydroorotate dehydrogenase: A drug target for the development of antimalarials. Eur. J. Med. Chem. 2017 125 640 651 10.1016/j.ejmech.2016.09.085 27721149
    [Google Scholar]
  43. Herrmann M.L. Schleyerbach R. Kirschbaum B.J. Leflunomide: An immunomodulatory drug for the treatment of rheumatoid arthritis and other autoimmune diseases. Immunopharmacology 2000 47 2-3 273 289 10.1016/S0162‑3109(00)00191‑0 10878294
    [Google Scholar]
  44. Christopherson R.I. Lyons S.D. Wilson P.K. Inhibitors of de novo nucleotide biosynthesis as drugs. Acc. Chem. Res. 2002 35 11 961 971 10.1021/ar0000509 12437321
    [Google Scholar]
  45. Knecht W. Löffler M. Species-related inhibition of human and rat dihydroorotate dehydrogenase by immunosuppressive isoxazol and cinchoninic acid derivatives. Biochem. Pharmacol. 1998 56 9 1259 1264 10.1016/S0006‑2952(98)00145‑2 9802339
    [Google Scholar]
  46. Fox R.I. Herrmann M.L. Frangou C.G. Wahl G.M. Morris R.E. Strand V. Kirschbaum B.J. Mechanism of action for leflunomide in rheumatoid arthritis. Clin. Immunol. 1999 93 3 198 208 10.1006/clim.1999.4777 10600330
    [Google Scholar]
  47. Sprangers B. Pirenne J. Mathieu C. Waer M. Other forms of immunosuppression. Kidney Transplantation - Principles and Practice Elsevier 2019
    [Google Scholar]
  48. Munier-Lehmann H. Vidalain P.O. Tangy F. Janin Y.L. On dihydroorotate dehydrogenases and their inhibitors and uses. J. Med. Chem. 2013 56 8 3148 3167 10.1021/jm301848w 23452331
    [Google Scholar]
  49. Cancer. 2023 Available from: (accessed on 17-3-2024).https://www.who.int/news-room/fact-sheets/detail/cancer
  50. Vélez J. Hail N. Jr Konopleva M. Zeng Z. Kojima K. Samudio I. Andreeff M. Mitochondrial uncoupling and the reprograming of intermediary metabolism in leukemia cells. Front. Oncol. 2013 3 67 10.3389/fonc.2013.00067 23565503
    [Google Scholar]
  51. Hey-Mogensen M. Goncalves R.L.S. Orr A.L. Brand M.D. Production of superoxide/H2O2 by dihydroorotate dehydrogenase in rat skeletal muscle mitochondria. Free Radic. Biol. Med. 2014 72 149 155 10.1016/j.freeradbiomed.2014.04.007 24746616
    [Google Scholar]
  52. Mohamad Fairus A.K. Choudhary B. Hosahalli S. Kavitha N. Shatrah O. Dihydroorotate dehydrogenase (DHODH) inhibitors affect ATP depletion, endogenous ROS and mediate S-phase arrest in breast cancer cells. Biochimie 2017 135 154 163 10.1016/j.biochi.2017.02.003 28196676
    [Google Scholar]
  53. Diebold L. Chandel N.S. Mitochondrial ROS regulation of proliferating cells. Free Radic. Biol. Med. 2016 100 86 93 10.1016/j.freeradbiomed.2016.04.198 27154978
    [Google Scholar]
  54. Idelchik M.P.S. Begley U. Begley T.J. Melendez J.A. Mitochondrial ROS control of cancer. Semin Cancer Biol. 47 57 66 10.1016/j.semcancer.2017.04.005
    [Google Scholar]
  55. Hail N. Jr Chen P. Kepa J.J. Bushman L.R. Shearn C. Dihydroorotate dehydrogenase is required for N-(4-hydroxyphenyl)retinamide-induced reactive oxygen species production and apoptosis. Free Radic. Biol. Med. 2010 49 1 109 116 10.1016/j.freeradbiomed.2010.04.006 20399851
    [Google Scholar]
  56. Petrović M.M. Roschger C. Chaudary S. Zierer A. Mladenović M. Jakovljević K. Marković V. Botta B. Joksović M.D. Potent human dihydroorotate dehydrogenase inhibitory activity of new quinoline-4-carboxylic acids derived from phenolic aldehydes: Synthesis, cytotoxicity, lipophilicity and molecular docking studies. Bioorg. Chem. 2020 105 104373 10.1016/j.bioorg.2020.104373 33074120
    [Google Scholar]
  57. Petrović M.M. Roschger C. Chaudary S. Zierer A. Mladenović M. Marković V. Trifunović S. Joksović M.D. Low cytotoxic quinoline-4-carboxylic acids derived from vanillin precursors as potential human dihydroorotate dehydrogenase inhibitors. Bioorg. Med. Chem. Lett. 2021 46 128194 10.1016/j.bmcl.2021.128194 34116160
    [Google Scholar]
  58. Vyas V.K. Qureshi G. Oza D. Patel H. Parmar K. Patel P. Ghate M.D. Synthesis of 2-,4,-6-, and/or 7-substituted quinoline derivatives as human dihydroorotate dehydrogenase (hDHODH) inhibitors and anticancer agents: 3D QSAR-assisted design. Bioorg. Med. Chem. Lett. 2019 29 7 917 922 10.1016/j.bmcl.2019.01.038 30738663
    [Google Scholar]
  59. Madak J.T. Cuthbertson C.R. Miyata Y. Tamura S. Petrunak E.M. Stuckey J.A. Han Y. He M. Sun D. Showalter H.D. Neamati N. Design, synthesis, and biological evaluation of 4-quinoline carboxylic acids as inhibitors of dihydroorotate dehydrogenase. J. Med. Chem. 2018 61 12 5162 5186 10.1021/acs.jmedchem.7b01862 29727569
    [Google Scholar]
  60. Madak J.T. Cuthbertson C.R. Chen W. Showalter H.D. Neamati N. Design, synthesis, and characterization of brequinar conjugates as probes to study DHODH inhibition. Chemistry 2017 23 56 13875 13878 10.1002/chem.201702999 28833638
    [Google Scholar]
  61. Lu K. Cai L. Zhang X. Wu G. Xu C. Zhao Y. Gong P. Design, synthesis, and biological evaluation of novel substituted benzamide derivatives bearing a 1,2,3-triazole moiety as potent human dihydroorotate dehydrogenase inhibitors. Bioorg. Chem. 2018 76 528 537 10.1016/j.bioorg.2017.12.025 29316525
    [Google Scholar]
  62. Li J. Wu D. Xu X. huang J. Shao X. Li Z. Design, synthesis and inhibitory activity against human dihydroorotate dehydrogenase ( h DHODH) of 1,3-benzoazole derivatives bearing amide units. Bioorg. Med. Chem. Lett. 2016 26 13 3064 3066 10.1016/j.bmcl.2016.05.016 27220723
    [Google Scholar]
  63. Sitwala N.D. Vyas V.K. Variya B.C. Patel S.S. Mehta C.C. Rana D.N. Ghate M.D. Liquid phase combinatorial synthesis of 1,2,5-trisubstituted benzimidazole derivatives as human DHODH inhibitors. Bioorg. Chem. 2017 75 118 126 10.1016/j.bioorg.2017.08.016 28941392
    [Google Scholar]
  64. Sabnis R.W. Biaryl compounds as dihydroorotate dehydrogenase inhibitors for treating Acute Myelogenous Leukemia (AML). ACS Med. Chem. Lett. 2022 13 2 158 159 10.1021/acsmedchemlett.2c00017 35178168
    [Google Scholar]
  65. Sainas S. Pippione A.C. Giorgis M. Lupino E. Goyal P. Ramondetti C. Buccinnà B. Piccinini M. Braga R.C. Andrade C.H. Andersson M. Moritzer A.C. Friemann R. Mensa S. Al-Karadaghi S. Boschi D. Lolli M.L. Design, synthesis, biological evaluation and X-ray structural studies of potent human dihydroorotate dehydrogenase inhibitors based on hydroxylated azole scaffolds. Eur. J. Med. Chem. 2017 129 287 302 10.1016/j.ejmech.2017.02.017 28235702
    [Google Scholar]
  66. Patagar D. Kusanur R. Sitwala N.D. Ghate M.D. Saravanakumar S. Nembenna S. Gediya P.A. Synthesis of novel 4‐substituted coumarins, docking studies, and DHODH inhibitory activity. J. Heterocycl. Chem. 2019 56 10 2761 2771 10.1002/jhet.3644
    [Google Scholar]
  67. Li C. Yang X. Luo Y. Liu H. Zhong X. Zhou X. Zeng T. Tao L. Zhou Y. Gou K. Yang X. Liu X. Chen Q. Zhao Y. Luo Y. Design, synthesis, and biological evaluation of a novel series of teriflunomide derivatives as potent human dihydroorotate dehydrogenase inhibitors for malignancy treatment. J. Med. Chem. 2021 64 24 18175 18192 10.1021/acs.jmedchem.1c01711 34905371
    [Google Scholar]
  68. Zeng F. Qi T. Li C. Li T. Li H. Li S. Zhu L. Xu X. Synthesis, structure–activity relationship and binding mode analysis of 4-thiazolidinone derivatives as novel inhibitors of human dihydroorotate dehydrogenase. MedChemComm 2017 8 6 1297 1302 10.1039/C7MD00081B 30108840
    [Google Scholar]
  69. Kim T.H. Na H.S. Löffler M. Synthesis of β-hydroxy-propenamide derivatives and the inhibition of human dihydroorotate dehydrogenase. Arch. Pharm. Res. 2003 26 3 197 201 10.1007/BF02976829 12723931
    [Google Scholar]
  70. Song W. Li S. Tong Y. Wang J. Quan L. Chen Z. Zhao Z. Xu Y. Zhu L. Qian X. Li H. Structure-based design of potent human dihydroorotate dehydrogenase inhibitors as anticancer agents. MedChemComm 2016 7 7 1441 1448 10.1039/C6MD00179C
    [Google Scholar]
  71. Lolli M.L. Giorgis M. Tosco P. Foti A. Fruttero R. Gasco A. New inhibitors of dihydroorotate dehydrogenase (DHODH) based on the 4-hydroxy-1,2,5-oxadiazol-3-yl (hydroxyfurazanyl) scaffold. Eur. J. Med. Chem. 2012 49 102 109 10.1016/j.ejmech.2011.12.038 22245049
    [Google Scholar]
  72. Bu F.Z. Tan X.J. Xing D.X. Wang C. Design, synthesis, crystal structure and in vitro cytotoxic properties of a novel Schiff base derived from indole and biphenyl. Acta Crystallogr. C Struct. Chem. 2017 73 7 546 555 10.1107/S2053229617009044 28677607
    [Google Scholar]
  73. Zuo Z. Liu X. Qian X. Zeng T. Sang N. Liu H. Zhou Y. Tao L. Zhou X. Su N. Yu Y. Chen Q. Luo Y. Zhao Y. Bifunctional naphtho [2, 3-d][1, 2, 3] triazole-4, 9-dione compounds exhibit antitumor effects in vitro and in vivo by inhibiting dihydroorotate dehydrogenase and inducing reactive oxygen species production. J. Med. Chem. 2020 63 14 7633 7652 10.1021/acs.jmedchem.0c00512 32496056
    [Google Scholar]
  74. Sainas S. Pippione A.C. Lupino E. Giorgis M. Circosta P. Gaidano V. Goyal P. Bonanni D. Rolando B. Cignetti A. Ducime A. Andersson M. Järvå M. Friemann R. Piccinini M. Ramondetti C. Buccinnà B. Al-Karadaghi S. Boschi D. Saglio G. Lolli M.L. Targeting myeloid differentiation using potent 2-hydroxypyrazolo [1, 5-a] pyridine scaffold-based human dihydroorotate dehydrogenase inhibitors. J. Med. Chem. 2018 61 14 6034 6055 10.1021/acs.jmedchem.8b00373 29939742
    [Google Scholar]
  75. Luo X. Cai G. Guo Y. Gao C. Huang W. Zhang Z. Lu H. Liu K. Chen J. Xiong X. Lei J. Zhou X. Wang J. Liu Y. Exploring marine-derived ascochlorins as novel human dihydroorotate dehydrogenase inhibitors for treatment of triple-negative breast cancer. J. Med. Chem. 2021 64 18 13918 13932 10.1021/acs.jmedchem.1c01402 34516133
    [Google Scholar]
  76. Gao J.B. Zhang X.J. Zhang R.H. Zhu L.L. Pu D.B. Li X.L. Li H.L. Xu M. Xiao W.L. In vitro human dihydroorotate dehydrogenase inhibitory, anti-inflammatory and cytotoxic activities of alkaloids from the seeds of Nigella glandulifera. Planta Med. 2018 84 14 1013 1021 10.1055/a‑0598‑4866 29621808
    [Google Scholar]
  77. Amalia E. Diantini A. Endang Prabandari E. Waluyo D. Subarnas A. Caffeic acid phenethyl ester as a DHODH inhibitor and its synergistic anticancer properties in combination with 5-fluorouracil in a breast cancer cell Line. J. Exp. Pharmacol. 2022 14 243 253 10.2147/JEP.S365159 35910085
    [Google Scholar]
  78. Shen W. Ren X. Zhu J. Xu Y. Lin J. Li Y. Zhao F. Zheng H. Li R. Cui X. Zhang X. Lu X. Zheng Z. Discovery of a new structural class of competitive hDHODH inhibitors with in vitro and in vivo anti-inflammatory, immunosuppressive effects. Eur. J. Pharmacol. 2016 791 205 212 10.1016/j.ejphar.2016.09.004 27597161
    [Google Scholar]
  79. Nakahara M. Watanabe S. Sato M. Okumura H. Kawatani M. Osada H. Hara K. Hashimoto H. Watanabe K. Structural and functional analyses of inhibition of human dihydroorotate dehydrogenase by antiviral furocoumavirin. Biochemistry 2024 63 10 1241 1245 10.1021/acs.biochem.4c00120 38724483
    [Google Scholar]
  80. Liu Z. Hu Q. Wang W. Lu S. Wu D. Ze S. He J. Huang Y. Chen W. Xu Y. Lu W. Huang J. Natural product piperine alleviates experimental allergic encephalomyelitis in mice by targeting dihydroorotate dehydrogenase. Biochem. Pharmacol. 2020 177 114000 10.1016/j.bcp.2020.114000 32353424
    [Google Scholar]
  81. Lu K. Zhao Y. Wu G. Hu H. Wang M. Gong G. Jiang Y. Discovery of a novel series of hDHODH inhibitors with anti-pulmonary fibrotic activities. Bioorg. Chem. 2019 86 44 51 10.1016/j.bioorg.2019.01.011 30685643
    [Google Scholar]
  82. Zeng F. Li S. Yang G. Luo Y. Qi T. Liang Y. Yang T. Zhang L. Wang R. Zhu L. Li H. Xu X. Design, synthesis, molecular modeling, and biological evaluation of acrylamide derivatives as potent inhibitors of human dihydroorotate dehydrogenase for the treatment of rheumatoid arthritis. Acta Pharm. Sin. B 2021 11 3 795 809 10.1016/j.apsb.2020.10.008 33078092
    [Google Scholar]
  83. A study of brequinar in subjects with relapsed/​refractory acute myeloid leukemia. patent NCT03760666, 2023.
  84. A dose optimisation study of aslan003 in acute myeloid leukemia. patent NCT03451084, 2023.
  85. Vidofludimus calcium for Primary Sclerosing Cholangitis (PSC). patent NCT03722576, 2023.
  86. MRI Trial to exPlore the efficAcy and Safety of IMU-838 in Relapsing Remitting Multiple Sclerosis (EMPhASIS) (EMPhASIS). patent NCT03846219, 2023.
  87. Muehler A. Kohlhof H. Groeppel M. Vitt D. Safety, tolerability and pharmacokinetics of Vidofludimus calcium (IMU-838) after single and multiple ascending oral doses in healthy male subjects. Eur. J. Drug Metab. Pharmacokinet. 2020 45 5 557 573 10.1007/s13318‑020‑00623‑7 32361977
    [Google Scholar]
  88. Muehler A. Kohlhof H. Groeppel M. Vitt D. The selective oral immunomodulator Vidofludimus in patients with active rheumatoid arthritis: Safety results from the COMPONENT study. Drugs R D. 2019 19 4 351 366 10.1007/s40268‑019‑00286‑z 31621054
    [Google Scholar]
  89. Immunic, Inc. Reports positive top-line data from phase 2 EMPhasis trial of IMU-838 in patients with relapsing-remitting multiple sclerosis. Available from: (accessed on 17-3-2024).https://imux.com/immunic-inc-reports-positive-top-line-data-from-phase-2-emphasis-trial-of-imu-838-in-patients-with-relapsing-remitting-multiple-sclerosis/
  90. Marina N.G. Lalanza M.P.P. Almirall S.A. Combinations comprising methotrexate and dhodh inhibitors. U.S. Patent 13/145,628, 2011.
  91. Nellore K. Hosahalli S. Methods of use for trisubstituted benzotriazole derivatives as dihydroorotate oxygenase inhibitors. U.S. Patent 241,246, 2022.
  92. Kuduk S. Zhang X. Benzofuran and benzopyran dihydroorotate dehydrogenase inhibitors. Patent PCT/IB2021/054643, 2021.
  93. Cisar J. Keohane C. Kuduk S. Fluorinated quinoline and quinoxaline derivatives as dihydroorotate dehydrogenase (DHODH) inhibitors for the treatment of cancer, autoimmune and inflammatory diseases. U.S. Patent 17/773,098, 2023.
  94. Laria J.C.C.P. Sola M.E. Toribio M.E.L. Romero E.N. Almirall S.A. Amino nicotinic and isonicotinic acid derivatives as DHODH inhibitors. U.S. Patent 8,691,852, 2014.
  95. Thunuguntla S.S.R. Hosahalli S. Kunnam S.R. Trisubstituted benzotriazole derivatives as dihydroorotate oxygenase inhibitors. U.S. Patent 9,630,932, 2017.
  96. Marina N.G. Pelaez C.B. Combinations comprising dhodh inhibitors and cox inhibitors. Patent EP2011/005303, 2012.
    [Google Scholar]
  97. Majd N. Sumita K. Yoshino H. Chen D. Terakawa J. Daikoku T. Kofuji S. Curry R. Wise-Draper T.M. Warnick R.E. Guarnaschelli J. A review of the potential utility of mycophenolate mofetil as a cancer therapeutic. J. Cancer Res. 2014 1 423401
    [Google Scholar]
  98. Elgemeie G.H. Mohamed-Ezzat R.A. New Strategies Targeting Cancer metabolism: Anticancer Drugs, Synthetic Analogues and Antitumor Agents. Elsevier 2022
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266359269250521095346
Loading
/content/journals/ctmc/10.2174/0115680266359269250521095346
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: cancer ; arthritis ; dihydroorotate ; pyrimidine ; DHODH
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test