Skip to content
2000
image of Prescription FINO2 and Pirfenidone Supported in Reducing Fibrosis in Mouse Breast Tumor Tissue by Targeting SLC7A11 and HMOX1

Abstract

Background

Breast cancer has become the most commonly diagnosed cancer worldwide and represents a major burden to public health. Advances in understanding ferroptosis pathways and identifying new therapeutic targets raise hope for using ferroptosis modulators to treat untreatable diseases.

Methods

In this study, BALB/c mice were divided into several groups: model, Doxorubicin-treated, FINO2-treated, Pirfenidone-treated, and a combined Pirfenidone + FINO2 group. After treatment, we assessed iron content in cancer cells, fibrosis area, CD34 expression, and mRNA levels of solute carrier family 7 member 11() and heme oxygenase 1 ().

Results

Results showed that the average tumor size in the Pirfenidone + FINO2 group was significantly smaller than in the doxorubicin group. Treatments with FINO2, Pirfenidone, or their combination significantly increased iron content in cancer cells and reduced the fibrosis area. Co-treatment with FINO2 and Pirfenidone also led to notable decreases in CD34 expression and mRNA levels of and .

Conclusion

These findings suggest that FINO2 ferroptosis agonists, when combined with other anticancer agents like Pirfenidone, can enhance ferroptosis and reduce tumor fibrosis. Additionally, the overexpression of and in breast cancer model mice is associated with increased tumor growth and reduced metastasis, indicating that targeting these proteins with specific inhibitors may be a promising strategy for breast cancer treatment.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266353809250526084207
2025-05-29
2025-09-13
Loading full text...

Full text loading...

References

  1. Arnold M. Morgan E. Rumgay H. Mafra A. Singh D. Laversanne M. Vignat J. Gralow J.R. Cardoso F. Siesling S. Soerjomataram I. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 2022 66 15 23 10.1016/j.breast.2022.08.010 36084384
    [Google Scholar]
  2. Giaquinto A.N. Sung H. Newman L.A. Freedman R.A. Smith R.A. Star J. Jemal A. Siegel R.L. Breast cancer statistics 2024. CA Cancer J. Clin. 2024 74 6 477 495 10.3322/caac.21863 39352042
    [Google Scholar]
  3. Kashyap D Pal D Sharma R Garg VK Goel N Koundal D Global increase in breast cancer incidence: risk factors and preventive measures. Biomed Res Int 2022 2022 9605439 10.1155/2022/9605439
    [Google Scholar]
  4. Li Z. Chen L. Chen C. Zhou Y. Hu D. Yang J. Chen Y. Zhuo W. Mao M. Zhang X. Xu L. Wang L. Zhou J. Targeting ferroptosis in breast cancer. Biomark. Res. 2020 8 1 58 10.1186/s40364‑020‑00230‑3 33292585
    [Google Scholar]
  5. Sui S. Xu S. Pang D. Emerging role of ferroptosis in breast cancer: New dawn for overcoming tumor progression. Pharmacol. Ther. 2022 232 107992 10.1016/j.pharmthera.2021.107992 34606782
    [Google Scholar]
  6. Wu Z.H. Tang Y. Yu H. Li H.D. The role of ferroptosis in breast cancer patients: A comprehensive analysis. Cell Death Discov. 2021 7 1 93 10.1038/s41420‑021‑00473‑5 33947836
    [Google Scholar]
  7. Christowitz C. Davis T. Isaacs A. van Niekerk G. Hattingh S. Engelbrecht A.M. Mechanisms of doxorubicin-induced drug resistance and drug resistant tumour growth in a murine breast tumour model. BMC Cancer 2019 19 1 757 10.1186/s12885‑019‑5939‑z 31370818
    [Google Scholar]
  8. Zhou J. Tang J. Zhang C. Li G. Lin X. Liao S. ALKBH5 targets ACSL4 mRNA stability to modulate ferroptosis in hyperbilirubinemia-induced brain damage. Free Radic Biol Med. 2024 2022 271 10.1016/j.freeradbiomed.2024.05.014
    [Google Scholar]
  9. Yang Y. Lin Q. Zhu X. Shao X. Li S. Li J. Wu J. Jin H. Qi C. Jiang N. Zhang K. Wang Q. Gu L. Ni Z. Activation of lipophagy is required for RAB7 to regulate ferroptosis in sepsis-induced acute kidney injury. Free Radic. Biol. Med. 2024 218 120 131 10.1016/j.freeradbiomed.2024.04.213 38583680
    [Google Scholar]
  10. Chen J. Yang X. Li Q. Ma J. Li H. Wang L. Chen Z. Quan Z. Inhibiting DNA methyltransferase DNMT3B confers protection against ferroptosis in nucleus pulposus and ameliorates intervertebral disc degeneration via upregulating SLC40A1. Free Radic. Biol. Med. 2024 220 139 153 10.1016/j.freeradbiomed.2024.05.007 38705495
    [Google Scholar]
  11. Nath P. Alfarsi L.H. El-Ansari R. Masisi B.K. Erkan B. Fakroun A. Ellis I.O. Rakha E.A. Green A.R. The amino acid transporter SLC7A11 expression in breast cancer. Cancer Biol. Ther. 2024 25 1 2291855 10.1080/15384047.2023.2291855 38073087
    [Google Scholar]
  12. Gaschler M.M. Andia A.A. Liu H. Csuka J.M. Hurlocker B. Vaiana C.A. Heindel D.W. Zuckerman D.S. Bos P.H. Reznik E. Ye L.F. Tyurina Y.Y. Lin A.J. Shchepinov M.S. Chan A.Y. Peguero-Pereira E. Fomich M.A. Daniels J.D. Bekish A.V. Shmanai V.V. Kagan V.E. Mahal L.K. Woerpel K.A. Stockwell B.R. FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat. Chem. Biol. 2018 14 5 507 515 10.1038/s41589‑018‑0031‑6 29610484
    [Google Scholar]
  13. Du X Dong R Wu Y Ni B Physiological effects of ferroptosis on organ fibrosis. Oxid Med Cell Longev. 2022 2022 5295434 10.1155/2022/5295434
    [Google Scholar]
  14. Luo D. Zeng X. Zhang S. Li D. Cheng Z. Wang Y. Long J. Hu Z. Long S. Zhou J. Zhang S. Zeng Z. Pirfenidone suppressed triple‐negative breast cancer metastasis by inhibiting the activity of the TGF ‐β/ SMAD pathway. J. Cell. Mol. Med. 2023 27 3 456 469 10.1111/jcmm.17673 36651490
    [Google Scholar]
  15. Polydorou C. Mpekris F. Papageorgis P. Voutouri C. Stylianopoulos T. Pirfenidone normalizes the tumor microenvironment to improve chemotherapy. Oncotarget 2017 8 15 24506 24517 10.18632/oncotarget.15534 28445938
    [Google Scholar]
  16. Yang J. Zhou Y. Xie S. Wang J. Li Z. Chen L. Mao M. Chen C. Huang A. Chen Y. Zhang X. Khan N.U.H. Wang L. Zhou J. Metformin induces Ferroptosis by inhibiting UFMylation of SLC7A11 in breast cancer. J. Exp. Clin. Cancer Res. 2021 40 1 206 10.1186/s13046‑021‑02012‑7 34162423
    [Google Scholar]
  17. Rashidi M. Mahmoudian E. Mirzaei S. Mazloomi S.N. Bazi A. Azadeh H. Mozaffari M. Harmaline downregulates angiogenesis markers and suppresses the growth of 4T1 breast cancer cells in vivo and in vitro. Chem. Biol. Interact. 2022 365 110087 10.1016/j.cbi.2022.110087 35963316
    [Google Scholar]
  18. Lai L.H. Fu Q.H.. Liu Y. Jiang K. Guo Q.M. Piperine suppresses tumor growth and metastasis in vitro and in vivo in a 4T1 murine breast cancer model. Acta Pharmacol. Sin. 2012 33 523 30 2012 10.1038/aps.2011.209.
    [Google Scholar]
  19. Gao Z.G. Tian L. Hu J. Park I.S. Bae Y.H. Prevention of metastasis in a 4T1 murine breast cancer model by doxorubicin carried by folate conjugated pH sensitive polymeric micelles. J. Control. Release 2011 152 1 84 89 10.1016/j.jconrel.2011.01.021 21295088
    [Google Scholar]
  20. Pulaski B.A. Ostrand-Rosenberg S. Mouse 4T1 breast tumor model. Curr. Protoc. Immunol. 2000 39 1 20 22 10.1002/0471142735.im2002s39 18432775
    [Google Scholar]
  21. Shaker R.A. Abboud S.H. Assad H.C. Hadi N. Enoxaparin attenuates doxorubicin induced cardiotoxicity in rats via interfering with oxidative stress, inflammation and apoptosis. BMC Pharmacol. Toxicol. 2018 19 1 3 10.1186/s40360‑017‑0184‑z 29321061
    [Google Scholar]
  22. Orozco-Perez J. Aguirre-Jauregui O. Salazar-Montes A.M. Sobrevilla-Navarro A.A. Lucano-Landeros M.S. Armendáriz-Borunda J. Pirfenidone prevents rat esophageal stricture formation. J. Surg. Res. 2015 194 2 558 564 10.1016/j.jss.2014.11.009 25491173
    [Google Scholar]
  23. Rajaratinam H. Rasudin N.S. Safuan S. Abdullah N.A. Mokhtar N.F. Mohd Fuad W.E. Passage number of 4T1 cells influences the development of tumour and the progression of metastasis in 4T1 orthotopic mice. Malays. J. Med. Sci. 2022 29 3 30 42 10.21315/mjms2022.29.3.4 35846500
    [Google Scholar]
  24. Danesh H Ziamajidi N Mesbah-Namin SA Nafisi N Abbasalipourkabir R Association between oxidative stress parameters and hematological indices in breast cancer patients. Int J Breast Cancer. 2022 2022 1459410 10.1155/2022/1459410
    [Google Scholar]
  25. Liu S. Grigoryan M.M. Vasilevko V. Sumbria R.K. Paganini-Hill A. Cribbs D.H. Fisher M.J. Comparative analysis of H&E and Prussian blue staining in a mouse model of cerebral microbleeds. J. Histochem. Cytochem. 2014 62 11 767 773 10.1369/0022155414546692 25063000
    [Google Scholar]
  26. Bitonto V. Garello F. Scherberich A. Filippi M. Prussian blue staining to visualize iron oxide nanoparticles. Histochemistry of Single Molecules: Methods and Protocols. Springer 2022 321 332
    [Google Scholar]
  27. Fu J. Wu Q. Dang Y. Lei X. Feng G. Chen M. Yu X.Y. Synergistic therapy using doxorubicin-loading and nitric oxide-generating hollow Prussian blue nanoparticles with photoacoustic imaging potential against breast cancer. Int. J. Nanomedicine 2021 16 6003 6016 10.2147/IJN.S327598 34511902
    [Google Scholar]
  28. He T.F. Yost S.E. Frankel P.H. Dagis A. Cao Y. Wang R. Rosario A. Tu T.Y. Solomon S. Schmolze D. Mortimer J. Lee P. Yuan Y. Multi-panel immunofluorescence analysis of tumor infiltrating lymphocytes in triple negative breast cancer: Evolution of tumor immune profiles and patient prognosis. PLoS One 2020 15 3 e0229955 10.1371/journal.pone.0229955 32150594
    [Google Scholar]
  29. Gheibi P. Eftekhari Z. Doroud D. Parivar K. Chlorpyrifos effects on integrin alpha v and beta 3 in implantation window phase. Environ. Sci. Pollut. Res. Int. 2020 27 23 29530 29538 10.1007/s11356‑020‑08288‑0 32440878
    [Google Scholar]
  30. Didžiapetrienė J. Kazbarienė B. Tikuišis R. Dulskas A. Dabkevičienė D. Lukosevičienė V. Oxidant/antioxidant status of breast cancer patients in pre- and post-operative periods. Medicina 2020 56 70 10.3390/medicina56020070
    [Google Scholar]
  31. Shi Z. Zhang L. Zheng J. Sun H. Shao C. Ferroptosis: Biochemistry and biology in cancers. Front. Oncol. 2021 11 579286 10.3389/fonc.2021.579286 33868986
    [Google Scholar]
  32. Lei P. Bai T. Sun Y. Mechanisms of ferroptosis and relations with regulated cell death: A review. Front. Physiol. 2019 10 139 10.3389/fphys.2019.00139 30863316
    [Google Scholar]
  33. Zhang X. Hou L. Guo Z. Wang G. Xu J. Zheng Z. Sun K. Guo F. Lipid peroxidation in osteoarthritis: Focusing on 4-hydroxynonenal, malondialdehyde, and ferroptosis. Cell Death Discov. 2023 9 1 320 10.1038/s41420‑023‑01613‑9 37644030
    [Google Scholar]
  34. Fois A.G. Sotgiu E. Scano V. Negri S. Mellino S. Zinellu E. Pirina P. Pintus G. Carru C. Mangoni A.A. Zinellu A. Effects of pirfenidone and nintedanib on markers of systemic oxidative stress and inflammation in patients with idiopathic pulmonary fibrosis: A preliminary report. Antioxidants 2020 9 11 1064 10.3390/antiox9111064 33143144
    [Google Scholar]
  35. Pourgholamhossein F. Rasooli R. Pournamdari M. Pourgholi L. Samareh-Fekri M. Ghazi-Khansari M. Iranpour M. Poursalehi H.R. Heidari M.R. Mandegary A. Pirfenidone protects against paraquat-induced lung injury and fibrosis in mice by modulation of inflammation, oxidative stress, and gene expression. Food Chem. Toxicol. 2018 112 39 46 10.1016/j.fct.2017.12.034 29273418
    [Google Scholar]
  36. Ma Y. Luo L. Liu X. Li H. Zeng Z. He X. Zhan Z. Chen Y. Pirfenidone mediates cigarette smoke extract induced inflammation and oxidative stress in vitro and in vivo. Int. Immunopharmacol. 2021 96 107593 10.1016/j.intimp.2021.107593 33819731
    [Google Scholar]
  37. Hsia H.E. Tüshaus J. Feng X. Hofmann L.I. Wefers B. Marciano D.K. Wurst W. Lichtenthaler S.F. Endoglycan (PODXL2) is proteolytically processed by ADAM10 (a disintegrin and metalloprotease 10) and controls neurite branching in primary neurons. FASEB J. 2021 35 9 e21813 10.1096/fj.202100475R 34390512
    [Google Scholar]
  38. Lin W. Wang C. Liu G. Bi C. Wang X. Zhou Q. Jin H. SLC7A11/xCT in cancer: Biological functions and therapeutic implications. Am. J. Cancer Res. 2020 10 10 3106 3126 33163260
    [Google Scholar]
  39. Jiang Y. Cui J. Cui M. Jing R. SLC7A11 promotes the progression of gastric cancer and regulates ferroptosis through PI3K/AKT pathway. Pathol. Res. Pract. 2023 248 154646 10.1016/j.prp.2023.154646 37399587
    [Google Scholar]
  40. Ma C. Wu X. Zhang X. Liu X. Deng G. Heme oxygenase-1 modulates ferroptosis by fine-tuning levels of intracellular iron and reactive oxygen species of macrophages in response to Bacillus Calmette-Guerin infection. Front. Cell. Infect. Microbiol. 2022 12 1105336 10.3389/fcimb.2022.1105336
    [Google Scholar]
  41. Sun S. Shen J. Jiang J. Wang F. Min J. Targeting ferroptosis opens new avenues for the development of novel therapeutics. Signal Transduct. Target. Ther. 2023 8 1 372 10.1038/s41392‑023‑01606‑1 37735472
    [Google Scholar]
  42. Lin Z. Liu Z. Yang X. Pan Z. Feng Y. Zhang Y. Chen H. Lao L. Chen J. Shi F. Gong C. Zeng W. Simeprevir induces ferroptosis through β-TrCP/Nrf2/GPX4 axis in triple-negative breast cancer cells. Biomed. Pharmacother. 2024 180 117558 10.1016/j.biopha.2024.117558 39405915
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266353809250526084207
Loading
/content/journals/ctmc/10.2174/0115680266353809250526084207
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Pirfenidone ; FINO2 ; Mice ; Ferroptosis ; Breast Cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test