Skip to content
2000
image of A Review on Anticancer Potential and Structure-Activity Relationships (SAR) of Novel EGFR/HER2 Inhibitors

Abstract

Human Epidermal Growth Receptor (HER) plays an important role in cell signalling pathways and influences different cell functioning like angiogenesis, apoptosis, metastasis, and growth of cells. Their family includes four members with structural similarities, named EGFR/HER1, HER2, HER3, and HER4. Overexpression of these receptors is responsible for the development of cancer. EGFR/HER2 dual inhibitors, approved by the US FDA (Food and Drug Administration), include lapatinib, afatinib, neratinib, dacomitinib, ., but these drugs lack selectivity, specificity, and undesirable adverse effects. The ultimate challenges in developing lead compounds for EGFR/HER2 dual inhibitors include achieving precision, and minimising toxicity and drug resistance. This inspires medicinal and organic chemists to design new molecules. The present manuscript focuses on the identification and development of therapeutic molecules that can inhibit the target proteins EGFR/HER2 and can further be used for the treatment of breast and lung malignancies. It also highlights the development of EGFR/HER2 dual inhibitors that belong to different structural classes like pyrimidine, quinazoline, pyridine, benzimidazole, and quinoline . Various parameters, such as Structure-Activity Relationships (SAR), clinical trials data, patent filed, and the molecular docking study of the most potent compounds provide a valuable asset for further designing and discovering new EGFR/HER2 dual inhibitors with potential therapeutic significances for cancer treatment.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266378477250610122156
2025-06-20
2025-09-04
Loading full text...

Full text loading...

References

  1. Siegel R.L. Miller K.D. Wagle N.S. Jemal A. Cancer statistics, 2023. CA Cancer J. Clin. 2023 73 1 17 48 10.3322/caac.21763 36633525
    [Google Scholar]
  2. Siegel R.L. Giaquinto A.N. Jemal A. Cancer statistics, 2024. CA Cancer J. Clin. 2024 74 1 12 49 10.3322/caac.21820 38230766
    [Google Scholar]
  3. Murphrey M.B. Quaim L. Rahimi N. Varacallo M. Biochemistry, epidermal growth factor receptor. StatPearls Publishing Treasure Island (FL) 2023
    [Google Scholar]
  4. Yarden Y. Sliwkowski M.X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2001 2 2 127 137 10.1038/35052073 11252954
    [Google Scholar]
  5. Oh D.Y. Bang Y.J. HER2-targeted therapies — A role beyond breast cancer. Nat. Rev. Clin. Oncol. 2020 17 1 33 48 10.1038/s41571‑019‑0268‑3 31548601
    [Google Scholar]
  6. Yarden Y. Pines G. The ERBB network: At last, cancer therapy meets systems biology. Nat. Rev. Cancer 2012 12 8 553 563 10.1038/nrc3309 22785351
    [Google Scholar]
  7. James N. Ramanathan K. Ligand-based pharmacophore screening strategy: A pragmatic approach for targeting HER proteins. Appl. Biochem. Biotechnol. 2018 186 1 85 108 10.1007/s12010‑018‑2724‑4 29508211
    [Google Scholar]
  8. Peckys D.B. Korf U. de Jonge N. Local variations of HER2 dimerization in breast cancer cells discovered by correlative fluorescence and liquid electron microscopy. Sci. Adv. 2015 1 6 e1500165 10.1126/sciadv.1500165 26601217
    [Google Scholar]
  9. Bai X. Sun P. Wang X. Long C. Liao S. Dang S. Zhuang S. Du Y. Zhang X. Li N. He K. Zhang Z. Structure and dynamics of the EGFR/HER2 heterodimer. Cell Discov. 2023 9 1 18 10.1038/s41421‑023‑00523‑5 36781849
    [Google Scholar]
  10. Li Q. Li Z. Luo T. Shi H. Targeting the PI3K/AKT/mTOR and RAF/MEK/ERK pathways for cancer therapy. Mol. Biomed. 2022 3 1 47 10.1186/s43556‑022‑00110‑2 36539659
    [Google Scholar]
  11. Choong G.M. Cullen G.D. O’Sullivan C.C. Evolving standards of care and new challenges in the management of HER2‐positive breast cancer. CA Cancer J. Clin. 2020 70 5 355 374 10.3322/caac.21634 32813307
    [Google Scholar]
  12. Roskoski R. Jr The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol. Res. 2014 79 34 74 10.1016/j.phrs.2013.11.002 24269963
    [Google Scholar]
  13. Ojala V. ERBB4 as a potential therapeutic target in cancer. Doctoral theses 2024
    [Google Scholar]
  14. Citri A. Yarden Y. EGF–ERBB signalling: Towards the systems level. Nat. Rev. Mol. Cell Biol. 2006 7 7 505 516 10.1038/nrm1962 16829981
    [Google Scholar]
  15. Qiang Z. Wan J. Chen X. Wang H. Mechanisms and therapeutic targets of ErbB family receptors in hepatocellular carcinoma: A narrative review. Transl. Cancer Res. 2024 13 6 3156 3178 10.21037/tcr‑24‑837 38988928
    [Google Scholar]
  16. Kamashev D. Shaban N. Zakharova G. Modestov A. Kamynina М. Baranov S. Buzdin A. Lapatinib-induced enhancement of mitochondrial respiration in HER2-positive SK-BR-3 cells: Mechanism revealed by analysis of proteomic but not transcriptomic data. Front. Mol. Biosci. 2024 11 1470496 10.3389/fmolb.2024.1470496 39403185
    [Google Scholar]
  17. Harari D. Yarden Y. Molecular mechanisms underlying ErbB2/HER2 action in breast cancer. Oncogene 2000 19 53 6102 6114 10.1038/sj.onc.1203973 11156523
    [Google Scholar]
  18. Ren Z. Schaefer T.S. ErbB-2 activates Stat3 α in a Src- and JAK2-dependent manner. J. Biol. Chem. 2002 277 41 38486 38493 10.1074/jbc.M112438200 11940572
    [Google Scholar]
  19. Seshacharyulu P. Ponnusamy M.P. Haridas D. Jain M. Ganti A.K. Batra S.K. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin. Ther. Targets 2012 16 1 15 31 10.1517/14728222.2011.648617 22239438
    [Google Scholar]
  20. Antoon J.W. Martin E.C. Lai R. Salvo V.A. Tang Y. Nitzchke A.M. Elliott S. Nam S.Y. Xiong W. Rhodes L.V. Collins-Burow B. David O. Wang G. Shan B. Beckman B.S. Nephew K.P. Burow M.E. MEK5/ERK5 signaling suppresses estrogen receptor expression and promotes hormone-independent tumorigenesis. PLoS One 2013 8 8 e69291 10.1371/journal.pone.0069291 23950888
    [Google Scholar]
  21. Montero J.C. Ocaña A. Abad M. Ortiz-Ruiz M.J. Pandiella A. Esparís-Ogando A. Expression of Erk5 in early stage breast cancer and association with disease free survival identifies this kinase as a potential therapeutic target. PLoS One 2009 4 5 e5565 10.1371/journal.pone.0005565 19440538
    [Google Scholar]
  22. Șandor A. Ionuț I. Marc G. Oniga I. Eniu D. Oniga O. Structure–activity relationship studies based on quinazoline derivatives as EGFR kinase inhibitors (2017–present). Pharmaceuticals 2023 16 4 534 10.3390/ph16040534 37111291
    [Google Scholar]
  23. D’Amato V. Raimondo L. Formisano L. Giuliano M. De Placido S. Rosa R. Bianco R. Mechanisms of lapatinib resistance in HER2-driven breast cancer. Cancer Treat. Rev. 2015 41 10 877 883 10.1016/j.ctrv.2015.08.001 26276735
    [Google Scholar]
  24. Kostyal D. Welt R.S. Danko J. Shay T. Lanning C. Horton K. Welt S. Trastuzumab and lapatinib modulation of HER2 tyrosine/threonine phosphorylation and cell signaling. Med. Oncol. 2012 29 3 1486 1494 10.1007/s12032‑011‑0025‑7 21769502
    [Google Scholar]
  25. Collins D.M. Conlon N.T. Kannan S. Verma C.S. Eli L.D. Lalani A.S. Crown J. Preclinical characteristics of the irreversible pan-HER kinase inhibitor neratinib compared with lapatinib: Implications for the treatment of HER2-positive and HER2-mutated breast cancer. Cancers 2019 11 6 737 10.3390/cancers11060737 31141894
    [Google Scholar]
  26. Ryan Q. Ibrahim A. Cohen M.H. Johnson J. Ko C. Sridhara R. Justice R. Pazdur R. FDA drug approval summary: Lapatinib in combination with capecitabine for previously treated metastatic breast cancer that overexpresses HER-2. Oncologist 2008 13 10 1114 1119 10.1634/theoncologist.2008‑0816 18849320
    [Google Scholar]
  27. Sim S.H. Park I.H. Jung K.H. Kim S.B. Ahn J.H. Lee K.H. Im S.A. Im Y.H. Park Y.H. Sohn J. Kim Y.J. Lee S. Kim H.J. Chae Y.S. Park K.H. Nam B.H. Lee K.S. Ro J. Randomised Phase 2 study of lapatinib and vinorelbine vs vinorelbine in patients with HER2 + metastatic breast cancer after lapatinib and trastuzumab treatment (KCSG BR11-16). Br. J. Cancer 2019 121 12 985 990 10.1038/s41416‑019‑0618‑z 31690831
    [Google Scholar]
  28. Baselga J. Bradbury I. Eidtmann H. Di Cosimo S. de Azambuja E. Aura C. Gómez H. Dinh P. Fauria K. Van Dooren V. Aktan G. Goldhirsch A. Chang T.W. Horváth Z. Coccia-Portugal M. Domont J. Tseng L.M. Kunz G. Sohn J.H. Semiglazov V. Lerzo G. Palacova M. Probachai V. Pusztai L. Untch M. Gelber R.D. Piccart-Gebhart M. NeoALTTO Study Team Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): A randomised, open-label, multicentre, phase 3 trial. Lancet 2012 379 9816 633 640 10.1016/S0140‑6736(11)61847‑3 22257673
    [Google Scholar]
  29. Choi H.D. Chang M.J. Cardiac toxicities of lapatinib in patients with breast cancer and other HER2-positive cancers: A meta-analysis. Breast Cancer Res. Treat. 2017 166 3 927 936 10.1007/s10549‑017‑4460‑9 28825152
    [Google Scholar]
  30. Minkovsky N Berezov A. BIBW-2992, a dual receptor tyrosine kinase inhibitor for the treatment of solid tumors. Curr. Opin. Investig. Drugs 2008 9 12 1336 1346 19037840
    [Google Scholar]
  31. Dungo R.T. Keating G.M. Afatinib: First global approval. Drugs 2013 73 13 1503 1515 10.1007/s40265‑013‑0111‑6 23982599
    [Google Scholar]
  32. Yang X. Wu D. Yuan S. Tyrosine kinase inhibitors in the combination therapy of HER2 positive breast cancer. Technol. Cancer Res. Treat. 2020 19 1533033820962140 10.1177/1533033820962140 33034269
    [Google Scholar]
  33. Saura C. Garcia-Saenz J.A. Xu B. Harb W. Moroose R. Pluard T. Cortés J. Kiger C. Germa C. Wang K. Martin M. Baselga J. Kim S.B. Safety and efficacy of neratinib in combination with capecitabine in patients with metastatic human epidermal growth factor receptor 2-positive breast cancer. J. Clin. Oncol. 2014 32 32 3626 3633 10.1200/JCO.2014.56.3809 25287822
    [Google Scholar]
  34. Segovia-Mendoza M. González-González M.E. Barrera D. Díaz L. García-Becerra R. Efficacy and mechanism of action of the tyrosine kinase inhibitors gefitinib, lapatinib and neratinib in the treatment of HER2-positive breast cancer: Preclinical and clinical evidence. Am. J. Cancer Res. 2015 5 9 2531 2561 26609467
    [Google Scholar]
  35. Martin M. Holmes F.A. Ejlertsen B. Delaloge S. Moy B. Iwata H. von Minckwitz G. Chia S.K.L. Mansi J. Barrios C.H. Gnant M. Tomašević Z. Denduluri N. Šeparović R. Gokmen E. Bashford A. Ruiz Borrego M. Kim S.B. Jakobsen E.H. Ciceniene A. Inoue K. Overkamp F. Heijns J.B. Armstrong A.C. Link J.S. Joy A.A. Bryce R. Wong A. Moran S. Yao B. Xu F. Auerbach A. Buyse M. Chan A. Harvey V. Tomek R. Robert N.J. Gore I. Jr Smith J.W. II Masuda N. Di Sean Kendall S. Harker W.G. Petrakova K. Guerrero Zotano A. Simon A.R. Konstantinovic Z.N. Iannotti N.O. Tassone P. Rodriguez G.I. Jáñez Martinez N. Crespo Massieu C. Smickoska S. Somali I. Yilmaz U. Alonso M.G. Rosales A.M. Cold S. Knoop A.S. Patt D. Hellerstedt B.A. Morales Murillo S. Mayer I.A. Means-Powell J.A. Hui R. Senecal F.M. De Boer R.H. Shen Z. Luczak A.A. Chui J.W.Y. Tsang J.W. Lang I. Rai Y. Hozumi Y. Ten Tije A.J. Bhandari M. Osborne C.R.C. Ohtani S. Higaki K. Watanabe K. Taguchi K. Takahashi M. Filipovic S. Hansen V.L. Rao V.P. Gupta M. Petrov P. Coudert B. Vojnovic Z. Polya Z. Miyaki T. Yamamoto N. Brincat S. Lesniewski-Kmak K. Chmielowska E. Birhiray R.E. Citron M.L. Papish S.W. Berry W.R. Langkjer S.T. Garcia Sáenz J.A. Arance A.M. Efrat N. Sarosiek T. Grzeda L. Manalo Y. Smith J.C. Vaziri I. Healey T. Rahim Y. Luk C. Dingle B. Franco S. Sorensen P.G. Anand A. Khan S. Fountzilas G. Aogi K. Shimizu S. Mikulova M. Spanik S. Somer R.A. Flynn P.J. Coward J. Mainwaring P. Jerusalem G. Segura-Ojezzar C. Levy C. Delozier T. Khayat D. Coleman R.E. Rolles M.J. Maisano R. Nardi M. Ito Y. Yumuk P.F. Basaran G. Serdar Turhal N. Wilkinson M.J. Green N.B. Sidrys A.P. Hallmeyer S. Testori D.J. Sridhar S. Chang J. Sun Q. Jara-Sanchez C. Rubio X. Garrido M.L. De La Haba Rodriguez J.R. Perello Martorell A. Avelia Mestre A. Rifa Ferrer J. del Barco Berron S. Nagy Z. Tanaka M. Im Y-H. Carroll R.R. Dickerson L.C. Mace J.R. Rivera R. Klein L.M. Ruxer R. Wilks S.T. Kotasek D. Popov V. Taskova V. Marinova-Venkova V. Timcheva C. Desbiens C. Ayoub J-P. Grenier D. Marschner N. Tesch H. Lueck H-J. Janssen J. Schwaner I. Wahlstrom S. Brix E.H. Vallentin S. Kristensen D. Andreeva A. Glavicic V. Calvo Plaza I. Anton Torres A. Veyret C. Bergerat J-P. Bourbouloux E. Ella W.A. Algurafi H. Robinson A. Kim S.J. Taguchi T. Juozaityte E. Madretsma S. Radema S. Czerniawska-Meier M. Rogowski W. Wagnerova M. Richards D.A. Tan-Chiu E. Vasileios A. Henderson C.A. Holden V.R. Wang X. Tong Z. Yang J. Gonzalez M.E. Rezai M. Hackmann J. de Dueñas E.M. de las Heras B.B. Dourthe L.M. Chocteau-Bouju D. Bougnoux P. Kakolyris S. Kalofonos H. Pectasidis D. Ng T.Y. Pajkos G. Somogyine E.E. Tonini G. Giuffrida D. Takao S. Ishitobi M. Inaji H. Tokuda Y. Wozniak K. Lungulescu D. Lu Y-S. Chang K-J. Hill J. Croot C.C. Dekker A. Belman N.D. Conde M. Michaelson R.A. Kemmer K. Chui S. Luoh S-W. Nahum K. Greenspan A.R. Nichols J.C. Encarnacion C.A. Niederman T.M.J. Lee T. Alexander R. Gordon R. Tomova A. Rauch D. Popescu R.A. Rojas G.A. Vanasek J. Neunhoeffer T. Barinoff J. Graffunder G. Wolfgang A. Bojko P. Heinrich B. von der Assen A. Antonovic B.J. Adrian L. Ramos Vazquez M. Gonzalez Santiago S. Dieras V. Bishop J.M. Perren T.J. Varthalitis I. Mavroudis D. Georgoulias V. Chow L.W.C. Yau C.C.T. Liang R.H-S. Pikó B. Wéber A. Kaufman B. Drumea K. Nuzzo F. De Matteis A. Nuzzo F. Carteni G. Tokunaga E. Ishida M. Ohno S. Sato N. Kuroi K. Nishimura R. Watanabe J. Choi Y.J. Park K.H. Wojtukiewicz M. Jassem J. Loman N. Askoy S. Altundag M.K. Saip P. Ali M.A. Wade J.L. III Chien A.J. Brandt D. Novik Y. Jani C. Rice R.L. Gaffar Y.A.R. Keaton M.R. Bajaj R. Kimmick G. Campbell D. De Boer R.H. Turnquest T. Lucas S. Dube P. Xu B. Schilling J. Apel K. Sorensen P.G. Vestlev P.M. Jensen B.B. Haahr V. Lescure A.R. Grana Suarez B. Saura Manich C. Jacquin J-P. Samreen A. Boiangiu I. Dank M. Falci C. Jirillo A. Cinieri S. Ueno T. Sato F. Yamashiro H. Sugie T. Lee K.S. Ro J.S. Park I.H. Bustam A.Z. Suszko-Kazarnowicz M. Piktel A. Krzemieniecki K. Iorga P.G. Yap Y.S. Kakalejcik M. Sevinc A. Ozguroglu M. Chen S-C. Greenberg R.H. Eisemann A.D. Droder R. Abbasi M.R. Vaysburd M. Caldera H.J. Haley B.B. Robin E. Inhorn R.C. Hufnagel D. Kenyon P.D. Spremulli E. Silverman P. Jain S. Weigand R. Mebis J. Koynova T. Lesperance B. Prausova J. Kohne C-H. Schneeweiss A. Jackisch C. Fuxius S. Cubedo Cervera R. Urruticoechea Ribate A. Pernas Simon S. Valero Gallego J. Arcusa Lanza A. del Pilar Alvarez M. Florian Gerico J. Cany L. Stebbing J. Labudovic D. Gugic D. Vrbanec D. Roila F. Barni S. Bidoli P. Mukai H. Bermudez V. Eniu A. Mirtsching B.C. Ibrahim E. Trey J. Hergenroeder P.F. Mahmood A. Gonzalez A. Kaplan E.H. Ban S. Patel D. Clowney B. Hoelzer K. Schwartz G.H. Salkeni M. Abraham J. Narula S. Jabboury K. Mocharnuk R.S. McDonough R.H. Sikes D.H. Kawanchi R.H. Schlabach L. McCachren S.S. Jr Cosgriff T.M. Dreisbach L. DeMichele A. Pawl L. Lucas J. Shinn L.C. Alkhouri N. Monga M. Lindquist D.L. Anderson T.C. Khurshid H. Witherby S. Erickson N. Traynor A. Bose R. Pluard T.J. Jones M.C. Prakash S. Volterra F. Capo G. Flaherty L.E. Gartner E. Baidas S. Okazaki I. Nguyen B. Rakowski T. Oliff I. Leach J.W. Anderson D. Kubiak K. Tsai M. Vroman P. Deleu I. Lybaert W. Borms M. Couture F. Wilson J.J. Hunt G. Holland D.R. Mingrone W. Wang S. Liu D. Jiang Z. Benesova V. Smakal M. Garnolova P. Vesper A-S. Neumann M. Janni W. Liedtke C. Fischer D. Grischke E-M. Seeger D. Moebus V. Prechtl A. Carlos Camara Toral J. Sanchez Munoz A. Gonzalez Jimenez S. Cassinello Espinosa J. Cirauqui B. Margeli Vila M. Batista Lopez N. Chacon Lopez-Muniz J.I. de la Cruz Mora M.A. Mailliez A. Vanlemmens L. Pouessel D. Espie M. Conibear J. Roylance R. Harnett A. Geffen D. Ruggeri E.M. Gamucci T. Van Groeningen C.J. Banas R. Loman N. Alkis N. Hou M-F. Krie A.K. Vrindavanam N.S. Howard O.M. Citrin D. Morginstin M.S. Desai A. Sanchez I.J. Nixon D.A. Jr Beatty P.G. Edmiston K. McLaughlin M. Eneman J.D. Lynch C.A. O’Brien E. Call J.A. Lanier K.S. Conlin A. Brooks D.J. McIntyre K. Saltzman M.A. Castine M.J. III Ortega G.L. Choi Y.M. Reynolds C.H. Brescia F.A. Kramer R. Kohn A.D. Micha J.P. Rhee J.M. Shah S. Riseberg D.A. Patterson W.K. Salmon J-P. Andre C. Bols A. D’hondt R. Luce S. Nouwynck C. Pelgrims G. Richard V. Verschuere J. Geldhof K. Caspar C. Luo R. Bednarik O. Schwedler K. Schmidt M. Neumeister R. Bischoff J. Rack B. Repp R. Fries S. Adrion R. Schulz V. Klare P. Danei M. Ossenbuhl D. Kusche J.M. Griesinger F. Baena Canada J.M. Martinez del Prado P. Machover D. Mayeur D. Trufflandier N. Delecroix V. Mousseau M. Mouret-Reynier M-A. Nabholtz J-M. Chetiyawardana A.D. Papandreou C. Hornyak L. Faluhelyi Z. Simo E. Di Palma M. Cognetti F. Gorzegno G. Dogliotti L. Gridelli C. Falcone A. Soto Parra H. Buscarino C. Im S-A. Sanchez Llamas B. Dercksen W. Erdkamp F. Ruit J.B. Braun H. Portielje J.E.A. Ciltas A. Buyukberber S. Benekli M. Zahalsky A.J. Jaslow R. Thomas G.W. Maini A. Wiznitzer I. Khojasteh A. Francisco Gonzalez M. Kong L.R. Padmanabhan A. Conkright W.A. Swain S.M. Faig D.E. Jain K. Yanagihara R.H. Ottaviano Y. Delmas A. Steele H.A. Rainey G.K. Harris P.J. Burris J.K. Rupard E.J. Tan E. Whitworth P.W. Bova A.R. Anderson I.C. Shirinian M. Tin-u C. O’Rourke T.J. Roberts M.S. Francisco M. Pierson A.S. Byeff P.D. Kovach P.A. Caton J.R. Jr Rarick M.U. Schimidt W.G. Jr Stopeck A.T. Swart R. Carrillo Flores M.R. Alemany C.A. Lozada B. Weinstein P.L. Wang W. Porubcin M. Ellison D.M. Geils G.F. Rivera E. Charif M. Neratinib after trastuzumab-based adjuvant therapy in HER2-positive breast cancer (ExteNET): 5-year analysis of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2017 18 12 1688 1700 10.1016/S1470‑2045(17)30717‑9 29146401
    [Google Scholar]
  36. Chan A. Delaloge S. Holmes F.A. Moy B. Iwata H. Harvey V.J. Robert N.J. Silovski T. Gokmen E. von Minckwitz G. Ejlertsen B. Chia S.K.L. Mansi J. Barrios C.H. Gnant M. Buyse M. Gore I. Smith J. II Harker G. Masuda N. Petrakova K. Zotano A.G. Iannotti N. Rodriguez G. Tassone P. Wong A. Bryce R. Ye Y. Yao B. Martin M. Neratinib after trastuzumab-based adjuvant therapy in patients with HER2-positive breast cancer (ExteNET): A multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2016 17 3 367 377 10.1016/S1470‑2045(15)00551‑3 26874901
    [Google Scholar]
  37. Freedman R.A. Gelman R.S. Anders C.K. Melisko M.E. Parsons H.A. Cropp A.M. Silvestri K. Cotter C.M. Componeschi K.P. Marte J.M. Connolly R.M. Moy B. Van Poznak C.H. Blackwell K.L. Puhalla S.L. Jankowitz R.C. Smith K.L. Ibrahim N. Moynihan T.J. O’Sullivan C.C. Nangia J. Niravath P. Tung N. Pohlmann P.R. Burns R. Rimawi M.F. Krop I.E. Wolff A.C. Winer E.P. Lin N.U. TBCRC 022: A phase II trial of neratinib and capecitabine for patients with human epidermal growth factor receptor 2–positive breast cancer and brain metastases. J. Clin. Oncol. 2019 37 13 1081 1089 10.1200/JCO.18.01511 30860945
    [Google Scholar]
  38. Deeks E.D. Neratinib: First global approval. Drugs 2017 77 15 1695 1704 10.1007/s40265‑017‑0811‑4 28884417
    [Google Scholar]
  39. Echavarria I. López-Tarruella S. Márquez-Rodas I. Jerez Y. Martin M. Neratinib for the treatment of HER2-positive early stage breast cancer. Expert Rev. Anticancer Ther. 2017 17 8 669 679 10.1080/14737140.2017.1338954 28649882
    [Google Scholar]
  40. Hamid R.N. Ahn C.S. Huang W.W. Adverse cutaneous effects of neratinib. J. Dermatolog. Treat. 2019 30 5 487 488 10.1080/09546634.2018.1536253 30321080
    [Google Scholar]
  41. Reckamp K.L. Giaccone G. Camidge D.R. Gadgeel S.M. Khuri F.R. Engelman J.A. Koczywas M. Rajan A. Campbell A.K. Gernhardt D. Ruiz-Garcia A. Letrent S. Liang J. Taylor I. O’Connell J.P. Jänne P.A. A phase 2 trial of dacomitinib (PF‐00299804), an oral, irreversible pan‐HER (human epidermal growth factor receptor) inhibitor, in patients with advanced non–small cell lung cancer after failure of prior chemotherapy and erlotinib. Cancer 2014 120 8 1145 1154 10.1002/cncr.28561 24501009
    [Google Scholar]
  42. Shirley M. Dacomitinib: First global approval. Drugs 2018 78 18 1947 1953 10.1007/s40265‑018‑1028‑x 30506139
    [Google Scholar]
  43. Yap T.A. Popat S. Toward precision medicine with next-generation EGFR inhibitors in non-small-cell lung cancer. Pharm. Genomics Pers. Med. 2014 7 285 295 25278773
    [Google Scholar]
  44. Pao W. Miller V.A. Politi K.A. Riely G.J. Somwar R. Zakowski M.F. Kris M.G. Varmus H. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2005 2 3 e73 10.1371/journal.pmed.0020073 15737014
    [Google Scholar]
  45. Yun C.H. Mengwasser K.E. Toms A.V. Woo M.S. Greulich H. Wong K.K. Meyerson M. Eck M.J. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl. Acad. Sci. USA 2008 105 6 2070 2075 10.1073/pnas.0709662105 18227510
    [Google Scholar]
  46. Jänne P.A. Yang J.C.H. Kim D.W. Planchard D. Ohe Y. Ramalingam S.S. Ahn M.J. Kim S.W. Su W.C. Horn L. Haggstrom D. Felip E. Kim J.H. Frewer P. Cantarini M. Brown K.H. Dickinson P.A. Ghiorghiu S. Ranson M. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N. Engl. J. Med. 2015 372 18 1689 1699 10.1056/NEJMoa1411817 25923549
    [Google Scholar]
  47. Mok T.S. Wu Y.L. Ahn M.J. Garassino M.C. Kim H.R. Ramalingam S.S. Shepherd F.A. He Y. Akamatsu H. Theelen W.S.M.E. Lee C.K. Sebastian M. Templeton A. Mann H. Marotti M. Ghiorghiu S. Papadimitrakopoulou V.A. Osimertinib or platinum–pemetrexed in EGFR T790M–positive lung cancer. N. Engl. J. Med. 2017 376 7 629 640 10.1056/NEJMoa1612674 27959700
    [Google Scholar]
  48. Soria J.C. Ohe Y. Vansteenkiste J. Reungwetwattana T. Chewaskulyong B. Lee K.H. Dechaphunkul A. Imamura F. Nogami N. Kurata T. Okamoto I. Zhou C. Cho B.C. Cheng Y. Cho E.K. Voon P.J. Planchard D. Su W.C. Gray J.E. Lee S.M. Hodge R. Marotti M. Rukazenkov Y. Ramalingam S.S. Osimertinib in untreated EGFR-mutated advanced non–small-cell lung cancer. N. Engl. J. Med. 2018 378 2 113 125 10.1056/NEJMoa1713137 29151359
    [Google Scholar]
  49. Ramalingam S.S. Yang J.C.H. Lee C.K. Kurata T. Kim D.W. John T. Nogami N. Ohe Y. Mann H. Rukazenkov Y. Ghiorghiu S. Stetson D. Markovets A. Barrett J.C. Thress K.S. Jänne P.A. Osimertinib as first-line treatment of EGFR mutation–positive advanced non–small-cell lung cancer. J. Clin. Oncol. 2018 36 9 841 849 10.1200/JCO.2017.74.7576 28841389
    [Google Scholar]
  50. Wang S. Cang S. Liu D. Third-generation inhibitors targeting EGFR T790M mutation in advanced non-small cell lung cancer. J. Hematol. Oncol. 2016 9 1 34 10.1186/s13045‑016‑0268‑z 27071706
    [Google Scholar]
  51. Bencze E. Bogos K. Kohánka A. Báthory-Fülöp L. Sárosi V. Csernák E. Bittner N. Melegh Z. Tóth E. EGFR T790M mutation detection in patients with non-small cell lung cancer after first line EGFR TKI therapy: Summary of results in a three-year period and a comparison of commercially available detection kits. Pathol. Oncol. Res. 2022 28 1610607 10.3389/pore.2022.1610607 36277960
    [Google Scholar]
  52. Vernieri C. Milano M. Brambilla M. Mennitto A. Maggi C. Cona M.S. Prisciandaro M. Fabbroni C. Celio L. Mariani G. Bianchi G.V. Capri G. de Braud F. Resistance mechanisms to anti-HER2 therapies in HER2-positive breast cancer: Current knowledge, new research directions and therapeutic perspectives. Crit. Rev. Oncol. Hematol. 2019 139 53 66 10.1016/j.critrevonc.2019.05.001 31112882
    [Google Scholar]
  53. Westover D. Zugazagoitia J. Cho B.C. Lovly C.M. Paz-Ares L. Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors. Ann. Oncol. 2018 29 Suppl. 1 i10 i19 10.1093/annonc/mdx703 29462254
    [Google Scholar]
  54. Zhao S. Ma Y. Liu L. Fang J. Ma H. Feng G. Xie B. Zeng S. Chang J. Ren J. Zhang Y. Xi N. Zhuang Y. Jiang Y. Zhang Q. Kang N. Zhang L. Zhao H. Ningetinib plus gefitinib in EGFR-mutant non-small-cell lung cancer with MET and AXL dysregulations: A phase 1b clinical trial and biomarker analysis. Lung Cancer 2024 188 107468 10.1016/j.lungcan.2024.107468 38181454
    [Google Scholar]
  55. Goyette M.A. Duhamel S. Aubert L. Pelletier A. Savage P. Thibault M.P. Johnson R.M. Carmeliet P. Basik M. Gaboury L. Muller W.J. Park M. Roux P.P. Gratton J.P. Côté J.F. The receptor tyrosine kinase AXL is required at multiple steps of the metastatic cascade during HER2-positive breast cancer progression. Cell Rep. 2018 23 5 1476 1490 10.1016/j.celrep.2018.04.019 29719259
    [Google Scholar]
  56. Huang S. Long Y. Gao Y. Lin W. Wang L. Jiang J. Yuan X. Chen Y. Zhang P. Chu Q. Combined inhibition of MET and VEGF enhances therapeutic efficacy of EGFR TKIs in EGFR-mutant non-small cell lung cancer with concomitant aberrant MET activation. Exp. Hematol. Oncol. 2024 13 1 97 10.1186/s40164‑024‑00565‑9 39354638
    [Google Scholar]
  57. Rivas S. Marín A. Samtani S. González-Feliú E. Armisén R. MET signaling pathways, resistance mechanisms, and opportunities for target therapies. Int. J. Mol. Sci. 2022 23 22 13898 10.3390/ijms232213898 36430388
    [Google Scholar]
  58. Zhong H. Zhou Z. Wang H. Wang R. Shen K. Huang R. Wang Z. The biological roles and clinical applications of the PI3K/AKT pathway in targeted therapy resistance in HER2-positive breast cancer: A comprehensive review. Int. J. Mol. Sci. 2024 25 24 13376 10.3390/ijms252413376 39769140
    [Google Scholar]
  59. Huang H. Huang F. Liang X. Fu Y. Cheng Z. Huang Y. Chen Z. Duan Y. Chen Y. Afatinib reverses EMT via inhibiting CD44-Stat3 axis to promote radiosensitivity in nasopharyngeal carcinoma. Pharmaceuticals 2022 16 1 37 10.3390/ph16010037 36678534
    [Google Scholar]
  60. McCubrey J.A. Steelman L.S. Chappell W.H. Abrams S.L. Montalto G. Cervello M. Nicoletti F. Fagone P. Malaponte G. Mazzarino M.C. Candido S. Libra M. Bäsecke J. Mijatovic S. Maksimovic-Ivanic D. Milella M. Tafuri A. Cocco L. Evangelisti C. Chiarini F. Martelli A.M. Mutations and deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades which alter therapy response. Oncotarget 2012 3 9 954 987 10.18632/oncotarget.652 23006971
    [Google Scholar]
  61. Mo C. Sterpi M. Jeon H. Bteich F. Resistance to Anti-HER2 therapies in gastrointestinal malignancies. Cancers 2024 16 16 2854 10.3390/cancers16162854 39199625
    [Google Scholar]
  62. Luo D. Zhou J. Ruan S. Zhang B. Zhu H. Que Y. Ying S. Li X. Hu Y. Song Z. Overcoming immunotherapy resistance in gastric cancer: Insights into mechanisms and emerging strategies. Cell Death Dis. 2025 16 1 75 10.1038/s41419‑025‑07385‑7 39915459
    [Google Scholar]
  63. Uribe M.L. Marrocco I. Yarden Y. EGFR in cancer: Signaling mechanisms, drugs, and acquired resistance. Cancers 2021 13 11 2748 10.3390/cancers13112748 34206026
    [Google Scholar]
  64. Morgillo F. Della Corte C.M. Fasano M. Ciardiello F. Mechanisms of resistance to EGFR-targeted drugs: Lung cancer. ESMO Open 2016 1 3 e000060 10.1136/esmoopen‑2016‑000060 27843613
    [Google Scholar]
  65. Negrao M.V. Reuben A. Robichaux J.P. Le X. Nilsson M.B. Wu C-j. Association of EGFR and HER-2 exon 20 mutations with distinct patterns of response to immune checkpoint blockade in non-small cell lung cancer. American Society of Clinical Oncology 2018 10.1200/JCO.2018.36.15_suppl.9052
    [Google Scholar]
  66. Lau S.C.M. Fares A.F. Le L.W. Mackay K.M. Soberano S. Chan S.W. Smith E. Ryan M. Tsao M.S. Bradbury P.A. Pal P. Shepherd F.A. Liu G. Leighl N.B. Sacher A.G. Subtypes of EGFR-and HER2-mutant metastatic NSCLC influence response to immune checkpoint inhibitors. Clin. Lung Cancer 2021 22 4 253 259 10.1016/j.cllc.2020.12.015 33582070
    [Google Scholar]
  67. Gámez-Chiachio M. Sarrió D. Moreno-Bueno G. Novel therapies and strategies to overcome resistance to anti-HER2-targeted drugs. Cancers 2022 14 18 4543 10.3390/cancers14184543 36139701
    [Google Scholar]
  68. Kang J.X. Li C. Cheng Y.M. Huang M.X. Zhao G.K. Jin Z.L. Qi X.W. Gu J. Ouyang Q. Advances in small-molecule dual inhibitors targeting EGFR and HER2 receptors as anti-cancer agents. Curr. Med. Chem. 2024 31 10.2174/0109298673308896240528173317 38860909
    [Google Scholar]
  69. Lalami Y. Specenier P.M. Awada A. Lacombe D. Liberatoscioli C. Fortpied C. El-Hariry I. Bogaerts J. Andry G. Langendijk J.A. Vermorken J.B. EORTC 24051: Unexpected side effects in a phase I study of TPF induction chemotherapy followed by chemoradiation with lapatinib, a dual EGFR/ErbB2 inhibitor, in patients with locally advanced resectable larynx and hypopharynx squamous cell carcinoma. Radiother. Oncol. 2012 105 2 238 240 10.1016/j.radonc.2012.08.006 22989664
    [Google Scholar]
  70. Inoue K. Kuroi K. Shimizu S. Rai Y. Aogi K. Masuda N. Nakayama T. Iwata H. Nishimura Y. Armour A. Sasaki Y. Safety, pharmacokinetics and efficacy findings in an open-label, single-arm study of weekly paclitaxel plus lapatinib as first-line therapy for Japanese women with HER2-positive metastatic breast cancer. Int. J. Clin. Oncol. 2015 20 6 1102 1109 10.1007/s10147‑015‑0832‑5 25967286
    [Google Scholar]
  71. Frenel J-S. Bourbouloux E. Berton-Rigaud D. Sadot-Lebouvier S. Zanetti A. Campone M. Lapatinib in metastatic breast cancer. Womens Health 2009 5 6 603 612 10.2217/WHE.09.54 19863462
    [Google Scholar]
  72. Lim B. Potter D.A. Salkeni M.A. Silverman P. Haddad T.C. Forget F. Awada A. Canon J.L. Danso M. Lortholary A. Bourgeois H. Tan-Chiu E. Vincent S. Bahamon B. Galinsky K.J. Patel C. Neuwirth R. Leonard E.J. Diamond J.R. Sapanisertib plus exemestane or fulvestrant in women with hormone receptor–positive/HER2-negative advanced or metastatic breast cancer. Clin. Cancer Res. 2021 27 12 3329 3338 10.1158/1078‑0432.CCR‑20‑4131 33820779
    [Google Scholar]
  73. Wu Y. Amonkar M.M. Sherrill B.H. O’Shaughnessy J. Ellis C. Baselga J. Blackwell K.L. Burstein H.J. Impact of lapatinib plus trastuzumab versus single-agent lapatinib on quality of life of patients with trastuzumab-refractory HER2+ metastatic breast cancer. Ann. Oncol. 2011 22 12 2582 2590 10.1093/annonc/mdr014 21406472
    [Google Scholar]
  74. Blackwell K.L. Burstein H.J. Storniolo A.M. Rugo H.S. Sledge G. Aktan G. Ellis C. Florance A. Vukelja S. Bischoff J. Baselga J. O’Shaughnessy J. Overall survival benefit with lapatinib in combination with trastuzumab for patients with human epidermal growth factor receptor 2-positive metastatic breast cancer: Final results from the EGF104900 Study. J. Clin. Oncol. 2012 30 21 2585 2592 10.1200/JCO.2011.35.6725 22689807
    [Google Scholar]
  75. Howell S.J. Casbard A. Carucci M. Ingarfield K. Butler R. Morgan S. Meissner M. Bale C. Bezecny P. Moon S. Twelves C. Venkitaraman R. Waters S. de Bruin E.C. Schiavon G. Foxley A. Jones R.H. Fulvestrant plus capivasertib versus placebo after relapse or progression on an aromatase inhibitor in metastatic, oestrogen receptor-positive, HER2-negative breast cancer (FAKTION): Overall survival, updated progression-free survival, and expanded biomarker analysis from a randomised, phase 2 trial. Lancet Oncol. 2022 23 7 851 864 10.1016/S1470‑2045(22)00284‑4 35671774
    [Google Scholar]
  76. Tenori L. Oakman C. Claudino W.M. Bernini P. Cappadona S. Nepi S. Biganzoli L. Arbushites M.C. Luchinat C. Bertini I. Di Leo A. Exploration of serum metabolomic profiles and outcomes in women with metastatic breast cancer: A pilot study. Mol. Oncol. 2012 6 4 437 444 10.1016/j.molonc.2012.05.003 22687601
    [Google Scholar]
  77. Finn R.S. Press M.F. Dering J. Arbushites M. Koehler M. Oliva C. Williams L.S. Di Leo A. Estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2 (HER2), and epidermal growth factor receptor expression and benefit from lapatinib in a randomized trial of paclitaxel with lapatinib or placebo as first-line treatment in HER2-negative or unknown metastatic breast cancer. J. Clin. Oncol. 2009 27 24 3908 3915 10.1200/JCO.2008.18.1925 19620495
    [Google Scholar]
  78. Sherrill B. Di Leo A. Amonkar M.M. Wu Y. Zvirbule Z. Aziz Z. Bines J. Gomez H.L. Quality-of-life and quality-adjusted survival (Q-TWiST) in patients receiving lapatinib in combination with paclitaxel as first-line treatment for metastatic breast cancer. Curr. Med. Res. Opin. 2010 26 4 767 775 10.1185/03007991003590860 20095796
    [Google Scholar]
  79. Harrington K. Berrier A. Robinson M. Remenar E. Housset M. de Mendoza F.H. Fayette J. Mehanna H. El-Hariry I. Compton N. Franklin N. Biswas-Baldwin N. Lau M. Legenne P. Kumar R. Randomised Phase II study of oral lapatinib combined with chemoradiotherapy in patients with advanced squamous cell carcinoma of the head and neck: Rationale for future randomised trials in human papilloma virus-negative disease. Eur. J. Cancer 2013 49 7 1609 1618 10.1016/j.ejca.2012.11.023 23265705
    [Google Scholar]
  80. Psyrri A. Rampias T. Vermorken J.B. The current and future impact of human papillomavirus on treatment of squamous cell carcinoma of the head and neck. Ann. Oncol. 2014 25 11 2101 2115 10.1093/annonc/mdu265 25057165
    [Google Scholar]
  81. Song X.J. Shao Y. Dong X.G. Microwave-assisted synthesis of some novel fluorinated pyrazolo[3,4-d]pyrimidine derivatives containing 1,3,4-thiadiazole as potential antitumor agents. Chin. Chem. Lett. 2011 22 9 1036 1038 10.1016/j.cclet.2011.05.012
    [Google Scholar]
  82. Galmarini C.M. Jordheim L. Dumontet C. Pyrimidine nucleoside analogs in cancer treatment. Expert Rev. Anticancer Ther. 2003 3 5 717 728 10.1586/14737140.3.5.717 14599094
    [Google Scholar]
  83. Perlíková P. Hocek M. Pyrrolo[2,3‐ d ]pyrimidine (7‐deazapurine) as a privileged scaffold in design of antitumor and antiviral nucleosides. Med. Res. Rev. 2017 37 6 1429 1460 10.1002/med.21465 28834581
    [Google Scholar]
  84. Yadav T.T. Moin Shaikh G. Kumar M.S. Chintamaneni M. Yc M. A review on fused pyrimidine systems as EGFR inhibitors and their structure–activity relationship. Front Chem. 2022 10 861288 10.3389/fchem.2022.861288 35769445
    [Google Scholar]
  85. Abdellatif K.R.A. Bakr R.B. Pyrimidine and fused pyrimidine derivatives as promising protein kinase inhibitors for cancer treatment. Med. Chem. Res. 2021 30 1 31 49 10.1007/s00044‑020‑02656‑8
    [Google Scholar]
  86. Faizan S. Wali A.F. Talath S. Rehman M.U. Sivamani Y. Nilugal K.C. Shivangere N.B. Attia S.M. Nadeem A. Elayaperumal S. Kumar B.R.P. Novel dihydropyrimidines as promising EGFR & HER2 inhibitors: Insights from experimental and computational studies. Eur. J. Med. Chem. 2024 275 116607 10.1016/j.ejmech.2024.116607 38908102
    [Google Scholar]
  87. Thanh N.D. Hai D.S. Thi Huyen L. Giang N.T.K. Thu Ha N.T. Tung D.T. Thi Le C. Van H.T.K. Toan V.N. Synthesis and in vitro anticancer activity of 4H-pyrano[2,3-d]pyrimidine−1H-1,2,3-triazole hybrid compounds bearing D-glucose moiety with dual EGFR/HER2 inhibitory activity and induced fit docking study. J. Mol. Struct. 2023 1271 133932 10.1016/j.molstruc.2022.133932
    [Google Scholar]
  88. Sivaiah G. Raveesha R. Prasad S.B.B. Kumar K.Y. Raghu M.S. Alharethy F. Prashanth M. Jeon B-H. Synthesis, anticancer activity and molecular docking of new pyrazolo[1,5-a]pyrimidine derivatives as EGFR/HER2 dual kinase inhibitors. J. Mol. Struct. 2023 1289 135877 10.1016/j.molstruc.2023.135877
    [Google Scholar]
  89. Milik S.N. Abdel-Aziz A.K. El-Hendawy M.M. El-Gogary R.I. Saadeldin M.K. Minucci S. Klein C.D. Abouzid K.A.M. Insights into the design of inhibitors of the EGFR family with anticancer activity overcoming resistance: A case of optimizing thieno[2,3-d]pyrimidine-based EGFR inhibitors. J. Mol. Struct. 2022 1259 132724 10.1016/j.molstruc.2022.132724
    [Google Scholar]
  90. Lamie P.F. El-Kalaawy A.M. Abdel Latif N.S. Rashed L.A. Philoppes J.N. Pyrazolo[3,4-d]pyrimidine-based dual EGFR T790M/HER2 inhibitors: Design, synthesis, structure–activity relationship and biological activity as potential antitumor and anticonvulsant agents. Eur. J. Med. Chem. 2021 214 113222 10.1016/j.ejmech.2021.113222 33545637
    [Google Scholar]
  91. Elmetwally S.A. Saied K.F. Eissa I.H. Elkaeed E.B. Design, synthesis and anticancer evaluation of thieno[2,3-d]pyrimidine derivatives as dual EGFR/HER2 inhibitors and apoptosis inducers. Bioorg. Chem. 2019 88 102944 10.1016/j.bioorg.2019.102944 31051400
    [Google Scholar]
  92. Alagarsamy V. Chitra K. Saravanan G. Solomon V.R. Sulthana M.T. Narendhar B. An overview of quinazolines: Pharmacological significance and recent developments. Eur. J. Med. Chem. 2018 151 628 685 10.1016/j.ejmech.2018.03.076 29656203
    [Google Scholar]
  93. Cruz-López O. Conejo-García A. Núñez M.C. Kimatrai M. García-Rubiño M.E. Morales F. Gómez-Pérez V. Campos J.M. Novel substituted quinazolines for potent EGFR tyrosine kinase inhibitors. Curr. Med. Chem. 2011 18 7 943 963 10.2174/092986711794940824 21254978
    [Google Scholar]
  94. Wang C. Gao H. Dong J. Wang F. Li P. Zhang J. Insight into the medicinal chemistry of EGFR and HER-2 inhibitors. Curr. Med. Chem. 2014 21 11 1336 1350 10.2174/0929867320666131119124646 24251571
    [Google Scholar]
  95. Farouk A.K.B.A.W. Abdelrasheed Allam H. Rashwan E. George R.F. Abbas S.E.S. Design and synthesis of some new 6-bromo-2-(pyridin-3-yl)-4-substituted quinazolines as multi tyrosine kinase inhibitors. Bioorg. Chem. 2022 128 106099 10.1016/j.bioorg.2022.106099 35994884
    [Google Scholar]
  96. Alkahtani H.M. Abdalla A.N. Obaidullah A.J. Alanazi M.M. Almehizia A.A. Alanazi M.G. Ahmed A.Y. Alwassil O.I. Darwish H.W. Abdel-Aziz A.A.M. El-Azab A.S. Synthesis, cytotoxic evaluation, and molecular docking studies of novel quinazoline derivatives with benzenesulfonamide and anilide tails: Dual inhibitors of EGFR/HER2. Bioorg. Chem. 2020 95 103461 10.1016/j.bioorg.2019.103461 31838290
    [Google Scholar]
  97. Das D. Xie L. Wang J. Xu X. Zhang Z. Shi J. Le X. Hong J. Discovery of new quinazoline derivatives as irreversible dual EGFR/HER2 inhibitors and their anticancer activities – Part 1. Bioorg. Med. Chem. Lett. 2019 29 4 591 596 10.1016/j.bmcl.2018.12.056 30600209
    [Google Scholar]
  98. Ghorab M.M. Alsaid M.S. Soliman A.M. Dual EGFR/HER2 inhibitors and apoptosis inducers: New benzo[g]quinazoline derivatives bearing benzenesulfonamide as anticancer and radiosensitizers. Bioorg. Chem. 2018 80 611 620 10.1016/j.bioorg.2018.07.015 30041137
    [Google Scholar]
  99. Yin S. Tang C. Wang B. Zhang Y. Zhou L. Xue L. Zhang C. Design, synthesis and biological evaluation of novel EGFR/HER2 dual inhibitors bearing a oxazolo[4,5-g]quinazolin-2(1H)-one scaffold. Eur. J. Med. Chem. 2016 120 26 36 10.1016/j.ejmech.2016.04.072 27187856
    [Google Scholar]
  100. Sruthi A.S.V.L. Faizan S. Vikram H. Veena N.G. Susil A. Harindranath H. Vasanth Kumar S. Kumar Shivaraju V. Prashantha Kumar B.R. A multifaceted approach for the development of novel Hantzsch 1,4-dihydropyridines as anticancer agents: Rational design, parallel synthesis, analysis, cytotoxicity and EGFR/HER2 inhibition studies. Results Chem. 2024 7 101413 10.1016/j.rechem.2024.101413
    [Google Scholar]
  101. Hawas S.S. El-Sayed S.M. Elzahhar P.A. Moustafa M.A. New 2-alkoxycyanopyridine derivatives as inhibitors of EGFR, HER2, and DHFR: Synthesis, anticancer evaluation, and molecular modeling studies. Bioorg. Chem. 2023 141 106874 10.1016/j.bioorg.2023.106874 37769524
    [Google Scholar]
  102. Mirgany T.O. Rahman A.F.M.M. Alanazi M.M. Design, synthesis, and mechanistic evaluation of novel benzimidazole-hydrazone compounds as dual inhibitors of EGFR and HER2: Promising candidates for anticancer therapy. J. Mol. Struct. 2024 1309 138177 10.1016/j.molstruc.2024.138177
    [Google Scholar]
  103. Moharram E.A. El-Sayed S.M. Ghabbour H.A. El-Subbagh H.I. Synthesis, molecular modeling simulations and anticancer activity of some new Imidazo[2,1-b]thiazole analogues as EGFR/HER2 and DHFR inhibitors. Bioorg. Chem. 2024 150 107538 10.1016/j.bioorg.2024.107538 38861913
    [Google Scholar]
  104. Sabry M.A. Ghaly M.A. Maarouf A.R. El-Subbagh H.I. New thiazole-based derivatives as EGFR/HER2 and DHFR inhibitors: Synthesis, molecular modeling simulations and anticancer activity. Eur. J. Med. Chem. 2022 241 114661 10.1016/j.ejmech.2022.114661 35964425
    [Google Scholar]
  105. Zou M. Li J. Jin B. Wang M. Chen H. Zhang Z. Zhang C. Zhao Z. Zheng L. Design, synthesis and anticancer evaluation of new 4-anilinoquinoline-3-carbonitrile derivatives as dual EGFR/HER2 inhibitors and apoptosis inducers. Bioorg. Chem. 2021 114 105200 10.1016/j.bioorg.2021.105200 34375195
    [Google Scholar]
  106. Labib M.B. Philoppes J.N. Lamie P.F. Ahmed E.R. Azole-hydrazone derivatives: Design, synthesis, in vitro biological evaluation, dual EGFR/HER2 inhibitory activity, cell cycle analysis and molecular docking study as anticancer agents. Bioorg. Chem. 2018 76 67 80 10.1016/j.bioorg.2017.10.016 29153588
    [Google Scholar]
  107. Tao X.X. Duan Y.T. Chen L.W. Tang D.J. Yang M.R. Wang P.F. Xu C. Zhu H.L. Design, synthesis and biological evaluation of pyrazolyl-nitroimidazole derivatives as potential EGFR/HER-2 kinase inhibitors. Bioorg. Med. Chem. Lett. 2016 26 2 677 683 10.1016/j.bmcl.2015.11.040 26652482
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266378477250610122156
Loading
/content/journals/ctmc/10.2174/0115680266378477250610122156
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: EGFR/HER2 dual inhibitors ; anticancer ; heterocyclic compounds ; SAR
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test