Skip to content
2000
image of Advances in the Directed Evolution of Computer-aided Enzymes

Abstract

Experimental-driven directed evolution has achieved remarkable success in enzyme engineering. However, it relies on random mutagenesis and high-throughput screening, both of which have certain limitations, particularly the randomness of mutagenesis and the extensive screening workload that slows down the method's rapid development. In contrast, computer-aided directed evolution combines computational simulations with experimental techniques, providing an efficient and precise approach to enzyme rational design and optimization. By integrating computational tools, researchers can streamline the enzyme design process, improving the accuracy of mutations and screenings, which in turn accelerates enzyme optimization. This review comprehensively introduces the commonly used methods and applications of computer-aided directed evolution, discussing the tools and techniques frequently used in protein sequence analysis and structural analysis. It also covers computational simulation and prediction strategies such as homology modeling, molecular docking, molecular dynamics simulations, machine learning algorithms, and virtual screening. These tools play a critical role in predicting the effects of mutations on enzyme function and optimizing enzyme performance. Moreover, the review explores widely adopted semi-rational and rational design strategies in enzyme engineering, which combine computational predictions with experimental validation to effectively improve enzyme performance. Additionally, the article delves into the challenges and bottlenecks encountered in applying computational technologies in directed evolution, including issues related to computational precision, data quality, and the complexity of enzyme-substrate interactions. Despite these challenges, the future of computer-aided directed evolution holds great promise, with advancements in computational power, machine learning, and multi-omics data integration offering tremendous potential to overcome current limitations.

In conclusion, this review aims to provide valuable insights for researchers in enzyme engineering, assisting them in developing new, efficient enzymes by integrating both experimental and computational approaches.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266377310250526045137
2025-05-29
2025-10-24
Loading full text...

Full text loading...

References

  1. Sheldon R.A. Pereira P.C. Biocatalysis engineering: The big picture. Chem. Soc. Rev. 2017 46 10 2678 2691 10.1039/C6CS00854B 28287660
    [Google Scholar]
  2. Wu S. Snajdrova R. Moore J.C. Baldenius K. Bornscheuer U.T. Biocatalysis: Enzymatic synthesis for industrial applications. Angew. Chem. Int. Ed. 2021 60 1 88 119 10.1002/anie.202006648 32558088
    [Google Scholar]
  3. Reetz M.T. Bocola M. Carballeira J.D. Zha D. Vogel A. Expanding the range of substrate acceptance of enzymes: Combinatorial active-site saturation test. Angew. Chem. Int. Ed. 2005 44 27 4192 4196 10.1002/anie.200500767 15929154
    [Google Scholar]
  4. Chowdhury R. Maranas C.D. From directed evolution to computational enzyme engineering: A review. AIChE J. 2020 66 3 e16847 10.1002/aic.16847
    [Google Scholar]
  5. Reetz M.T. Soni P. Acevedo J.P. Sanchis J. Creation of an amino acid network of structurally coupled residues in the directed evolution of a thermostable enzyme. Angew. Chem. Int. Ed. 2009 48 44 8268 8272 10.1002/anie.200904209 19787674
    [Google Scholar]
  6. Xu Z. Cen Y.K. Zou S.P. Xue Y.P. Zheng Y.G. Recent advances in the improvement of enzyme thermostability by structure modification. Crit. Rev. Biotechnol. 2020 40 1 83 98 10.1080/07388551.2019.1682963 31690132
    [Google Scholar]
  7. Reetz M.T. Controlling the enantioselectivity of enzymes by directed evolution: Practical and theoretical ramifications. Proc. Natl. Acad. Sci. USA 2004 101 16 5716 5722 10.1073/pnas.0306866101 15079053
    [Google Scholar]
  8. Fong S. Machajewski T.D. Mak C.C. Wong C.H. Directed evolution of D-2-keto-3-deoxy-6-phosphogluconate aldolase to new variants for the efficient synthesis of D- and L-sugars. Chem. Biol. 2000 7 11 873 883 10.1016/S1074‑5521(00)00035‑1 11094340
    [Google Scholar]
  9. Williams G.J. Domann S. Nelson A. Berry A. Modifying the stereochemistry of an enzyme-catalyzed reaction by directed evolution. Proc. Natl. Acad. Sci. USA 2003 100 6 3143 3148 10.1073/pnas.0635924100 12626743
    [Google Scholar]
  10. Alexeeva M. Enright A. Dawson M.J. Mahmoudian M. Turner N.J. Deracemization of alpha-methylbenzylamine using an enzyme obtained by in vitro evolution. Angew. Chem. Int. Ed. 2002 41 17 3177 3180 10.1002/1521‑3773(20020902)41:17<3177:AID‑ANIE3177>3.0.CO;2‑P 12207381
    [Google Scholar]
  11. Scrutton N.S. Speeding up enzyme engineering computationally. IUCrJ 2016 4 Pt 1 5 6 [PMID: 28250937
    [Google Scholar]
  12. Wang Y. Xue P. Cao M. Yu T. Lane S.T. Zhao H. Directed evolution: Methodologies and applications. Chem. Rev. 2021 121 20 12384 12444 10.1021/acs.chemrev.1c00260 34297541
    [Google Scholar]
  13. Li D.Y. Wu Q. Reetz M.T. Focused rational iterative site-specific mutagenesis (FRISM). Enzyme Engineering and Evolution: General Methods. Tawfik D.S. Elsevier 2020 225 242 10.1016/bs.mie.2020.04.055
    [Google Scholar]
  14. Wu L. Qin L. Nie Y. Xu Y. Zhao Y.L. Computer-aided understanding and engineering of enzymatic selectivity. Biotechnol. Adv. 2022 54 107793 10.1016/j.biotechadv.2021.107793 34217814
    [Google Scholar]
  15. Zhou L. Tao C. Shen X. Sun X. Wang J. Yuan Q. Unlocking the potential of enzyme engineering via rational computational design strategies. Biotechnol. Adv. 2024 73 108376 10.1016/j.biotechadv.2024.108376 38740355
    [Google Scholar]
  16. Durrant J.D. McCammon J.A. Molecular dynamics simulations and drug discovery. BMC Biol. 2011 9 1 71 10.1186/1741‑7007‑9‑71 22035460
    [Google Scholar]
  17. Kouba P. Kohout P. Haddadi F. Bushuiev A. Samusevich R. Sedlar J. Damborsky J. Pluskal T. Sivic J. Mazurenko S. Machine learning-guided protein engineering. ACS Catal. 2023 13 21 13863 13895 10.1021/acscatal.3c02743 37942269
    [Google Scholar]
  18. Ravikumar A. Arzumanyan G.A. Obadi M.K.A. Javanpour A.A. Liu C.C. Scalable, continuous evolution of genes at mutation rates above genomic error thresholds. Cell 2018 175 7 1946 1957.e13 10.1016/j.cell.2018.10.021 30415839
    [Google Scholar]
  19. McCullum E.O. Williams B.A.R. Zhang J. Chaput J.C. Random mutagenesis by error-prone PCR. Methods Mol. Biol. 2010 634 103 109 10.1007/978‑1‑60761‑652‑8_7 20676978
    [Google Scholar]
  20. Myers F.A. Random mutagenesis by PCR. Methods Mol. Biol. 2023 2633 81 86 10.1007/978‑1‑0716‑3004‑4_7 36853458
    [Google Scholar]
  21. Ossa-Hernández N. Marins L.F. Almeida D.V. Combination of error-prone PCR (epPCR) and Circular Polymerase Extension Cloning (CPEC) for improving the coverage of random mutagenesis libraries. Sci. Rep. 2024 14 1 15874 10.1038/s41598‑024‑66584‑y 38982265
    [Google Scholar]
  22. Behrendorff J.B.Y.H. Johnston W.A. Gillam E.M.J. DNA shuffling of cytochrome P450 enzymes. Methods Mol. Biol. 2013 987 177 188 10.1007/978‑1‑62703‑321‑3_16 23475678
    [Google Scholar]
  23. Yao Z. Jeon H.S. Yoo J.Y. Kang Y.J. Kim M.J. Kim T.J. Kim J.H. DNA shuffling of aprE genes to increase fibrinolytic activity and thermostability. J. Microbiol. Biotechnol. 2022 32 6 800 807 10.4014/jmb.2202.02017 35484964
    [Google Scholar]
  24. Hoya M. Matsunaga R. Nagatoishi S. Tsumoto K. Experimental modification in thermal stability of oligomers by alanine substitution and site saturation mutagenesis of interfacial residues. Biochem. Biophys. Res. Commun. 2024 691 149316 10.1016/j.bbrc.2023.149316 38039832
    [Google Scholar]
  25. Sayous V. Lubrano P. Li Y. Acevedo-Rocha C.G. Unbiased libraries in protein directed evolution. Biochim. Biophys. Acta. Proteins Proteomics 2020 1868 2 140321 10.1016/j.bbapap.2019.140321 31740416
    [Google Scholar]
  26. Zaccolo M. Williams D.M. Brown D.M. Gherardi E. An approach to random mutagenesis of DNA using mixtures of triphosphate derivatives of nucleoside analogues. J. Mol. Biol. 1996 255 4 589 603 10.1006/jmbi.1996.0049 8568899
    [Google Scholar]
  27. Biles B.D. Connolly B.A. Low-fidelity Pyrococcus furiosus DNA polymerase mutants useful in error-prone PCR. Nucleic Acids Res. 2004 32 22 e176 e176 10.1093/nar/gnh174 15601989
    [Google Scholar]
  28. Ebrahimi Fana S. Fazaeli A. Aminian M. Directed evolution of cholesterol oxidase with improved thermostability using error-prone PCR. Biotechnol. Lett. 2023 45 9 1159 1167 10.1007/s10529‑023‑03401‑y 37289346
    [Google Scholar]
  29. Zeng J. He C. Guo J. Yuan L. Improvement of the catalytic activity of thermoacidophilic pullulan hydrolase type III by error-prone PCR technology. Appl. Biochem. Microbiol. 2022 58 3 277 285 10.1134/S0003683822030152
    [Google Scholar]
  30. Stemmer W.P. DNA shuffling by random fragmentation and reassembly: In vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA 1994 91 22 10747 10751 10.1073/pnas.91.22.10747 7938023
    [Google Scholar]
  31. Schaffer N.M.D.V. Computational and experimental analysis of DNA shuffling. Proc. Natl. Acad. Sci. USA 2002 100 6 3071 10.1073/pnas.0537968100
    [Google Scholar]
  32. Behrendorff J.B.Y.H. Johnston W.A. Gillam E.M.J. Restriction enzyme-mediated DNA family shuffling. Methods Mol. Biol. 2014 1179 175 187 10.1007/978‑1‑4939‑1053‑3_12 25055778
    [Google Scholar]
  33. Morley K.L. Kazlauskas R.J. Improving enzyme properties: When are closer mutations better? Trends Biotechnol. 2005 23 5 231 237 10.1016/j.tibtech.2005.03.005 15866000
    [Google Scholar]
  34. Qu G. Li A. Acevedo-Rocha C.G. Sun Z. Reetz M.T. The crucial role of methodology development in directed evolution of selective enzymes. Angew. Chem. Int. Ed. 2020 59 32 13204 13231 10.1002/anie.201901491 31267627
    [Google Scholar]
  35. Carballeira J.D. Krumlinde P. Bocola M. Vogel A. Reetz M.T. Bäckvall J.E. Directed evolution and axial chirality: Optimization of the enantioselectivity of Pseudomonas aeruginosa lipase towards the kinetic resolution of a racemic allene. Chem. Commun. (Camb.) 2007 19 1913 1915 10.1039/B700849J 17695227
    [Google Scholar]
  36. Sun Z. Wikmark Y. Bäckvall J.E. Reetz M.T. New concepts for increasing the efficiency in directed evolution of stereoselective enzymes. Chemistry 2016 22 15 5046 5054 10.1002/chem.201504406 26914401
    [Google Scholar]
  37. Acevedo-Rocha C.G. Hoebenreich S. Reetz M.T. Iterative saturation mutagenesis: A powerful approach to engineer proteins by systematically simulating Darwinian evolution. Methods Mol. Biol. 2014 1179 103 128 10.1007/978‑1‑4939‑1053‑3_7 25055773
    [Google Scholar]
  38. Qu G. Zhao J. Zheng P. Sun J. Sun Z. Recent advances in directed evolution. Chin. J. Biotechnol. 2018 34 1 11 10.13345/j.cjb.170273
    [Google Scholar]
  39. Yang M.J. Lee H.W. Kim H. Enhancement of thermostability of Bacillus subtilis endoglucanase by error-prone PCR and DNA shuffling. Appl. Biol. Chem. 2017 60 1 73 78 10.1007/s13765‑017‑0254‑3
    [Google Scholar]
  40. Miyazaki K. Arnold F.H. Exploring nonnatural evolutionary pathways by saturation mutagenesis: Rapid improvement of protein function. J. Mol. Evol. 1999 49 6 716 720 10.1007/PL00006593 10594172
    [Google Scholar]
  41. Markel U. Essani K.D. Besirlioglu V. Schiffels J. Streit W.R. Schwaneberg U. Advances in ultrahigh-throughput screening for directed enzyme evolution. Chem. Soc. Rev. 2020 49 1 233 262 10.1039/C8CS00981C 31815263
    [Google Scholar]
  42. Packer M.S. Liu D.R. Methods for the directed evolution of proteins. Nat. Rev. Genet. 2015 16 7 379 394 10.1038/nrg3927 26055155
    [Google Scholar]
  43. Xiao H. Bao Z. Zhao H. High throughput screening and selection methods for directed enzyme evolution. Ind. Eng. Chem. Res. 2015 54 16 4011 4020 10.1021/ie503060a 26074668
    [Google Scholar]
  44. Liu Y. Yuan H. Ding D. Dong H. Wang Q. Zhang D. Establishment of a biosensor-based high-throughput screening platform for tryptophan overproduction. ACS Synth. Biol. 2021 10 6 1373 1383 10.1021/acssynbio.0c00647 34081459
    [Google Scholar]
  45. Davis A.M. Plowright A.T. Valeur E. Directing evolution: The next revolution in drug discovery? Nat. Rev. Drug Discov. 2017 16 10 681 698 10.1038/nrd.2017.146 28935911
    [Google Scholar]
  46. Chin M. Tada S. Tsai M.H. Ito Y. Luo S.C. Strategy to immobilize peptide probe selected through in vitro ribosome display for electrochemical aptasensor application. Anal. Chem. 2020 92 16 11260 11267 10.1021/acs.analchem.0c01891 32506902
    [Google Scholar]
  47. Fleming S.R. Himes P.M. Ghodge S.V. Goto Y. Suga H. Bowers A.A. Exploring the post-translational enzymology of PaaA by mRNA Display. J. Am. Chem. Soc. 2020 142 11 5024 5028 10.1021/jacs.0c01576 32109054
    [Google Scholar]
  48. Yang J. Su X. Zhu L. Advances of high-throughput screening system in reengineering of biological entities. Chin. J. Biotechnol. 2021 37 7 2197 2210 [PMID: 34327888
    [Google Scholar]
  49. Jiang J. Yang G. Ma F. Fluorescence coupling strategies in fluorescence-activated droplet sorting (FADS) for ultrahigh-throughput screening of enzymes, metabolites, and antibodies. Biotechnol. Adv. 2023 66 108173 10.1016/j.biotechadv.2023.108173 37169102
    [Google Scholar]
  50. Cribari M.A. Unger M.J. Unarta I.C. Ogorek A.N. Huang X. Martell J.D. Ultrahigh-throughput directed evolution of polymer-degrading enzymes using yeast display. J. Am. Chem. Soc. 2023 145 50 27380 27389 10.1021/jacs.3c08291 38051911
    [Google Scholar]
  51. Aharoni A. Amitai G. Bernath K. Magdassi S. Tawfik D.S. High-throughput screening of enzyme libraries: Thiolactonases evolved by fluorescence-activated sorting of single cells in emulsion compartments. Chem. Biol. 2005 12 12 1281 1289 10.1016/j.chembiol.2005.09.012 16356845
    [Google Scholar]
  52. Verma R. Schwaneberg U. Roccatano D. Computer-aided protein directed evolution: A review of web servers, databases and other computational tools for protein engineering. Comput. Struct. Biotechnol. J. 2012 2 3 e201209008 10.5936/csbj.201209008 24688649
    [Google Scholar]
  53. Collier T.A. Piggot T.J. Allison J.R. Molecular dynamics simulation of proteins. Methods Mol. Biol. 2020 2073 311 327 10.1007/978‑1‑4939‑9869‑2_17 31612449
    [Google Scholar]
  54. Dubey N.C. Tripathi B.P. Nature inspired multienzyme immobilization: Strategies and concepts. ACS Appl. Bio Mater. 2021 4 2 1077 1114 10.1021/acsabm.0c01293 35014469
    [Google Scholar]
  55. Edgar R.C. Muscle5: High-accuracy alignment ensembles enable unbiased assessments of sequence homology and phylogeny. Nat. Commun. 2022 13 1 6968 10.1038/s41467‑022‑34630‑w 36379955
    [Google Scholar]
  56. Porebski B.T. Buckle A.M. Consensus protein design. Protein Eng. Des. Sel. 2016 29 7 245 251 10.1093/protein/gzw015 27274091
    [Google Scholar]
  57. Dash S. Rahman S.R. Hines H.M. Feng W. iBLAST: Incremental BLAST of new sequences via automated e-value correction. PLoS One 2021 16 4 e0249410 10.1371/journal.pone.0249410 33886589
    [Google Scholar]
  58. McGinnis S. Madden T.L. BLAST: At the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 2004 32 Web Server W20 W25 10.1093/nar/gkh435 15215342
    [Google Scholar]
  59. Chen Y. Ye W. Zhang Y. Xu Y. High speed BLASTN: An accelerated MegaBLAST search tool. Nucleic Acids Res. 2015 43 16 7762 7768 10.1093/nar/gkv784 26250111
    [Google Scholar]
  60. Buchfink B. Xie C. Huson D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015 12 1 59 60 10.1038/nmeth.3176 25402007
    [Google Scholar]
  61. Buchfink B. Reuter K. Drost H.G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 2021 18 4 366 368 10.1038/s41592‑021‑01101‑x 33828273
    [Google Scholar]
  62. Sievers F. Higgins D.G. The clustal omega multiple alignment package. Methods Mol. Biol. 2021 2231 3 16 10.1007/978‑1‑0716‑1036‑7_1 33289883
    [Google Scholar]
  63. Sievers F. Wilm A. Dineen D. Gibson T.J. Karplus K. Li W. Lopez R. McWilliam H. Remmert M. Söding J. Thompson J.D. Higgins D.G. Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011 7 1 539 10.1038/msb.2011.75 21988835
    [Google Scholar]
  64. Sievers F. Higgins D.G. Clustal omega. Curr. Protoc Bioinformatics 2014 48 3.13.1 3.13.16 10.1002/0471250953.bi0313s48
    [Google Scholar]
  65. Sievers F. Higgins D.G. Clustal Omega, accurate alignment of very large numbers of sequences. Methods Mol. Biol. 2014 1079 105 116 10.1007/978‑1‑62703‑646‑7_6 24170397
    [Google Scholar]
  66. Katoh K. Standley D.M. A simple method to control over-alignment in the MAFFT multiple sequence alignment program. Bioinformatics 2016 32 13 1933 1942 10.1093/bioinformatics/btw108 27153688
    [Google Scholar]
  67. Katoh K. Misawa K. Kuma K. Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002 30 14 3059 3066 10.1093/nar/gkf436 12136088
    [Google Scholar]
  68. Katoh K. Kuma K. Toh H. Miyata T. MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005 33 2 511 518 10.1093/nar/gki198 15661851
    [Google Scholar]
  69. Nakamura T. Yamada K.D. Tomii K. Katoh K. Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics 2018 34 14 2490 2492 10.1093/bioinformatics/bty121 29506019
    [Google Scholar]
  70. Collins K. Warnow T. PASTA for proteins. Bioinformatics 2018 34 22 3939 3941 10.1093/bioinformatics/bty495 29931282
    [Google Scholar]
  71. Kapli P. Yang Z. Telford M.J. Phylogenetic tree building in the genomic age. Nat. Rev. Genet. 2020 21 7 428 444 10.1038/s41576‑020‑0233‑0 32424311
    [Google Scholar]
  72. Edgar R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004 32 5 1792 1797 10.1093/nar/gkh340 15034147
    [Google Scholar]
  73. Leelananda S.P. Lindert S. Computational methods in drug discovery. Beilstein J. Org. Chem. 2016 12 2694 2718 10.3762/bjoc.12.267 28144341
    [Google Scholar]
  74. Santos O.A. de Alencastro R.B. Protein homology modeling. Quim. Nova 2003 26 2 253 259 10.1590/S0100‑40422003000200019
    [Google Scholar]
  75. Bienert S. Waterhouse A. de Beer T.A.P. Tauriello G. Studer G. Bordoli L. Schwede T. The SWISS-MODEL Repository—new features and functionality. Nucleic Acids Res. 2017 45 D1 D313 D319 10.1093/nar/gkw1132 27899672
    [Google Scholar]
  76. Waterhouse A. Bertoni M. Bienert S. Studer G. Tauriello G. Gumienny R. Heer F.T. de Beer T.A.P. Rempfer C. Bordoli L. Lepore R. Schwede T. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018 46 W1 W296 W303 10.1093/nar/gky427 29788355
    [Google Scholar]
  77. Silva M.A. Nascimento Júnior J.C. Thomaz D.V. Maia R.T. Costa Amador V. Tommaso G. Coelho G.D. Comparative homology of Pleurotus ostreatus laccase enzyme: Swiss model or Modeller? J. Biomol. Struct. Dyn. 2023 41 18 8927 8940 10.1080/07391102.2022.2138975 36310115
    [Google Scholar]
  78. Kelley L.A. Mezulis S. Yates C.M. Wass M.N. Sternberg M.J.E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015 10 6 845 858 10.1038/nprot.2015.053 25950237
    [Google Scholar]
  79. Lee C. Su B.H. Tseng Y.J. Comparative studies of AlphaFold, RoseTTAFold and Modeller: A case study involving the use of G-protein-coupled receptors. Brief. Bioinform. 2022 23 5 bbac308 10.1093/bib/bbac308 35945035
    [Google Scholar]
  80. Mathur A. Shankaracharya; Vidyarthi, A.S. SWIFT MODELLER: A JAVA based GUI for molecular modeling. J. Mol. Model. 2011 17 10 2601 2607 10.1007/s00894‑011‑0960‑4 21258829
    [Google Scholar]
  81. Mathur A. Shankaracharya; Vidyarthi, A.S. SWIFT MODELLER v2.0: A platform-independent GUI for homology modeling. J. Mol. Model. 2012 18 7 3021 3023 10.1007/s00894‑011‑1319‑6 22160795
    [Google Scholar]
  82. Yang J. Zhang Y. I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Res. 2015 43 W1 W174 W181 10.1093/nar/gkv342 25883148
    [Google Scholar]
  83. Zhou X. Zheng W. Li Y. Pearce R. Zhang C. Bell E.W. Zhang G. Zhang Y. I-TASSER-MTD: A deep-learning-based platform for multi-domain protein structure and function prediction. Nat. Protoc. 2022 17 10 2326 2353 10.1038/s41596‑022‑00728‑0 35931779
    [Google Scholar]
  84. Leman J.K. Weitzner B.D. Lewis S.M. Adolf-Bryfogle J. Alam N. Alford R.F. Aprahamian M. Baker D. Barlow K.A. Barth P. Basanta B. Bender B.J. Blacklock K. Bonet J. Boyken S.E. Bradley P. Bystroff C. Conway P. Cooper S. Correia B.E. Coventry B. Das R. De Jong R.M. DiMaio F. Dsilva L. Dunbrack R. Ford A.S. Frenz B. Fu D.Y. Geniesse C. Goldschmidt L. Gowthaman R. Gray J.J. Gront D. Guffy S. Horowitz S. Huang P.S. Huber T. Jacobs T.M. Jeliazkov J.R. Johnson D.K. Kappel K. Karanicolas J. Khakzad H. Khar K.R. Khare S.D. Khatib F. Khramushin A. King I.C. Kleffner R. Koepnick B. Kortemme T. Kuenze G. Kuhlman B. Kuroda D. Labonte J.W. Lai J.K. Lapidoth G. Leaver-Fay A. Lindert S. Linsky T. London N. Lubin J.H. Lyskov S. Maguire J. Malmström L. Marcos E. Marcu O. Marze N.A. Meiler J. Moretti R. Mulligan V.K. Nerli S. Norn C. Ó’Conchúir S. Ollikainen N. Ovchinnikov S. Pacella M.S. Pan X. Park H. Pavlovicz R.E. Pethe M. Pierce B.G. Pilla K.B. Raveh B. Renfrew P.D. Burman S.S.R. Rubenstein A. Sauer M.F. Scheck A. Schief W. Schueler-Furman O. Sedan Y. Sevy A.M. Sgourakis N.G. Shi L. Siegel J.B. Silva D.A. Smith S. Song Y. Stein A. Szegedy M. Teets F.D. Thyme S.B. Wang R.Y.R. Watkins A. Zimmerman L. Bonneau R. Macromolecular modeling and design in Rosetta: Recent methods and frameworks. Nat. Methods 2020 17 7 665 680 10.1038/s41592‑020‑0848‑2 32483333
    [Google Scholar]
  85. Ferraz M.V.F. Neto J.C.S. Lins R.D. Teixeira E.S. An artificial neural network model to predict structure-based protein–protein free energy of binding from Rosetta-calculated properties. Phys. Chem. Chem. Phys. 2023 25 10 7257 7267 10.1039/D2CP05644E 36810523
    [Google Scholar]
  86. Jumper J. Evans R. Pritzel A. Green T. Figurnov M. Ronneberger O. Tunyasuvunakool K. Bates R. Žídek A. Potapenko A. Bridgland A. Meyer C. Kohl S.A.A. Ballard A.J. Cowie A. Romera-Paredes B. Nikolov S. Jain R. Adler J. Back T. Petersen S. Reiman D. Clancy E. Zielinski M. Steinegger M. Pacholska M. Berghammer T. Bodenstein S. Silver D. Vinyals O. Senior A.W. Kavukcuoglu K. Kohli P. Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature 2021 596 7873 583 589 10.1038/s41586‑021‑03819‑2 34265844
    [Google Scholar]
  87. Ruff K.M. Pappu R.V. AlphaFold and implications for intrinsically disordered proteins. J. Mol. Biol. 2021 433 20 167208 10.1016/j.jmb.2021.167208 34418423
    [Google Scholar]
  88. Pak M.A. Markhieva K.A. Novikova M.S. Petrov D.S. Vorobyev I.S. Maksimova E.S. Kondrashov F.A. Ivankov D.N. Using AlphaFold to predict the impact of single mutations on protein stability and function. PLoS One 2023 18 3 e0282689 10.1371/journal.pone.0282689 36928239
    [Google Scholar]
  89. Senior A.W. Evans R. Jumper J. Kirkpatrick J. Sifre L. Green T. Qin C. Žídek A. Nelson A.W.R. Bridgland A. Penedones H. Petersen S. Simonyan K. Crossan S. Kohli P. Jones D.T. Silver D. Kavukcuoglu K. Hassabis D. Improved protein structure prediction using potentials from deep learning. Nature 2020 577 7792 706 710 10.1038/s41586‑019‑1923‑7 31942072
    [Google Scholar]
  90. Jumper J. Evans R. Pritzel A. Green T. Figurnov M. Ronneberger O. Tunyasuvunakool K. Bates R. Žídek A. Potapenko A. Bridgland A. Meyer C. Kohl S.A.A. Ballard A.J. Cowie A. Romera-Paredes B. Nikolov S. Jain R. Adler J. Back T. Petersen S. Reiman D. Clancy E. Zielinski M. Steinegger M. Pacholska M. Berghammer T. Silver D. Vinyals O. Senior A.W. Kavukcuoglu K. Kohli P. Hassabis D. Applying and improving AlphaFold at CASP14. Proteins 2021 89 12 1711 1721 10.1002/prot.26257 34599769
    [Google Scholar]
  91. Yin R. Feng B.Y. Varshney A. Pierce B.G. Benchmarking AlphaFold for protein complex modeling reveals accuracy determinants. Protein Sci. 2022 31 8 e4379 10.1002/pro.4379 35900023
    [Google Scholar]
  92. Wee J. Wei G.W. Evaluation of AlphaFold 3’s protein–protein complexes for predicting binding free energy changes upon mutation. J. Chem. Inf. Model. 2024 64 16 6676 6683 10.1021/acs.jcim.4c00976 39116039
    [Google Scholar]
  93. Abramson J. Adler J. Dunger J. Evans R. Green T. Pritzel A. Ronneberger O. Willmore L. Ballard A.J. Bambrick J. Bodenstein S.W. Evans D.A. Hung C.C. O’Neill M. Reiman D. Tunyasuvunakool K. Wu Z. Žemgulytė A. Arvaniti E. Beattie C. Bertolli O. Bridgland A. Cherepanov A. Congreve M. Cowen-Rivers A.I. Cowie A. Figurnov M. Fuchs F.B. Gladman H. Jain R. Khan Y.A. Low C.M.R. Perlin K. Potapenko A. Savy P. Singh S. Stecula A. Thillaisundaram A. Tong C. Yakneen S. Zhong E.D. Zielinski M. Žídek A. Bapst V. Kohli P. Jaderberg M. Hassabis D. Jumper J.M. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024 630 8016 493 500 10.1038/s41586‑024‑07487‑w 38718835
    [Google Scholar]
  94. Desai D. Kantliwala S.V. Vybhavi J. Ravi R. Patel H. Patel J. Review of AlphaFold 3: Transformative advances in drug design and therapeutics. Cureus 2024 16 7 e63646 10.7759/cureus.63646 39092344
    [Google Scholar]
  95. Elofsson A. Progress at protein structure prediction, as seen in CASP15. Curr. Opin. Struct. Biol. 2023 80 102594 10.1016/j.sbi.2023.102594 37060758
    [Google Scholar]
  96. Lin J. Zhang L. Zhang G. Fang B. Molecular docking of Bacillus pumilus xylanase and xylan substrate using computer modeling. Chin. J. Biotechnol. 2007 23 4 715 718 10.1016/S1872‑2075(07)60047‑8 17822050
    [Google Scholar]
  97. Chen Z. Ma Y. He M. Ren H. Zhou S. Lai D. Wang Z. Jiang L. Semi-rational directed evolution of monoamine oxidase for kinetic resolution of rac-mexiletine. Appl. Biochem. Biotechnol. 2015 176 8 2267 2278 10.1007/s12010‑015‑1716‑x 26093614
    [Google Scholar]
  98. Salmaso V. Sturlese M. Cuzzolin A. Moro S. Combining self- and cross-docking as benchmark tools: The performance of DockBench in the D3R Grand Challenge 2. J. Comput. Aided Mol. Des. 2018 32 1 251 264 10.1007/s10822‑017‑0051‑4 28840418
    [Google Scholar]
  99. Xue Q. Liu X. Russell P. Li J. Pan W. Fu J. Zhang A. Evaluation of the binding performance of flavonoids to estrogen receptor alpha by Autodock, Autodock Vina and Surflex-Dock. Ecotoxicol. Environ. Saf. 2022 233 113323 10.1016/j.ecoenv.2022.113323 35183811
    [Google Scholar]
  100. Jabeen Y. Ansari N. Rasheed H. Rasheed M.A. Awais M. Ibrahim M. Kanwal S. Khalid A. Zahid M.A. Jamil F. Let’s dock: A smart platform for molecular docking. Pak. J. Zool. 2022 54 4 1577 1582 10.17582/journal.pjz/20210109170113
    [Google Scholar]
  101. Nguyen N.T. Nguyen T.H. Pham T.N.H. Huy N.T. Bay M.V. Pham M.Q. Nam P.C. Vu V.V. Ngo S.T. Autodock vina adopts more accurate binding poses but autodock4 forms better binding affinity. J. Chem. Inf. Model. 2020 60 1 204 211 10.1021/acs.jcim.9b00778 31887035
    [Google Scholar]
  102. Eberhardt J. Santos-Martins D. Tillack A.F. Forli S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 2021 61 8 3891 3898 10.1021/acs.jcim.1c00203 34278794
    [Google Scholar]
  103. Mateev E. Georgieva M. Zlatkov A. Assessing the performance of GOLD, Glide and MM-GBSA on a dataset of hydrazide-hydrazone-based tuberculostatics. Lett. Drug Des. Discov. 2023 20 10 1557 1568 10.2174/1570180819666220512115015
    [Google Scholar]
  104. Muhammed M.T. Aki-Yalcin E. Molecular docking: Principles, advances, and its applications in drug discovery. Lett. Drug Des. Discov. 2024 21 3 480 495 10.2174/1570180819666220922103109
    [Google Scholar]
  105. Corbeil C.R. Williams C.I. Labute P. Variability in docking success rates due to dataset preparation. J. Comput. Aided Mol. Des. 2012 26 6 775 786 10.1007/s10822‑012‑9570‑1 22566074
    [Google Scholar]
  106. Liu Y. Yang J. Chen M. Lu X. Wei Z. Tang C. Yu P. Recent advances in computer-aided virtual screening and docking optimization for aptamer. Curr. Top. Med. Chem. 2023 23 20 1985 2000 10.2174/1568026623666230623145802 37357516
    [Google Scholar]
  107. Santos L.H.S. Ferreira R.S. Caffarena E.R. Integrating molecular docking and molecular dynamics simulations. Methods Mol. Biol. 2019 2053 13 34 10.1007/978‑1‑4939‑9752‑7_2 31452096
    [Google Scholar]
  108. Salmaso V. Moro S. Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: An overview. Front. Pharmacol. 2018 9 923 10.3389/fphar.2018.00923 30186166
    [Google Scholar]
  109. Pinzi L. Rastelli G. Molecular docking: Shifting paradigms in drug discovery. Int. J. Mol. Sci. 2019 20 18 4331 10.3390/ijms20184331 31487867
    [Google Scholar]
  110. Caballero J. The latest automated docking technologies for novel drug discovery. Expert Opin. Drug Discov. 2021 16 6 625 645 10.1080/17460441.2021.1858793 33353444
    [Google Scholar]
  111. Aderinwale T. Christoffer C.W. Sarkar D. Alnabati E. Kihara D. Computational structure modeling for diverse categories of macromolecular interactions. Curr. Opin. Struct. Biol. 2020 64 1 8 10.1016/j.sbi.2020.05.017 32599506
    [Google Scholar]
  112. Vidal-Limon A. Aguilar-Toalá J.E. Liceaga A.M. Integration of molecular docking analysis and molecular dynamics simulations for studying food proteins and bioactive peptides. J. Agric. Food Chem. 2022 70 4 934 943 10.1021/acs.jafc.1c06110 34990125
    [Google Scholar]
  113. Schames J.R. Henchman R.H. Siegel J.S. Sotriffer C.A. Ni H. McCammon J.A. Discovery of a novel binding trench in HIV integrase. J. Med. Chem. 2004 47 8 1879 1881 10.1021/jm0341913 15055986
    [Google Scholar]
  114. Sun H. Li Y. Shen M. Tian S. Xu L. Pan P. Guan Y. Hou T. Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring. Phys. Chem. Chem. Phys. 2014 16 40 22035 22045 10.1039/C4CP03179B 25205360
    [Google Scholar]
  115. Rifai E.A. van Dijk M. Vermeulen N.P.E. Yanuar A. Geerke D.P. A comparative linear interaction energy and MM/PBSA study on SIRT1–ligand binding free energy calculation. J. Chem. Inf. Model. 2019 59 9 4018 4033 10.1021/acs.jcim.9b00609 31461271
    [Google Scholar]
  116. Wang E. Sun H. Wang J. Wang Z. Liu H. Zhang J.Z.H. Hou T. End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chem. Rev. 2019 119 16 9478 9508 10.1021/acs.chemrev.9b00055 31244000
    [Google Scholar]
  117. Varughese J.K. Jose J. Ali N. AlAsmari A.F. Ansari M.A. Patil S. Mathew T.V. Computational insights into dispiro-oxindolopyrrolizidines as aldose reductase inhibitors: Molecular docking, ADME analysis, molecular dynamic simulation, and MM-PBSA analysis. J. Mol. Struct. 2025 1322 140327 10.1016/j.molstruc.2024.140327
    [Google Scholar]
  118. Case D.A. Cheatham T.E. Darden T. Gohlke H. Luo R. Merz K.M. Onufriev A. Simmerling C. Wang B. Woods R.J. The Amber biomolecular simulation programs. J. Comput. Chem. 2005 26 16 1668 1688 10.1002/jcc.20290 16200636
    [Google Scholar]
  119. Lee J. Hitzenberger M. Rieger M. Kern N.R. Zacharias M. Im, W. CHARMM-GUI supports the Amber force fields. J. Chem. Phys. 2020 153 3 035103 10.1063/5.0012280 32716185
    [Google Scholar]
  120. Jefferies D. Khalid S. Atomistic and coarse-grained simulations of membrane proteins: A practical guide. Methods 2021 185 15 27 10.1016/j.ymeth.2020.02.007 32084518
    [Google Scholar]
  121. Rosenberger D. Smith J.S. Garcia A.E. Modeling of peptides with classical and novel machine learning force fields: A comparison. J. Phys. Chem. B 2021 125 14 3598 3612 10.1021/acs.jpcb.0c10401 33798336
    [Google Scholar]
  122. Guo J. Bao Y. Li M. Li S. Xi L. Xin P. Wu L. Liu H. Mu Y. Application of computational approaches in biomembranes: From structure to function. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2023 13 6 e1679 10.1002/wcms.1679
    [Google Scholar]
  123. Salo-Ahen O.M.H. Alanko I. Bhadane R. Bonvin A.M.J.J. Honorato R.V. Hossain S. Juffer A.H. Kabedev A. Lahtela-Kakkonen M. Larsen A.S. Lescrinier E. Marimuthu P. Mirza M.U. Mustafa G. Nunes-Alves A. Pantsar T. Saadabadi A. Singaravelu K. Vanmeert M. Molecular dynamics simulations in drug discovery and pharmaceutical development. Processes 2020 9 1 71 10.3390/pr9010071
    [Google Scholar]
  124. Chodera J.D. Mobley D.L. Shirts M.R. Dixon R.W. Branson K. Pande V.S. Alchemical free energy methods for drug discovery: Progress and challenges. Curr. Opin. Struct. Biol. 2011 21 2 150 160 10.1016/j.sbi.2011.01.011 21349700
    [Google Scholar]
  125. Suárez E. Wiewiora R.P. Wehmeyer C. Noé F. Chodera J.D. Zuckerman D.M. What markov state models can and cannot Do: Correlation versus path-based observables in protein-folding models. J. Chem. Theory Comput. 2021 17 5 3119 3133 10.1021/acs.jctc.0c01154 33904312
    [Google Scholar]
  126. Joshi S.Y. Deshmukh S.A. A review of advancements in coarse-grained molecular dynamics simulations. Mol. Simul. 2021 47 10-11 786 803 10.1080/08927022.2020.1828583
    [Google Scholar]
  127. Gong X. Zhang Y. Chen J. Advanced sampling methods for multiscale simulation of disordered proteins and dynamic interactions. Biomolecules 2021 11 10 1416 10.3390/biom11101416 34680048
    [Google Scholar]
  128. Eken Y. Almeida N.M.S. Wang C. Wilson A.K. SAMPL7: Host–guest binding prediction by molecular dynamics and quantum mechanics. J. Comput. Aided Mol. Des. 2021 35 1 63 77 10.1007/s10822‑020‑00357‑3 33150463
    [Google Scholar]
  129. Kulkarni P.U. Shah H. Vyas V.K. Hybrid quantum mechanics/molecular mechanics (QM/MM) simulation: A tool for structure-based drug design and discovery. Mini Rev. Med. Chem. 2022 22 8 1096 1107 10.2174/1389557521666211007115250 34620049
    [Google Scholar]
  130. Tzeliou C.E. Mermigki M.A. Tzeli D. Review on the QM/MM methodologies and their application to metalloproteins. Molecules 2022 27 9 2660 10.3390/molecules27092660 35566011
    [Google Scholar]
  131. Zhao S. Schaub A.J. Tsai S.C. Luo R. Development of a pantetheine force field library for molecular modeling. J. Chem. Inf. Model. 2021 61 2 856 868 10.1021/acs.jcim.0c01384 33534558
    [Google Scholar]
  132. Terteci-Popescu A.E. Beu T.A. Branched polyethyleneimine: CHARMM force field and molecular dynamics simulations. J. Comput. Chem. 2022 43 31 2072 2083 10.1002/jcc.27005 36169240
    [Google Scholar]
  133. Carrer M. Cezar H.M. Bore S.L. Ledum M. Cascella M. Learning force field parameters from differentiable particle-field molecular dynamics. J. Chem. Inf. Model. 2024 64 14 5510 5520 10.1021/acs.jcim.4c00564 38963184
    [Google Scholar]
  134. Sellés Vidal L. Isalan M. Heap J.T. Ledesma-Amaro R. A primer to directed evolution: Current methodologies and future directions. RSC Chem. Biol. 2023 4 4 271 291 10.1039/D2CB00231K 37034405
    [Google Scholar]
  135. Macdonald C.B. Nedrud D. Grimes P.R. Trinidad D. Fraser J.S. Coyote-Maestas W. DIMPLE: deep insertion, deletion, and missense mutation libraries for exploring protein variation in evolution, disease, and biology. Genome Biol. 2023 24 1 36 10.1186/s13059‑023‑02880‑6 36829241
    [Google Scholar]
  136. Jiang Y. Ran X. Yang Z.J. Data-driven enzyme engineering to identify function-enhancing enzymes. Protein Eng. Des. Sel. 2023 36 gzac009 10.1093/protein/gzac009 36214500
    [Google Scholar]
  137. Fox R. Roy A. Govindarajan S. Minshull J. Gustafsson C. Jones J.T. Emig R. Optimizing the search algorithm for protein engineering by directed evolution. Protein Eng. Des. Sel. 2003 16 8 589 597 10.1093/protein/gzg077 12968076
    [Google Scholar]
  138. Pramanik S. Contreras F. Davari M. Schwaneberg U. Protein engineering by efficient sequence space exploration through combination of directed evolution and computational design methodologies. Protein Engineering. Wiley 2021 153 176 10.1002/9783527815128.ch7
    [Google Scholar]
  139. Sapozhnikov Y. Patel J.S. Ytreberg F.M. Miller C.R. Statistical modeling to quantify the uncertainty of FoldX-predicted protein folding and binding stability. BMC Bioinformatics 2023 24 1 426 10.1186/s12859‑023‑05537‑0 37953256
    [Google Scholar]
  140. Zheng F. Liu Y. Yang Y. Wen Y. Li M. Assessing computational tools for predicting protein stability changes upon missense mutations using a new dataset. Protein Sci. 2024 33 1 e4861 10.1002/pro.4861 38084013
    [Google Scholar]
  141. Huang A. Chen Z. Wu X. Yan W. Lu F. Liu F. Improving the thermal stability and catalytic activity of ulvan lyase by the combination of FoldX and KnowVolution campaign. Int. J. Biol. Macromol. 2024 257 Pt 1 128577 10.1016/j.ijbiomac.2023.128577 38070809
    [Google Scholar]
  142. Zhao Y. Li D. Bai X. Luo M. Feng Y. Zhao Y. Ma F. Yang G.Y. Improved thermostability of proteinase K and recognizing the synergistic effect of Rosetta and FoldX approaches. Protein Eng. Des. Sel. 2021 34 gzab024 10.1093/protein/gzab024 34671809
    [Google Scholar]
  143. Buß O. Rudat J. Ochsenreither K. FoldX as protein engineering tool: Better than random based approaches? Comput. Struct. Biotechnol. J. 2018 16 25 33 10.1016/j.csbj.2018.01.002 30275935
    [Google Scholar]
  144. Yang K.K. Wu Z. Arnold F.H. Machine-learning-guided directed evolution for protein engineering. Nat. Methods 2019 16 8 687 694 10.1038/s41592‑019‑0496‑6 31308553
    [Google Scholar]
  145. Wu Z. Kan S.B.J. Lewis R.D. Wittmann B.J. Arnold F.H. Machine learning-assisted directed protein evolution with combinatorial libraries. Proc. Natl. Acad. Sci. USA 2019 116 18 8852 8858 10.1073/pnas.1901979116 30979809
    [Google Scholar]
  146. Wittmann B.J. Johnston K.E. Wu Z. Arnold F.H. Advances in machine learning for directed evolution. Curr. Opin. Struct. Biol. 2021 69 11 18 10.1016/j.sbi.2021.01.008 33647531
    [Google Scholar]
  147. Freschlin C.R. Fahlberg S.A. Romero P.A. Machine learning to navigate fitness landscapes for protein engineering. Curr. Opin. Biotechnol. 2022 75 102713 10.1016/j.copbio.2022.102713 35413604
    [Google Scholar]
  148. Ebrahimi M. Lakizadeh A. Agha-Golzadeh P. Ebrahimie E. Ebrahimi M. Prediction of thermostability from amino acid attributes by combination of clustering with attribute weighting: a new vista in engineering enzymes. PLoS One 2011 6 8 e23146 10.1371/journal.pone.0023146 21853079
    [Google Scholar]
  149. Saito Y. Oikawa M. Nakazawa H. Niide T. Kameda T. Tsuda K. Umetsu M. Machine-learning-guided mutagenesis for directed evolution of fluorescent proteins. ACS Synth. Biol. 2018 7 9 2014 2022 10.1021/acssynbio.8b00155 30103599
    [Google Scholar]
  150. Ferreira R.S. Simeonov A. Jadhav A. Eidam O. Mott B.T. Keiser M.J. McKerrow J.H. Maloney D.J. Irwin J.J. Shoichet B.K. Complementarity between a docking and a high-throughput screen in discovering new cruzain inhibitors. J. Med. Chem. 2010 53 13 4891 4905 10.1021/jm100488w 20540517
    [Google Scholar]
  151. Maia E.H.B. Assis L.C. de Oliveira T.A. da Silva A.M. Taranto A.G. Structure-based virtual screening: From classical to artificial intelligence. Front Chem. 2020 8 343 10.3389/fchem.2020.00343 32411671
    [Google Scholar]
  152. Karuppasamy M.P. Venkateswaran S. Subbiah P. PDB-2-PBv3.0: An updated protein block database. J. Bioinform. Comput. Biol. 2020 18 2 2050009 10.1142/S0219720020500092 32404014
    [Google Scholar]
  153. Paiva V.A. Gomes I.S. Monteiro C.R. Mendonça M.V. Martins P.M. Santana C.A. Gonçalves-Almeida V. Izidoro S.C. Melo-Minardi R.C. Silveira S.A. Protein structural bioinformatics: An overview. Comput. Biol. Med. 2022 147 105695 10.1016/j.compbiomed.2022.105695 35785665
    [Google Scholar]
  154. Krebs F.S. Zoete V. Trottet M. Pouchon T. Bovigny C. Michielin O. Swiss-PO: a new tool to analyze the impact of mutations on protein three-dimensional structures for precision oncology. NPJ Precis. Oncol. 2021 5 1 19 10.1038/s41698‑021‑00156‑5 33737716
    [Google Scholar]
  155. Li J. Fu A. Zhang L. An overview of scoring functions used for protein–ligand interactions in molecular docking. Interdiscip. Sci. 2019 11 2 320 328 10.1007/s12539‑019‑00327‑w 30877639
    [Google Scholar]
  156. Sabe V.T. Ntombela T. Jhamba L.A. Maguire G.E.M. Govender T. Naicker T. Kruger H.G. Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review. Eur. J. Med. Chem. 2021 224 113705 10.1016/j.ejmech.2021.113705 34303871
    [Google Scholar]
  157. Ameji P.J. Uzairu A. Shallangwa G.A. Uba S. Molecular docking-based virtual screening, drug-likeness, and pharmacokinetic profiling of some anti-Salmonella typhimurium cephalosporin derivatives. J. Taibah Univ. Med. Sci. 2023 18 6 1417 1431 10.1016/j.jtumed.2023.05.021 38162870
    [Google Scholar]
  158. Dewaker V. Prabhakar Y.S. Molecular dynamics simulations of HDAC-ligand complexes towards the design of new anticancer compounds. Curr. Top. Med. Chem. 2023 23 29 2743 2764 10.2174/0115680266250924230920042845 37779411
    [Google Scholar]
  159. Ebenezer O. Jordaan M.A. Damoyi N. Shapi M. Discovery of potential inhibitors for RNA-dependent RNA polymerase of norovirus: Virtual screening, and molecular dynamics. Int. J. Mol. Sci. 2020 22 1 171 10.3390/ijms22010171 33375298
    [Google Scholar]
  160. Gupta R. Srivastava D. Sahu M. Tiwari S. Ambasta R.K. Kumar P. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Mol. Divers. 2021 25 3 1315 1360 10.1007/s11030‑021‑10217‑3 33844136
    [Google Scholar]
  161. Victorino da Silva Amatto I. Gonsales da Rosa-Garzon N. Antônio de Oliveira Simões F. Santiago F. Pereira da Silva Leite N. Raspante Martins J. Cabral H. Enzyme engineering and its industrial applications. Biotechnol. Appl. Biochem. 2022 69 2 389 409 10.1002/bab.2117 33555054
    [Google Scholar]
  162. Ali M. Ishqi H.M. Husain Q. Enzyme engineering: Reshaping the biocatalytic functions. Biotechnol. Bioeng. 2020 117 6 1877 1894 10.1002/bit.27329 32159220
    [Google Scholar]
  163. Lou L. Li Z. Li Z. Rational design to enhance enzyme activity for the establishment of an enzyme–inorganic hybrid nanoflower co-immobilization system for efficient nucleotide production. J. Agric. Food Chem. 2022 70 7 2312 2319 10.1021/acs.jafc.1c08001 35133135
    [Google Scholar]
  164. Pagar A.D. Patil M.D. Flood D.T. Yoo T.H. Dawson P.E. Yun H. Recent advances in biocatalysis with chemical modification and expanded amino acid alphabet. Chem. Rev. 2021 121 10 6173 6245 10.1021/acs.chemrev.0c01201 33886302
    [Google Scholar]
  165. Liu C.C. Schultz P.G. Adding new chemistries to the genetic code. Annu. Rev. Biochem. 2010 79 1 413 444 10.1146/annurev.biochem.052308.105824 20307192
    [Google Scholar]
  166. Brouwer B. Della-Felice F. Illies J.H. Iglesias-Moncayo E. Roelfes G. Drienovská I. Noncanonical amino acids: Bringing new-to-nature functionalities to biocatalysis. Chem. Rev. 2024 124 19 10877 10923 10.1021/acs.chemrev.4c00136 39329413
    [Google Scholar]
  167. Biundo A. Saénz-Méndez P. Görbe T. Enzyme modification. Biocatalysis for Practitioners: Techniques, Reactions and Applications. WILEY 2021 33 62 10.1002/9783527824465.ch2
    [Google Scholar]
  168. Wu Shuke Xiang C. Zhou Y Khan M.S.H Liu W. A growth selection system for the directed evolution of amineforming or converting enzymes. Nat. Commun 2022 13 1 7458 10.1038/s41467‑022‑35228‑y
    [Google Scholar]
  169. Başlar M.S. Sakallı T. Güralp G. Kestevur Doğru E. Haklı E. Surmeli N.B. Development of an improved Amplex Red peroxidation activity assay for screening cytochrome P450 variants and identification of a novel mutant of the thermophilic CYP119. J. Biol. Inorg. Chem. 2020 25 7 949 962 10.1007/s00775‑020‑01816‑w 32924072
    [Google Scholar]
  170. Zeymer C. Hilvert D. Directed evolution of protein catalysts. Annu. Rev. Biochem. 2018 87 131 157 10.1146/annurev‑biochem‑062917‑012034
    [Google Scholar]
  171. Siedhoff N.E. Schwaneberg U. Davari M.D. Machine learning-assisted enzyme engineering. Methods Enzymol 2020 643 281 315 10.1016/bs.mie.2020.05.005 32896285
    [Google Scholar]
  172. Goshisht M.K. Machine Learning and deep learning in synthetic biology: key architectures, applications, and challenges. ACS Omega 2024 9 9 9921 9945 10.1021/acsomega.3c05913 38463314
    [Google Scholar]
  173. Schlick T. Ledesma P. Myers C.G. Beljak L. Dakhel S. Chen J. Biomolecular modeling and simulation: A prospering multidisciplinary field. Annu. Rev. Biophys. 2021 267 301 10.1146/annurev‑biophys‑091720‑102019
    [Google Scholar]
  174. Sankara Narayanan P. Runthala A. Accurate computational evolution of proteins and its dependence on deep learning and machine learning strategies. Biocatal. Biotransform. 2022 40 3 169 181 10.1080/10242422.2022.2030317
    [Google Scholar]
  175. Krassowski M. Das V. Sahu S.K. Misra B.B. State of the field in multi-omics research: From computational needs to data mining and sharing. Front. Genet. 2020 11 610798 10.3389/fgene.2020.610798 33362867
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266377310250526045137
Loading
/content/journals/ctmc/10.2174/0115680266377310250526045137
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test