Skip to content
2000
image of Neurological Inflammation in Parkinsonism: Current Prognosticative Diagnostics and Pitfalls

Abstract

Parkinson's disease (PD) is a persistent neurological degenerative condition that can significantly alter one's quality of life. This condition affects the substantia nigra, the region of the brain that contains dopamine-producing neurons. It is a disorder of the central nervous system that arises when nerve cells, or neurons, in this brain area are damaged or die. Norepinephrine, another chemical messenger that aids in controlling primary physiological processes, such as heart rate and blood pressure, is also deficient in PD patients. The symptoms of PD can interfere with daily activities and include fatigue, walking difficulties, limb rigidity, and loss of smell. Researchers are striving to identify a reliable biomarker for Parkinson's disease. Currently, the Food and Drug Administration has approved the radiotracer I-123-ioflupane injection followed by scanning (DATscan-SPECT) for precise analysis. To diagnose Parkinson's disease early, researchers are developing predictive diagnostic techniques using various biomarkers. The right biosensor can recommend the best personalized course of action to slow the progression of Parkinson's disease. This review highlights the strong performance of diagnostic biomarkers for Parkinson's disease and emphasizes the effectiveness of the common immuno-, apta- and DNA-sensors for their efficient implementations for different biomarkers. Further, it also discusses the potential advantages and drawbacks associated with detection methods for improving high-performance diagnostics.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266365134250530063901
2025-06-04
2025-11-05
Loading full text...

Full text loading...

References

  1. Lewis J. Relationships between brain-derived neurotrophic factor and immune function during dietary supplement treatment of elderly with Alzheimer’s dementia. J. Clin. Transl. Res. 2019 5 68 75 10.18053/jctres.05.201902.005
    [Google Scholar]
  2. Martin A. Stillman J. Miguez M.J. McDaniel H.R. Konefal J. Woolger J.M. Lewis J.E. The effect of dietary supplementation on brain-derived neurotrophic factor and cognitive functioning in Alzheimer’s dementia. J. Clin. Transl. Res. 2017 3 3 337 343 10.18053/jctres.03.201703.006 30895275
    [Google Scholar]
  3. Zhang W. Xiao D. Mao Q. Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduct. Target. Ther. 2023 8 1 267 10.1038/s41392‑023‑01486‑5 37433768
    [Google Scholar]
  4. Kaur K. Gill J.S. Bansal P.K. Deshmukh R. Neuroinflammation - A major cause for striatal dopaminergic degeneration in Parkinson’s disease. J. Neurol. Sci. 2017 381 308 314 10.1016/j.jns.2017.08.3251 28991704
    [Google Scholar]
  5. Thi Lai T. Kim Y.E. Nguyen L.T.N. Thi Nguyen T. Kwak I.H. Richter F. Kim Y.J. Ma H. Microglial inhibition alleviates alpha-synuclein propagation and neurodegeneration in Parkinson’s disease mouse model. NPJ Parkinsons Dis. 2024 10 1 32 10.1038/s41531‑024‑00640‑2 38302446
    [Google Scholar]
  6. Eo H. Kim S. Jung U.J. Kim S.R. Alpha-synuclein and microglia in parkinson’s disease: From pathogenesis to therapeutic prospects. J. Clin. Med. 2024 13 23 7243 10.3390/jcm13237243 39685702
    [Google Scholar]
  7. Sills E.S. Wood S.H. Growth factors, gene activation and cell recruitment: From intraovarian condensed platelet cytokines to de novo oocyte development. J. Clin. Transl. Res. 2022 8 1 49 53 10.18053/jctres.08.202201.008 35187289
    [Google Scholar]
  8. Cebrián C. Sulzer D. Neuroinflammation as a potential mechanism underlying parkinsons disease. Parkinson’s Disease. 2017 245 279 10.1016/B978‑0‑12‑803783‑6.00008‑0
    [Google Scholar]
  9. Yang Z. Zhang N. Shen Z. Bai S. Shi M. Yin L. Li J. Lei X. Yu C. Li C. Markers for early diagnosis and post-operative recurrence monitoring of bladder cancer. Cancer Plus 2020 2 1 1 10.18063/cp.v2i1.270
    [Google Scholar]
  10. Liu Q. Ding J. Liu Y. Jiang Z. Li L. Xiao B. Wang Z. The novel biomarkers in the diagnosis of prostate cancer. Cancer Plus 2019 1 1 233 10.18063/cp.v1i1.233
    [Google Scholar]
  11. Yamashita K.Y. Bhoopatiraju S. Silverglate B.D. Grossberg G.T. Biomarkers in Parkinson’s disease: A state of the art review. Biomarkers in Neuropsychiatry 2023 9 100074 10.1016/j.bionps.2023.100074
    [Google Scholar]
  12. Maina K.N. Smet-Nocca C. Bitan G. Using FRET-based biosensor cells to study the seeding activity of tau and α-synuclein. Methods Mol. Biol. 2023 2551 125 145 10.1007/978‑1‑0716‑2597‑2_10
    [Google Scholar]
  13. Xiao B. Tan E.K. Immunotherapy trials in Parkinson’s disease: Challenges. J. Transl. Med. 2023 21 1 178 10.1186/s12967‑023‑04012‑x 36879300
    [Google Scholar]
  14. Jabbari S. Dabirmanesh B. Daneshjou S. Khajeh K. The potential of a novel enzyme-based surface plasmon resonance biosensor for direct detection of dopamine. Sci. Rep. 2024 14 1 14303 10.1038/s41598‑024‑64796‑w 38906902
    [Google Scholar]
  15. Picillo M. Phokaewvarangkul O. Poon Y.Y. McIntyre C.C. Beylergil S.B. Munhoz R.P. Kalia S.K. Hodaie M. Lozano A.M. Fasano A. Levodopa versus dopamine agonist after subthalamic stimulation in parkinson’s disease. Mov. Disord. 2021 36 3 672 680 10.1002/mds.28382 33165964
    [Google Scholar]
  16. Isobe C. Abe T. Terayama Y. Levels of reduced and oxidized coenzyme Q-10 and 8-hydroxy-2′-deoxyguanosine in the CSF of patients with Alzheimer’s disease demonstrate that mitochondrial oxidative damage and/or oxidative DNA damage contributes to the neurodegenerative process. J. Neurol. 2010 257 3 399 404 10.1007/s00415‑009‑5333‑x 19784856
    [Google Scholar]
  17. Doxakis E. Post-transcriptional regulation of α-synuclein expression by mir-7 and mir-153. J. Biol. Chem. 2010 285 17 12726 12734 10.1074/jbc.M109.086827 20106983
    [Google Scholar]
  18. Kabaria S. Choi D.C. Chaudhuri A.D. Mouradian M.M. Junn E. Inhibition of miR‐34b and miR‐34c enhances α‐synuclein expression in Parkinson’s disease. FEBS Lett. 2015 589 3 319 325 10.1016/j.febslet.2014.12.014 25541488
    [Google Scholar]
  19. Leggio L. Vivarelli S. L’Episcopo F. Tirolo C. Caniglia S. Testa N. Marchetti B. Iraci N. MicroRNAs in parkinson’s disease: From pathogenesis to novel diagnostic and therapeutic approaches. Int. J. Mol. Sci. 2017 18 12 2698 10.3390/ijms18122698 29236052
    [Google Scholar]
  20. Choi D.C. Chae Y.J. Kabaria S. Chaudhuri A.D. Jain M.R. Li H. Mouradian M.M. Junn E. MicroRNA-7 protects against 1-methyl-4-phenylpyridinium-induced cell death by targeting RelA. J. Neurosci. 2014 34 38 12725 12737 10.1523/JNEUROSCI.0985‑14.2014 25232110
    [Google Scholar]
  21. Guévremont D. Roy J. Cutfield N.J. Williams J.M. MicroRNAs in Parkinson’s disease: A systematic review and diagnostic accuracy meta-analysis. Sci. Rep. 2023 13 1 16272 10.1038/s41598‑023‑43096‑9 37770507
    [Google Scholar]
  22. Fauss D. Motter R. Dofiles L. Rodrigues M.A.V. You M. Diep L. Yang Y. Seto P. Tanaka K. Baker J. Bergeron M. Development of an enzyme-linked immunosorbent assay (ELISA) to measure the level of tyrosine hydroxylase protein in brain tissue from Parkinson’s disease models. J. Neurosci. Methods 2013 215 2 245 257 10.1016/j.jneumeth.2013.03.012 23537934
    [Google Scholar]
  23. Shuai C. Li Y. Yang W. Yu L. Yang Y. Peng S. Feng P. Graphene oxide induces ester bonds hydrolysis of poly-l-lactic acid scaffold to accelerate degradation. Int. J. Bioprint. 2020 6 1 249 10.18063/ijb.v6i1.249 32782986
    [Google Scholar]
  24. Zhang Y. Attarilar S. Wang L. Lu W. Yang J. Fu Y. A review on design and mechanical properties of additively manufactured niti implants for orthopedic applications. Int. J. Bioprint. 2024 7 2 340 10.18063/ijb.v7i2.340 33997434
    [Google Scholar]
  25. Koch L. Brandt O. Deiwick A. Chichkov B. Laser-assisted bioprinting at different wavelengths and pulse durations with a metal dynamic release layer: A parametric study. Int. J. Bioprint. 2017 3 1 42 53 10.18063/IJB.2017.01.001 33094176
    [Google Scholar]
  26. Lakshmipriya T. Horiguchi Y. Nagasaki Y. Co-immobilized poly(ethylene glycol)-block-polyamines promote sensitivity and restrict biofouling on gold sensor surface for detecting factor IX in human plasma. Analyst 2014 139 16 3977 3985 10.1039/C4AN00168K 24922332
    [Google Scholar]
  27. Khatri A. Punjabi N.S. Ghosh D. Maji S. Mukherji S. Detection of α-synuclein, marker for parkinson’s disease using localized surface plasmon resonance fiber optic sensor. 12th International Conference on Fiber Optics and Photonics Kharagpur India, 13–16 December 2014. 10.1364/PHOTONICS.2014.M4A.45
    [Google Scholar]
  28. Yang S.Y. Chiu M.J. Lin C.H. Horng H.E. Yang C.C. Chieh J.J. Chen H.H. Liu B.H. Development of an ultra-high sensitive immunoassay with plasma biomarker for differentiating Parkinson disease dementia from Parkinson disease using antibody functionalized magnetic nanoparticles. J. Nanobiotechnology 2016 14 1 41 10.1186/s12951‑016‑0198‑5 27278241
    [Google Scholar]
  29. Shalash A. Salama M. Makar M. Roushdy T. Elrassas H.H. Mohamed W. El-Balkimy M. Abou Donia M. Elevated serum α-synuclein autoantibodies in patients with parkinson’s disease relative to Alzheimer’s disease and controls. Front. Neurol. 2017 8 720 10.3389/fneur.2017.00720 29312137
    [Google Scholar]
  30. Lakshmipriya T. Gopinath S.C.B. Aptamer: A versatile probe in medical diagnosis. INNOSC Theranostics Pharmacol. Sci. 2018 1 1 14 19 10.26689/itps.v1i1.511
    [Google Scholar]
  31. Gopinath S.C.B. Antiviral aptamers. Arch. Virol. 2007 152 12 2137 2157 10.1007/s00705‑007‑1014‑1 17851732
    [Google Scholar]
  32. Gopinath S.C.B. Anti-coagulant aptamers. Thromb. Res. 2008 122 6 838 847 10.1016/j.thromres.2007.10.022 18055002
    [Google Scholar]
  33. Gopinath S.C.B. Lakshmipriya T. Chen Y. Phang W.M. Hashim U. Aptamer-based ‘point-of-care testing’. Biotechnol. Adv. 2016 34 3 198 208 10.1016/j.biotechadv.2016.02.003 26876017
    [Google Scholar]
  34. Citartan M. Gopinath S.C.B. Tominaga J. Tan S.C. Tang T.H. Assays for aptamer-based platforms. Biosens. Bioelectron. 2012 34 1 1 11 10.1016/j.bios.2012.01.002 22326894
    [Google Scholar]
  35. Lakshmipriya T. Fujimaki M. Gopinath S.C.B. Awazu K. Generation of anti-influenza aptamers using the systematic evolution of ligands by exponential enrichment for sensing applications. Langmuir 2013 29 48 15107 15115 10.1021/la4027283 24200095
    [Google Scholar]
  36. Gopinath S.C.B. Sakamaki Y. Kawasaki K. Kumar P.K.R. An efficient RNA aptamer against human influenza B virus hemagglutinin. J. Biochem. 2006 139 5 837 846 10.1093/jb/mvj095 16751591
    [Google Scholar]
  37. Gopinath S.C.B. Balasundaresan D. Akitomi J. Mizuno H. An RNA aptamer that discriminates bovine factor IX from human factor IX. J. Biochem. 2006 140 5 667 676 10.1093/jb/mvj203 17030508
    [Google Scholar]
  38. Gopinath S.C.B. Kumar P.K.R. Aptamers that bind to the hemagglutinin of the recent pandemic influenza virus H1N1 and efficiently inhibit agglutination. Acta Biomater. 2013 9 11 8932 8941 10.1016/j.actbio.2013.06.016 23791676
    [Google Scholar]
  39. Tsukakoshi K. Abe K. Sode K. Ikebukuro K. Selection of DNA aptamers that recognize α-synuclein oligomers using a competitive screening method. Anal. Chem. 2012 84 13 5542 5547 10.1021/ac300330g 22697251
    [Google Scholar]
  40. McConnell E.M. Holahan M.R. DeRosa M.C. Aptamers as promising molecular recognition elements for diagnostics and therapeutics in the central nervous system. Nucleic Acid Ther 2014 24 388 404 10.1089/nat.2014.0492
    [Google Scholar]
  41. Zheng Y. Wang Y. Yang X. Aptamer-based colorimetric biosensing of dopamine using unmodified gold nanoparticles. Sens. Actuators B Chem. 2011 156 1 95 99 10.1016/j.snb.2011.03.077
    [Google Scholar]
  42. Razalli N. Gopinath S.C.B. Kasim F.H. Yaakub A.R.W. Anbu P. Antimicrobial potential of andrographis paniculata conjugated gold nanoparticle. INNOSC Theranostics Pharmacol. Sci. 2019 2 1 17 22 10.26689/itps.v2i1.744
    [Google Scholar]
  43. Gopinath S.C.B. Lakshmipriya T. Awazu K. Colorimetric detection of controlled assembly and disassembly of aptamers on unmodified gold nanoparticles. Biosens. Bioelectron. 2014 51 115 123 10.1016/j.bios.2013.07.037 23948242
    [Google Scholar]
  44. Wang J.C. Wang Y.S. Rang W.Q. Xue J.H. Zhou B. Liu L. Qian Q.M. Wang Y.S. Yin J.C. Colorimetric determination of 8-hydroxy–2′-deoxyguanosine using label-free aptamer and unmodified gold nanoparticles. Mikrochim. Acta 2014 181 9-10 903 910 10.1007/s00604‑014‑1173‑1
    [Google Scholar]
  45. Liu H. Wang Y.S. Wang J.C. Xue J.H. Zhou B. Zhao H. Liu S.D. Tang X. Chen S.H. Li M.H. Cao J.X. A colorimetric aptasensor for the highly sensitive detection of 8-hydroxy-2′-deoxyguanosine based on G-quadruplex–hemin DNAzyme. Anal. Biochem. 2014 458 4 10 10.1016/j.ab.2014.04.031 24811738
    [Google Scholar]
  46. Palanisamy S. Zhang X. He T. Simple colorimetric detection of dopamine using modified silver nanoparticles. Sci. China Chem. 2016 59 4 387 393 10.1007/s11426‑015‑5500‑0
    [Google Scholar]
  47. Gopinath S.C.B. Hayashi K. Lee J.B. Kamori A. Dong C.X. Hayashi T. Kumar P.K.R. Analysis of compounds that interfere with herpes simplex virus-host receptor interactions using surface plasmon resonance. Anal. Chem. 2013 85 21 10455 10462 10.1021/ac4025522 24079703
    [Google Scholar]
  48. Gopinath S.C.B. Kumar P.K.R. Biomolecular discrimination analyses by surface plasmon resonance. Analyst 2014 139 11 2678 2682 10.1039/c3an02052e 24719902
    [Google Scholar]
  49. Qiao Y. Li J. Li H. Fang H. Fan D. Wang W. A label-free photoelectrochemical aptasensor for bisphenol A based on surface plasmon resonance of gold nanoparticle-sensitized ZnO nanopencils. Biosens. Bioelectron. 2016 86 315 320 10.1016/j.bios.2016.06.062 27387262
    [Google Scholar]
  50. Zheng Y. Qu J. Xue F. Zheng Y. Yang B. Chang Y. Yang H. Zhang J. Novel DNA aptamers for parkinson’s disease treatment inhibit α-synuclein aggregation and facilitate its degradation. Mol. Ther. Nucleic Acids 2018 11 228 242 10.1016/j.omtn.2018.02.011 29858057
    [Google Scholar]
  51. Izmailova E.S. Wagner J.A. Perakslis E.D. Wearable devices in clinical trials: Hype and hypothesis. Clin. Pharmacol. Ther. 2018 104 1 42 52 10.1002/cpt.966 29205294
    [Google Scholar]
  52. Adams J.L. Dinesh K. Snyder C.W. Xiong M. Tarolli C.G. Sharma S. Dorsey E.R. Sharma G. A real-world study of wearable sensors in Parkinson’s disease. NPJ Parkinsons Dis. 2021 7 1 106 10.1038/s41531‑021‑00248‑w 34845224
    [Google Scholar]
  53. Shaheen N. Shaheen A. Osama M. Nashwan A.J. Bharmauria V. Flouty O. MicroRNAs regulation in Parkinson’s disease, and their potential role as diagnostic and therapeutic targets. NPJ Parkinsons Dis. 2024 10 1 186 10.1038/s41531‑024‑00791‑2 39369002
    [Google Scholar]
  54. Aghili Z. Nasirizadeh N. Divsalar A. Shoeibi S. Yaghmaei P. A highly sensitive miR-195 nanobiosensor for early detection of Parkinson’s disease. Artif. Cells Nanomed. Biotechnol. 2017 ••• 1 9 10.1080/21691401.2017.1411930 29214873
    [Google Scholar]
  55. Jiang Y. Ellis T. Greenlee A.R. Genotyping Parkinson disease-associated mitochondrial polymorphisms. Clin. Med. Res. 2004 2 2 99 106 10.3121/cmr.2.2.99 15931342
    [Google Scholar]
  56. Lakshmipriya T. Gopinath S.C.B. Tang T.H. Biotin-streptavidin competition mediates sensitive detection of biomolecules in enzyme linked immunosorbent assay. PLoS One 2016 11 3 e0151153 10.1371/journal.pone.0151153 26954237
    [Google Scholar]
  57. Lakshmipriya T. Fujimaki M. Gopinath S.C.B. Awazu K. Horiguchi Y. Nagasaki Y. A high-performance waveguide-mode biosensor for detection of factor IX using PEG-based blocking agents to suppress non-specific binding and improve sensitivity. Analyst 2013 138 10 2863 2870 10.1039/c3an00298e 23577343
    [Google Scholar]
  58. An J.H. Choi D.K. Lee K.J. Choi J.W. Surface-enhanced Raman spectroscopy detection of dopamine by DNA targeting amplification assay in Parkisons’s model. Biosens. Bioelectron. 2015 67 739 746 10.1016/j.bios.2014.10.049 25465795
    [Google Scholar]
  59. Scherzer C.R. Eklund A.C. Morse L.J. Liao Z. Locascio J.J. Fefer D. Schwarzschild M.A. Schlossmacher M.G. Hauser M.A. Vance J.M. Sudarsky L.R. Standaert D.G. Growdon J.H. Jensen R.V. Gullans S.R. Molecular markers of early Parkinson’s disease based on gene expression in blood. Proc. Natl. Acad. Sci. USA 2007 104 3 955 960 10.1073/pnas.0610204104 17215369
    [Google Scholar]
  60. Chikina M.D. Gerald C.P. Li X. Ge Y. Pincas H. Nair V.D. Wong A.K. Krishnan A. Troyanskaya O.G. Raymond D. Saunders-Pullman R. Bressman S.B. Yue Z. Sealfon S.C. Low‐variance RNAs identify Parkinson’s disease molecular signature in blood. Mov. Disord. 2015 30 6 813 821 10.1002/mds.26205 25786808
    [Google Scholar]
  61. Tisch U. Aluf Y. Ionescu R. Nakhleh M. Bassal R. Axelrod N. Robertman D. Tessler Y. Finberg J.P.M. Haick H. Detection of asymptomatic nigrostriatal dopaminergic lesion in rats by exhaled air analysis using carbon nanotube sensors. ACS Chem. Neurosci. 2012 3 3 161 166 10.1021/cn200093r 22860185
    [Google Scholar]
  62. Tisch U. Schlesinger I. Ionescu R. Nassar M. Axelrod N. Robertman D. Tessler Y. Azar F. Marmur A. Aharon-Peretz J. Haick H. Detection of Alzheimer’s and Parkinson’s disease from exhaled breath using nanomaterial-based sensors. Nanomedicine 2013 8 1 43 56 10.2217/nnm.12.105 23067372
    [Google Scholar]
  63. Adams W.R. High-accuracy detection of early Parkinson’s Disease using multiple characteristics of finger movement while typing. PLoS One 2017 12 11 e0188226 10.1371/journal.pone.0188226 29190695
    [Google Scholar]
  64. Gopinath N. Artificial intelligence and neuroscience: An update on fascinating relationships. Process Biochem. 2023 125 113 120 10.1016/j.procbio.2022.12.011
    [Google Scholar]
  65. Gopinath N. Artificial intelligence: Potential tool to subside SARS-CoV-2 pandemic. Process Biochem. 2021 110 94 99 10.1016/j.procbio.2021.08.001 34366689
    [Google Scholar]
  66. Murakami H. Shiraishi T. Umehara T. Omoto S. Iguchi Y. Recent advances in drug therapy for parkinson’s disease. Intern. Med. 2023 62 1 33 42 10.2169/internalmedicine.8940‑21
    [Google Scholar]
  67. Jankovic J. Aguilar L.G. Current approaches to the treatment of Parkinson’s disease. Neuropsychiatr. Dis. Treat. 2008 4 4 743 757 10.2147/NDT.S2006 19043519
    [Google Scholar]
  68. Lakard S. Pavel I.A. Lakard B. Electrochemical biosensing of dopamine neurotransmitter: A review. Biosensors 2021 11 6 179 10.3390/bios11060179 34204902
    [Google Scholar]
  69. Kalimuldina G. Nurpeissova A. Adylkhanova A. Adair D. Taniguchi I. Bakenov Z. Morphology and dimension variations of copper sulfide for high-performance electrode in rechargeable batteries: A review. ACS Appl. Energy Mater. 2020 3 12 11480 11499 10.1021/acsaem.0c01686
    [Google Scholar]
  70. Abd-Ellatief R. Abd-Ellatief MR. Electrochemical aptasensors: Current status and future perspectives. Diagnostics 2021 11 1 104 10.3390/diagnostics11010104
    [Google Scholar]
  71. Krishnan S.K. Singh E. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv. 2019 9 16 8778 8881 10.1039/C8RA09577A
    [Google Scholar]
  72. Asci F. Vivacqua G. Zampogna A. D’onofrio V. Mazzeo A. Suppa A. Wearable electrochemical sensors in parkinson’s disease. Sensors 2022 22 1 13 10.3390/s22030951
    [Google Scholar]
  73. Koklu A. Ohayon D. Wustoni S. Druet V. Saleh A. Inal S. Organic bioelectronic devices for metabolite sensing. Chem. Rev. 2022 122 4 4581 4635 10.1021/acs.chemrev.1c00395
    [Google Scholar]
  74. Nguyen T.N.H. Nolan J.K. Park H. Lam S. Fattah M. Page C. Joe H. Jun M.B.G. Lee H. Kim S.J. Shi R. Lee H. Lafayette W. Lafayette W. Lafayette W. Korea S. Facile fabrication of flexible glutamate biosensor using direct writing of platinum nanoparticle-based nanocomposite ink. Biosens. Bioelectron. 2019 131 257 10.1016/j.bios.2019.01.051
    [Google Scholar]
  75. Kujawska M. Bhardwaj S.K. Mishra Y.K. Using graphene-based biosensors to detect dopamine for efficient parkinson's disease diagnostics. Biosensors 2021 11 11 433 10.3390/bios11110433
    [Google Scholar]
  76. Khan S.A. Akhtar M.J. Gogoi U. Meenakshi D.U. An overview of 1,2,3-triazole-containing hybrids and their potential anticholinesterase activities. Pharmaceuticals 2023 16 2 179 10.3390/ph16020179
    [Google Scholar]
  77. Chang Y. Chen Y. Shao Y. Li B. Wu Y. Zhang W. Zhou Y. Yu Z. Lu L. Wang X. Guo G. Solid-phase microextraction integrated nanobiosensors for the serial detection of cytoplasmic dopamine in a single living cell. Biosens. Bioelectron. 2021 175 112915 10.1016/j.bios.2020.112915 33383431
    [Google Scholar]
  78. Tortolini C. Cass A.E.G. Pofi R. Lenzi A. Antiochia R. Microneedle-based nanoporous gold electrochemical sensor for real-time catecholamine detection. Microchim. Acta 2022 189 180 10.1007/s00604‑022‑05260‑2
    [Google Scholar]
  79. Ziyu Y. Zuowei J. Manipulating cobalt oxide on N-doped aligned electrospun carbon nanofibers towards instant electrochemical detection of dopamine secreted by living cells. Appl. Surf. Sci. 2022 577 151912 10.1016/j.apsusc.2021.151912
    [Google Scholar]
  80. Anionik S. Karbon E. Electrochemical determination of dopamine and uric acid in blood serum using anionic surfactants at carbon paste electrodes. Electrochem. Commun. 2020 24 1 97 106
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266365134250530063901
Loading
/content/journals/ctmc/10.2174/0115680266365134250530063901
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Biomarker ; Biosensor ; Nanotechnology ; Dopamine ; Neuroinflammation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test