Skip to content
2000
image of Role of New Biomarkers in the Early Diagnosis of Gestational Diabetes: A Mini Review

Abstract

Gestational diabetes (GDM) has become a major public health problem in recent years and one of the most debated topics in women's health. GDM is associated with serious health consequences for both the mother and the child in the short and long term. The prevalence of GDM varies between 0.6% and 20% (depending on the detection method, gestational age, and the population studied). Genetic, nutritional, epigenetic, immunological, and hormonal components have been identified in its pathophysiology. Today, the importance of identifying a biomarker to detect GDM from the beginning of pregnancy in women at high risk of developing GDM is frequently emphasized. In recent years, adipokines and cytokines have been reported to play important roles in the metabolic changes underlying GDM. The purpose of this study was to reveal the potential and importance of the recently identified chemerin, omentin-1, resistin, visfatin, and asprosin peptides with different mechanisms of action in the pathogenesis of GDM.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266361462250618084953
2025-07-01
2025-09-13
Loading full text...

Full text loading...

References

  1. Vince K. Perković P. Matijević R. What is known and what remains unresolved regarding gestational diabetes mellitus (GDM). J. Perinat. Med. 2020 48 8 757 763 10.1515/jpm‑2020‑0254 32827397
    [Google Scholar]
  2. McIntyre H.D. Kapur A. Divakar H. Hod M. Gestational Diabetes Mellitus-ınnovative approach to prediction, diagnosis, management, and prevention of future NCD-mother and offspring. Front. Endocrinol. 2020 11 614533 10.3389/fendo.2020.614533 33343512
    [Google Scholar]
  3. Kimber-Trojnar Z. Marciniak B. Patro-Malysza J. Skorzynska-Dziduszko K. Poniedzialek-Czajkowska E. Mierzynski R. Galczynski K. Trojnar M. Leszczynska-Gorzelak B. Oleszczuk J. Is glyburide safe in pregnancy? Curr. Pharm. Biotechnol. 2014 15 1 100 112 10.2174/1389201015666140330200254 24720590
    [Google Scholar]
  4. 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes—2020. Diabetes Care 2020 43 Suppl. 1 S14 S31 10.2337/dc20‑S002 31862745
    [Google Scholar]
  5. Yamamoto J.M. Kellett J.E. Balsells M. García-Patterson A. Hadar E. Solà I. Gich I. van der Beek E.M. Castañeda-Gutiérrez E. Heinonen S. Hod M. Laitinen K. Olsen S.F. Poston L. Rueda R. Rust P. van Lieshout L. Schelkle B. Murphy H.R. Corcoy R. Gestational Diabetes Mellitus and diet: A systematic review and meta-analysis of randomized controlled trials examining the ımpact of modified dietary ınterventions on maternal glucose control and neonatal birth weight. Diabetes Care 2018 41 7 1346 1361 10.2337/dc18‑0102 29934478
    [Google Scholar]
  6. Filardi T. Tavaglione F. Di Stasio M. Fazio V. Lenzi A. Morano S. Impact of risk factors for gestational diabetes (GDM) on pregnancy outcomes in women with GDM. J. Endocrinol. Invest. 2018 41 6 671 676 10.1007/s40618‑017‑0791‑y 29150756
    [Google Scholar]
  7. Obesity L.M. Obesity Diagnosis and Treatment Guide 2019
  8. Shirley Muller P. Nirmala M. Effects of pre-pregnancy maternal body mass index on gestational diabetes mellitus. IACSIT Int. J. Eng. Technol. 2018 7 19 279 282
    [Google Scholar]
  9. Zhu W.W. Yang H.X. Wang C. Su R.N. Feng H. Kapur A. High prevalence of Gestational Diabetes Mellitus in beijing: Effect of maternal birth weight and other risk factors. Chin. Med. J. 2017 130 9 1019 1025 10.4103/0366‑6999.204930 28469095
    [Google Scholar]
  10. Scholtens D.M. Kuang A. Lowe L.P. Hamilton J. Lawrence J.M. Lebenthal Y. Brickman W.J. Clayton P. Ma R.C. McCance D. Tam W.H. Catalano P.M. Linder B. Dyer A.R. Lowe W.L. Jr Metzger B.E. Deerochanawong C. Tanaphonpoonsuk T. Chotigeat S.B.U. Manyam W. Forde M. Greenidge A. Neblett K. Lashley P.M. Walcott D. Corry K. Francis L. Irwin J. Langan A. McCance D.R. Mousavi M. Young I. Gutierrez J. Jimenez J. Lawrence J.M. Sacks D.A. Takhar H.S. Tanton E. Brickman W.J. Howard J. Josefson J.L. Miller L. Bjaloncik J. Catalano P.M. Davis A. Koontz M. Presley L. Smith S. Tyhulski A. Li A.M. Ma R.C. Ozaki R. Tam W.H. Wong M. Yuen C.S.M. Clayton P.E. Khan A. Vyas A. Maresh M. Benzaquen H. Glickman N. Hamou A. Hermon O. Horesh O. Keren Y. Lebenthal Y. Shalitin S. Cordeiro K. Hamilton J. Nguyen H.Y. Steele S. Chen F. Dyer A.R. Huang W. Kuang A. Jimenez M. Lowe L.P. Lowe W.L. Jr Metzger B.E. Nodzenski M. Reisetter A. Scholtens D. Talbot O. Yim P. Dunger D. Thomas A. Horlick M. Linder B. Unalp-Arida A. Grave G. Hyperglycemia and adverse pregnancy outcome follow-up study (HAPO FUS): Maternal glycemia and childhood glucose metabolism. Diabetes Care 2019 42 3 381 392 10.2337/dc18‑2021 30617141
    [Google Scholar]
  11. Carr D.B. Utzschneider K.M. Hull R.L. Tong J. Wallace T.M. Kodama K. Shofer J.B. Heckbert S.R. Boyko E.J. Fujimoto W.Y. Kahn S.E. Gestational diabetes mellitus increases the risk of cardiovascular disease in women with a family history of type 2 diabetes. Diabetes Care 2006 29 9 2078 2083 10.2337/dc05‑2482 16936156
    [Google Scholar]
  12. Retnakaran R. Shah B.R. Mild glucose intolerance in pregnancy and risk of cardiovascular disease: A population-based cohort study. CMAJ 2009 181 6-7 371 376 10.1503/cmaj.090569
    [Google Scholar]
  13. Meyers-Seifer C.H. Vohr B.R. Lipid levels in former gestational diabetic mothers. Diabetes Care 1996 19 12 1351 1356 10.2337/diacare.19.12.1351 8941463
    [Google Scholar]
  14. Verma A. Boney C.M. Tucker R. Vohr B.R. Insulin resistance syndrome in women with prior history of gestational diabetes mellitus. J. Clin. Endocrinol. Metab. 2002 87 7 3227 3235 10.1210/jcem.87.7.8684 12107230
    [Google Scholar]
  15. Lauenborg J. Mathiesen E. Hansen T. Glümer C. Jørgensen T. Borch-Johnsen K. Hornnes P. Pedersen O. Damm P. The prevalence of the metabolic syndrome in a danish population of women with previous gestational diabetes mellitus is three-fold higher than in the general population. J. Clin. Endocrinol. Metab. 2005 90 7 4004 4010 10.1210/jc.2004‑1713 15840755
    [Google Scholar]
  16. Sriharan M. Reichelt A.J. Opperman M.L.R. Duncan B.B. Mengue S.S. Crook M.A. Schmidt M.I. Total sialic acid and associated elements of the metabolic syndrome in women with and without previous gestational diabetes. Diabetes Care 2002 25 8 1331 1335 10.2337/diacare.25.8.1331 12145230
    [Google Scholar]
  17. Bakiris E. Luiro K. Jokelainen J. Morin-Papunen L. Keinänen-Kiukaanniemi S. Kaikkonen K. Piltonen T. Tapanainen J.S. Auvinen J. Women with a history of gestational diabetes mellitus present an accumulation of cardiovascular risk factors at age 46—A birth cohort study. Acta Obstet. Gynecol. Scand. 2024 103 7 1318 1328 10.1111/aogs.14861 38725232
    [Google Scholar]
  18. Winzer C. Wagner O. Festa A. Schneider B. Roden M. Bancher-Todesca D. Pacini G. Funahashi T. Kautzky-Willer A. Plasma adiponectin, insulin sensitivity, and subclinical inflammation in women with prior gestational diabetes mellitus. Diabetes Care 2004 27 7 1721 1727 10.2337/diacare.27.7.1721 15220253
    [Google Scholar]
  19. Heitritter S.M. Solomon C.G. Mitchell G.F. Skali-Ounis N. Seely E.W. Subclinical inflammation and vascular dysfunction in women with previous gestational diabetes mellitus. J. Clin. Endocrinol. Metab. 2005 90 7 3983 3988 10.1210/jc.2004‑2494 15840749
    [Google Scholar]
  20. Di Benedetto A. Russo G.T. Corrado F. Di Cesare E. Alessi E. Nicocia G. D’Anna R. Cucinotta D. Inflammatory markers in women with a recent history of gestational diabetes mellitus. J. Endocrinol. Invest. 2005 28 3 34 38 10.1007/BF03345527 15816369
    [Google Scholar]
  21. Anastasiou E. Lekakis J.P. Alevizaki M. Papamichael C.M. Megas J. Souvatzoglou A. Stamatelopoulos S.F. Impaired endothelium-dependent vasodilatation in women with previous gestational diabetes. Diabetes Care 1998 21 12 2111 2115 10.2337/diacare.21.12.2111 9839102
    [Google Scholar]
  22. Tarim E. Yigit F. Kilicdag E. Bagis T. Demircan S. Simsek E. Haydardedeoglu B. Yanik F. Early onset of subclinical atherosclerosis in women with gestational diabetes mellitus. Ultrasound Obstet. Gynecol. 2006 27 2 177 182 10.1002/uog.2687 16435313
    [Google Scholar]
  23. Mao Y. Hu W. Xia B. Liu L. Han X. Liu Q. Association between gestational diabetes mellitus and the risks of type-specific cardiovascular diseases. Front. Public Health 2022 10 940335 10.3389/fpubh.2022.940335 35865249
    [Google Scholar]
  24. Yu Y. Soohoo M. Sørensen H.T. Li J. Arah O.A. Gestational diabetes mellitus and the risks of overall and type-specific cardiovascular diseases: A population- and sibling-matched cohort study. Diabetes Care 2022 45 1 151 159 10.2337/dc21‑1018 34764208
    [Google Scholar]
  25. Xie W. Wang Y. Xiao S. Qiu L. Yu Y. Zhang Z. Association of gestational diabetes mellitus with overall and type specific cardiovascular and cerebrovascular diseases: Systematic review and meta-analysis. BMJ 2022 378 e070244 10.1136/bmj‑2022‑070244 36130740
    [Google Scholar]
  26. Pérez-Pérez A. Vilariño-García T. Guadix P. Dueñas J.L. Sánchez-Margalet V. Leptin and nutrition in gestational diabetes. Nutrients 2020 12 7 1970 10.3390/nu12071970 32630697
    [Google Scholar]
  27. Pheiffer C. Dias S. Jack B. Malaza N. Adam S. Adiponectin as a potential biomarker for pregnancy disorders. Int. J. Mol. Sci. 2021 22 3 1326 10.3390/ijms22031326 33572712
    [Google Scholar]
  28. Trojnar M. Patro-Małysza J. Kimber-Trojnar Ż. Leszczyńska-Gorzelak B. Mosiewicz J. Associations between fatty acid-binding protein 4-A proinflammatory adipokine and ınsulin resistance, gestational and type 2 diabetes mellitus. Cells 2019 8 3 227 10.3390/cells8030227 30857223
    [Google Scholar]
  29. Kimber-Trojnar Ż. Patro-Małysza J. Trojnar M. Skórzyńska-Dziduszko K.E. Bartosiewicz J. Oleszczuk J. Leszczyńska-Gorzelak B. Fatty Acid-Binding Protein 4-An “Inauspicious” adipokine-ın serum and urine of post-partum women with excessive gestational weight gain and gestational diabetes mellitus. J. Clin. Med. 2018 7 12 505 10.3390/jcm7120505 30513800
    [Google Scholar]
  30. Patro-Małysza J. Trojnar M. Kimber-Trojnar Ż. Mierzyński R. Bartosiewicz J. Oleszczuk J. Leszczyńska-Gorzelak B. FABP4 in gestational diabetes-association between mothers and offspring. J. Clin. Med. 2019 8 3 285 10.3390/jcm8030285 30818771
    [Google Scholar]
  31. Fasshauer M. Blüher M. Stumvoll M. Adipokines in gestational diabetes. Lancet Diabetes Endocrinol. 2014 2 6 488 499 10.1016/S2213‑8587(13)70176‑1 24731659
    [Google Scholar]
  32. Makki K. Froguel P. Wolowczuk I. Adipose tissue in obesity-related inflammation and insulin resistance: Cells, cytokines, and chemokines. ISRN Inflamm. 2013 2013 1 12 10.1155/2013/139239 24455420
    [Google Scholar]
  33. Karastergiou K. Mohamed-Ali V. The autocrine and paracrine roles of adipokines. Mol. Cell. Endocrinol. 2010 318 1-2 69 78 10.1016/j.mce.2009.11.011 19948207
    [Google Scholar]
  34. Recinella L. Orlando G. Ferrante C. Chiavaroli A. Brunetti L. Leone S. Adipokines: New potential therapeutic target for obesity and metabolic, rheumatic, and cardiovascular diseases. Front. Physiol. 2020 11 578966 10.3389/fphys.2020.578966 33192583
    [Google Scholar]
  35. Roh S. Song S.H. Choi K.C. Katoh K. Wittamer V. Parmentier M. Sasaki S. Chemerin—A new adipokine that modulates adipogenesis via its own receptor. Biochem. Biophys. Res. Commun. 2007 362 4 1013 1018 10.1016/j.bbrc.2007.08.104 17767914
    [Google Scholar]
  36. Sun J. Ren J. Zuo C. Deng D. Pan F. Chen R. Zhu J. Chen C. Ye S. Circulating apelin, chemerin and omentin levels in patients with gestational diabetes mellitus: A systematic review and meta-analysis. Lipids Health Dis. 2020 19 1 26 10.1186/s12944‑020‑01209‑7 32087711
    [Google Scholar]
  37. Kennedy A.J. Davenport A.P. International union of basic and clinical pharmacology CIII: Chemerin receptors CMKLR1 (Chemerin1) and GPR1 (Chemerin2) nomenclature, pharmacology, function. Pharmacol. Rev. 2018 70 1 174 196 10.1124/pr.116.013177 29279348
    [Google Scholar]
  38. Ustebay S. Baykus Y. Deniz R. Ugur K. Yavuzkir S. Yardim M. Kalayci M. Çaglar M. Aydin S. Chemerin and dermcidin in human milk and their alteration in gestational diabetes. J. Hum. Lact. 2019 35 3 550 558 10.1177/0890334419837523 31002762
    [Google Scholar]
  39. Gutaj P. Sibiak R. Jankowski M. Awdi K. Bryl R. Mozdziak P. Kempisty B. Wender-Ozegowska E. The role of the adipokines in the most common gestational complications. Int. J. Mol. Sci. 2020 21 24 9408 10.3390/ijms21249408 33321877
    [Google Scholar]
  40. Estienne A. Bongrani A. Reverchon M. Ramé C. Ducluzeau P.H. Froment P. Dupont J. Involvement of novel adipokines, chemerin, visfatin, resistin and apelin in reproductive functions in normal and pathological conditions in humans and animal models. Int. J. Mol. Sci. 2019 20 18 4431 10.3390/ijms20184431 31505789
    [Google Scholar]
  41. Tsiotra P.C. Halvatsiotis P. Patsouras K. Maratou E. Salamalekis G. Raptis S.A. Dimitriadis G. Boutati E. Circulating adipokines and mRNA expression in adipose tissue and the placenta in women with gestational diabetes mellitus. Peptides 2018 101 157 166 10.1016/j.peptides.2018.01.005 29337272
    [Google Scholar]
  42. Šimják P. Cinkajzlová A. Anderlová K. Pařízek A. Mráz M. Kršek M. Haluzík M. The role of obesity and adipose tissue dysfunction in gestational diabetes mellitus. J. Endocrinol. 2018 238 2 R63 R77 10.1530/JOE‑18‑0032 29743342
    [Google Scholar]
  43. Bauer S. Bala M. Kopp A. Eisinger K. Schmid A. Schneider S. Neumeier M. Buechler C. Adipocyte chemerin release is induced by insulin without being translated to higher levels in vivo. Eur. J. Clin. Invest. 2012 42 11 1213 1220 10.1111/j.1365‑2362.2012.02713.x 22924572
    [Google Scholar]
  44. Wassink A.M.J. Olijhoek J.K. Visseren F.L.J. The metabolic syndrome: Metabolic changes with vascular consequences. Eur. J. Clin. Invest. 2007 37 1 8 17 10.1111/j.1365‑2362.2007.01755.x 17181562
    [Google Scholar]
  45. Li Y. Shi B. Li S. Association between serum chemerin concentrations and clinical indices in obesity or metabolic syndrome: A meta-analysis. PLoS One 2014 9 12 e113915 10.1371/journal.pone.0113915 25469985
    [Google Scholar]
  46. Bellos I. Fitrou G. Pergialiotis V. Perrea D.N. Daskalakis G. Serum levels of adipokines in gestational diabetes: A systematic review. J. Endocrinol. Invest. 2019 42 6 621 631 10.1007/s40618‑018‑0973‑2 30392100
    [Google Scholar]
  47. Yang X. Quan X. Lan Y. Ye J. Wei Q. Yin X. Fan F. Xing H. Serum chemerin level during the first trimester of pregnancy and the risk of gestational diabetes mellitus. Gynecol. Endocrinol. 2017 33 10 770 773 10.1080/09513590.2017.1320382 28454507
    [Google Scholar]
  48. Liang Z. Zhou M. Xu X.K. Qu F. Chen D. Is Chemerin associated with gestational diabetes mellitus? An evidence-based clinical research from Chinese women. J. Obstet. Gynaecol. 2018 38 4 482 487 10.1080/01443615.2017.1385596 29430984
    [Google Scholar]
  49. Wang X. Liu J. Wang D. Zhu H. Kang L. Jiang J. Expression and correlation of Chemerin and FABP4 in peripheral blood of gestational diabetes mellitus patients. Exp. Ther. Med. 2020 19 1 710 716 [PMID: 31897106
    [Google Scholar]
  50. Okten S.B. Bildacı T.B. Salivary Leptin and Chemerin; a novel way of gestational diabetes screening. Gynecol. Endocrinol. 2020 36 12 1116 1118 10.1080/09513590.2020.1749999 32274942
    [Google Scholar]
  51. Buchanan T.A. Xiang A.H. Gestational diabetes mellitus. J. Clin. Invest. 2005 115 3 485 491 10.1172/JCI200524531 15765129
    [Google Scholar]
  52. Pfau D. Stepan H. Kratzsch J. Verlohren M. Verlohren H.J. Drynda K. Lössner U. Blüher M. Stumvoll M. Fasshauer M. Circulating levels of the adipokine chemerin in gestational diabetes mellitus. Horm. Res. Paediatr. 2010 74 1 56 61 10.1159/000282114 20424419
    [Google Scholar]
  53. Barker G. Lim R. Rice G.E. Lappas M. Increased chemerin concentrations in fetuses of obese mothers and correlation with maternal insulin sensitivity. J. Matern. Fetal Neonatal Med. 2012 25 11 2274 2280 10.3109/14767058.2012.686540 22524287
    [Google Scholar]
  54. El-Mesallamy H.O. El-Derany M.O. Hamdy N.M. Serum omentin-1 and chemerin levels are interrelated in patients with Type 2 diabetes mellitus with or without ischaemic heart disease. Diabet. Med. 2011 28 10 1194 1200 10.1111/j.1464‑5491.2011.03353.x 21668495
    [Google Scholar]
  55. Sell H. Divoux A. Poitou C. Basdevant A. Bouillot J.L. Bedossa P. Tordjman J. Eckel J. Clément K. Chemerin correlates with markers for fatty liver in morbidly obese patients and strongly decreases after weight loss induced by bariatric surgery. J. Clin. Endocrinol. Metab. 2010 95 6 2892 2896 10.1210/jc.2009‑2374 20375212
    [Google Scholar]
  56. Garces M.F. Sanchez E. Acosta B.J. Angel E. Ruíz A.I. Rubio-Romero J.A. Diéguez C. Nogueiras R. Caminos J.E. Expression and regulation of chemerin during rat pregnancy. Placenta 2012 33 5 373 378 10.1016/j.placenta.2012.02.007 22369992
    [Google Scholar]
  57. Stepan H. Philipp A. Roth I. Kralisch S. Jank A. Schaarschmidt W. Lössner U. Kratzsch J. Blüher M. Stumvoll M. Fasshauer M. Serum levels of the adipokine chemerin are increased in preeclampsia during and 6 months after pregnancy. Regul. Pept. 2011 168 1-3 69 72 10.1016/j.regpep.2011.03.005 21477622
    [Google Scholar]
  58. Hart R. Greaves D.R. Chemerin contributes to inflammation by promoting macrophage adhesion to VCAM-1 and fibronectin through clustering of VLA-4 and VLA-5. J. Immunol. 2010 185 6 3728 3739 10.4049/jimmunol.0902154 20720202
    [Google Scholar]
  59. Chakaroun R. Raschpichler M. Klöting N. Oberbach A. Flehmig G. Kern M. Schön M.R. Shang E. Lohmann T. Dreßler M. Fasshauer M. Stumvoll M. Blüher M. Effects of weight loss and exercise on chemerin serum concentrations and adipose tissue expression in human obesity. Metabolism 2012 61 5 706 714 10.1016/j.metabol.2011.10.008 22136911
    [Google Scholar]
  60. Weigert J. Neumeier M. Wanninger J. Filarsky M. Bauer S. Wiest R. Farkas S. Scherer M.N. Schäffler A. Aslanidis C. Schölmerich J. Buechler C. Systemic chemerin is related to inflammation rather than obesity in type 2 diabetes. Clin. Endocrinol. 2010 72 3 342 348 10.1111/j.1365‑2265.2009.03664.x 19558533
    [Google Scholar]
  61. Yang R.Z. Lee M.J. Hu H. Pray J. Wu H.B. Hansen B.C. Shuldiner A.R. Fried S.K. McLenithan J.C. Gong D.W. Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action. Am. J. Physiol. Endocrinol. Metab. 2006 290 6 E1253 E1261 10.1152/ajpendo.00572.2004 16531507
    [Google Scholar]
  62. Scheja L. Heeren J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat. Rev. Endocrinol. 2019 15 9 507 524 10.1038/s41574‑019‑0230‑6 31296970
    [Google Scholar]
  63. de Gennaro G. Palla G. Battini L. Simoncini T. Del Prato S. Bertolotto A. Bianchi C. The role of adipokines in the pathogenesis of gestational diabetes mellitus. Gynecol. Endocrinol. 2019 35 9 737 751 10.1080/09513590.2019.1597346 30990092
    [Google Scholar]
  64. As’habi A. Sadeghi M. Arab A. Hajianfar H. The association between omentin and diabetes: A systematic review and meta-analysis of observational studies. Diabetes Metab. Syndr. Obes. 2019 12 1277 1286 10.2147/DMSO.S206981 31447571
    [Google Scholar]
  65. Hayashi M. Morioka T. Hatamori M. Kakutani Y. Yamazaki Y. Kurajoh M. Motoyama K. Mori K. Fukumoto S. Shioi A. Shoji T. Emoto M. Inaba M. Plasma omentin levels are associated with vascular endothelial function in patients with type 2 diabetes at elevated cardiovascular risk. Diabetes Res. Clin. Pract. 2019 148 160 168 10.1016/j.diabres.2019.01.009 30641171
    [Google Scholar]
  66. Arslan I. Ulaş T. Karakaş E.Y. Demir M.E. Eren M.A. Torun A.N. Sabuncu T. Comparative effectiveness of diet alone and diet plus metformin treatment on omentin levels in type 2 diabetes patients with nonalcoholic fatty liver disease: A prospective randomized trial. Period. Biol. 2017 119 1 9 15 10.18054/pb.v119i1.4180
    [Google Scholar]
  67. Pan X. Kaminga A.C. Wen S.W. Acheampong K. Liu A. Omentin-1 in diabetes mellitus: A systematic review and meta-analysis. PLoS One 2019 14 12 e0226292 10.1371/journal.pone.0226292 31821362
    [Google Scholar]
  68. Francis E.C. Li M. Hinkle S.N. Cao Y. Chen J. Wu J. Zhu Y. Cao H. Kemper K. Rennert L. Williams J. Tsai M.Y. Chen L. Zhang C. Adipokines in early and mid-pregnancy and subsequent risk of gestational diabetes: A longitudinal study in a multiracial cohort. BMJ Open Diabetes Res. Care 2020 8 1 e001333 10.1136/bmjdrc‑2020‑001333 32747382
    [Google Scholar]
  69. Lewandowski K. Nadel I. Lewinski A. Bienkiewicz M. Tan B. Randeva H.S. Cypryk K. Positive correlation between serum omentin and thrombospondin-1 in gestational diabetes despite lack of correlation with insulin resistance indices. Ginekol. Pol. 2010 81 12 907 912 [PMID: 21391440
    [Google Scholar]
  70. Franz M. Polterauer M. Springer S. Kuessel L. Haslinger P. Worda C. Worda K. Maternal and neonatal omentin-1 levels in gestational diabetes. Arch. Gynecol. Obstet. 2018 297 4 885 889 10.1007/s00404‑018‑4652‑5 29335783
    [Google Scholar]
  71. Abell S.K. Shorakae S. Harrison C.L. Hiam D. Moreno-Asso A. Stepto N.K. De Courten B. Teede H.J. The association between dysregulated adipocytokines in early pregnancy and development of gestational diabetes. Diabetes Metab. Res. Rev. 2017 33 8 e2926 10.1002/dmrr.2926 28806491
    [Google Scholar]
  72. Silverman B.L. Rizzo T. Green O.C. Cho N.H. Winter R.J. Ogata E.S. Richards G.E. Metzger B.E. Long-term prospective evaluation of offspring of diabetic mothers. Diabetes 1991 40 Suppl. 2 121 125 10.2337/diab.40.2.S121 1748240
    [Google Scholar]
  73. Fetita L.S. Sobngwi E. Serradas P. Calvo F. Gautier J.F. Consequences of fetal exposure to maternal diabetes in offspring. J. Clin. Endocrinol. Metab. 2006 91 10 3718 3724 10.1210/jc.2006‑0624 16849402
    [Google Scholar]
  74. Philipps L.H. Santhakumaran S. Gale C. Prior E. Logan K.M. Hyde M.J. Modi N. The diabetic pregnancy and offspring BMI in childhood: A systematic review and meta-analysis. Diabetologia 2011 54 8 1957 1966 10.1007/s00125‑011‑2180‑y 21626451
    [Google Scholar]
  75. Catli G. Anik A. Abaci A. Kume T. Bober E. Low omentin-1 levels are related with clinical and metabolic parameters in obese children. Exp. Clin. Endocrinol. Diabetes 2013 121 10 595 600 10.1055/s‑0033‑1355338 24085389
    [Google Scholar]
  76. Steppan C.M. Brown E.J. Wright C.M. Bhat S. Banerjee R.R. Dai C.Y. Enders G.H. Silberg D.G. Wen X. Wu G.D. Lazar M.A. A family of tissue-specific resistin-like molecules. Proc. Natl. Acad. Sci. USA 2001 98 2 502 506 10.1073/pnas.98.2.502 11209052
    [Google Scholar]
  77. Codoñer-Franch P. Alonso-Iglesias E. Resistin: Insulin resistance to malignancy. Clin. Chim. Acta 2015 438 46 54 10.1016/j.cca.2014.07.043 25128719
    [Google Scholar]
  78. Shang M. Dong X. Hou L. Correlation of adipokines and markers of oxidative stress in women with gestational diabetes mellitus and their newborns. J. Obstet. Gynaecol. Res. 2018 44 4 637 646 10.1111/jog.13586 29399931
    [Google Scholar]
  79. Schwartz D.R. Lazar M.A. Human resistin: Found in translation from mouse to man. Trends Endocrinol. Metab. 2011 22 7 259 265 10.1016/j.tem.2011.03.005 21497511
    [Google Scholar]
  80. Chen D. Dong M. Fang Q. He J. Wang Z. Yang X. Alterations of serum resistin in normal pregnancy and pre-eclampsia. Clin. Sci. 2005 108 1 81 84 10.1042/CS20040225 15377276
    [Google Scholar]
  81. Cortelazzi D. Corbetta S. Ronzoni S. Pelle F. Marconi A. Cozzi V. Cetin I. Cortelazzi R. Beck-Peccoz P. Spada A. Maternal and foetal resistin and adiponectin concentrations in normal and complicated pregnancies. Clin. Endocrinol. 2007 66 3 447 453 10.1111/j.1365‑2265.2007.02761.x 17302882
    [Google Scholar]
  82. Yura S. Sagawa N. Itoh H. Kakui K. Nuamah M.A. Korita D. Takemura M. Fujii S. Resistin is expressed in the human placenta. J. Clin. Endocrinol. Metab. 2003 88 3 1394 1397 10.1210/jc.2002‑011926 12629135
    [Google Scholar]
  83. Banjac G. Ardalic D. Mihajlovic M. Antonic T. Cabunac P. Zeljkovic A. Vekic J. Karadzov-Orlic N. Stanimirovic S. Spasojevic-Kalimanovska V. Mikovic Z. Stefanovic A. The role of resistin in early preeclampsia prediction. Scand. J. Clin. Lab. Invest. 2021 81 6 432 437 10.1080/00365513.2021.1938205 34126816
    [Google Scholar]
  84. Bawah A.T. Seini M.M. Abaka-Yawason A. Alidu H. Nanga S. Leptin, resistin and visfatin as useful predictors of gestational diabetes mellitus. Lipids Health Dis. 2019 18 1 221 10.1186/s12944‑019‑1169‑2 31836012
    [Google Scholar]
  85. Torun G.I. Tuzun D. Sahin M. Kilinc M. The relationship between gestational diabetes mellitus and adipocytokine levels. Sisli Etfal Hospital Tip Bul. 2023 57 1 79 85 [PMID: 37064840
    [Google Scholar]
  86. Hu S.M. Chen M.S. Tan H.Z. Maternal serum level of resistin is associated with risk for gestational diabetes mellitus: A meta-analysis. World J. Clin. Cases 2019 7 5 585 599 10.12998/wjcc.v7.i5.585 30863758
    [Google Scholar]
  87. Kapustin R.V. Chepanov S.V. Babakov V.N. Rogovskaya N.Y. Kopteeva E.V. Alekseenkova E.N. Arzhanova O.N. Maternal serum leptin, adiponectin, resistin and monocyte chemoattractant protein-1 levels in different types of diabetes mellitus. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020 254 284 291 10.1016/j.ejogrb.2020.09.050 33039836
    [Google Scholar]
  88. Georgiou H.M. Lappas M. Georgiou G.M. Marita A. Bryant V.J. Hiscock R. Permezel M. Khalil Z. Rice G.E. Screening for biomarkers predictive of gestational diabetes mellitus. Acta Diabetol. 2008 45 3 157 165 10.1007/s00592‑008‑0037‑8 18496643
    [Google Scholar]
  89. Lain K.Y. Daftary A.R. Ness R.B. Roberts J.M. First trimester adipocytokine concentrations and risk of developing gestational diabetes later in pregnancy. Clin. Endocrinol 2008 69 3 407 411 10.1111/j.1365‑2265.2008.03198.x 18284645
    [Google Scholar]
  90. Nanda S. Poon L.C.Y. Muhaisen M. Acosta I.C. Nicolaides K.H. Maternal serum resistin at 11 to 13 weeks’ gestation in normal and pathological pregnancies. Metabolism 2012 61 5 699 705 10.1016/j.metabol.2011.10.006 22146093
    [Google Scholar]
  91. Fukuhara A. Matsuda M. Nishizawa M. Segawa K. Tanaka M. Kishimoto K. Matsuki Y. Murakami M. Ichisaka T. Murakami H. Watanabe E. Takagi T. Akiyoshi M. Ohtsubo T. Kihara S. Yamashita S. Makishima M. Funahashi T. Yamanaka S. Hiramatsu R. Matsuzawa Y. Shimomura I. Visfatin: A protein secreted by visceral fat that mimics the effects of insulin. Science 2005 307 5708 426 430 10.1126/science.1097243 15604363
    [Google Scholar]
  92. Kim J.J. Choi Y.M. Hong M.A. Kim M.J. Chae S.J. Kim S.M. Hwang K.R. Yoon S.H. Ku S.Y. Suh C.S. Kim S.H. Serum visfatin levels in non-obese women with polycystic ovary syndrome and matched controls. Obstet. Gynecol. Sci. 2018 61 2 253 260 10.5468/ogs.2018.61.2.253 29564317
    [Google Scholar]
  93. Wnuk A. Stangret A. Wątroba M. Płatek A.E. Skoda M. Cendrowski K. Sawicki W. Szukiewicz D. Can adipokine visfatin be a novel marker of pregnancy‐related disorders in women with obesity? Obes. Rev. 2020 21 7 e13022 10.1111/obr.13022 32220005
    [Google Scholar]
  94. Mazaki-Tovi S. Romero R. Kusanovic J.P. Vaisbuch E. Erez O. Than N.G. Chaiworapongsa T. Nhan-Chang C.L. Pacora P. Gotsch F. Yeo L. Kim S.K. Edwin S.S. Hassan S.S. Mittal P. Maternal visfatin concentration in normal pregnancy. J. Perinat. Med. 2009 37 3 206 217 10.1515/JPM.2009.054 19284295
    [Google Scholar]
  95. Ferreira A.F.A. Rezende J.C. Vaikousi E. Akolekar R. Nicolaides K.H. Maternal serum visfatin at 11-13 weeks of gestation in gestational diabetes mellitus. Clin. Chem. 2011 57 4 609 613 10.1373/clinchem.2010.159806 21325104
    [Google Scholar]
  96. Lu D. Yang M. Yao Y. Xie Y. A clinical research study on the respective relationships between visfatin and human fetuin A and pregnancy outcomes in gestational diabetes mellitus. Taiwan. J. Obstet. Gynecol. 2019 58 6 808 813 10.1016/j.tjog.2019.09.015 31759533
    [Google Scholar]
  97. Souvannavong-Vilivong X. Sitticharoon C. Klinjampa R. Keadkraichaiwat I. Sripong C. Chatree S. Sririwichitchai R. Lertbunnaphong T. Placental expressions and serum levels of adiponectin, visfatin, and omentin in GDM. Acta Diabetol. 2019 56 10 1121 1131 10.1007/s00592‑019‑01355‑0 31076892
    [Google Scholar]
  98. Eroglu İ.ÇLİ H.; Bi̇ldaci, T.B. Measuring visfatin levels in saliva: An alternative approach to gestational diabetes screening. Arch. Endocrinol. Metab. 2021 65 6 747 751 10.20945/2359‑3997000000396 34762778
    [Google Scholar]
  99. O’Malley E.G. Reynolds C.M.E. Killalea A. O’Kelly R. Sheehan S.R. Turner M.J. The use of biomarkers at the end of the second trimester to predict Gestational Diabetes Mellitus. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020 250 101 106 10.1016/j.ejogrb.2020.04.064 32417753
    [Google Scholar]
  100. Akturk M. Altinova A.E. Mert I. Buyukkagnici U. Sargin A. Arslan M. Danisman N. Visfatin concentration is decreased in women with gestational diabetes mellitus in the third trimester. J. Endocrinol. Invest. 2008 31 7 610 613 10.1007/BF03345611 18787378
    [Google Scholar]
  101. Li X. Liao M. Shen R. Zhang L. Hu H. Wu J. Wang X. Qu H. Guo S. Long M. Zheng H. Plasma asprosin levels are associated with glucose metabolism, lipid, and sex hormone profiles in females with metabolic-related diseases. Mediators Inflamm. 2018 2018 1 12 10.1155/2018/7375294 30524197
    [Google Scholar]
  102. Yuan M. Li W. Zhu Y. Yu B. Wu J. Asprosin: A novel player in metabolic diseases. Front. Endocrinol. 2020 11 64 10.3389/fendo.2020.00064 32153505
    [Google Scholar]
  103. Boz İ.B. Aytürk Salt S. Salt Ö. Sayın N.C. Dibirdik İ. Association between plasma asprosin levels and gestational diabetes mellitus. Diabetes Metab. Syndr. Obes. 2023 16 2515 2521 10.2147/DMSO.S424651 37641645
    [Google Scholar]
  104. Romere C. Duerrschmid C. Bournat J. Constable P. Jain M. Xia F. Saha P.K. Del Solar M. Zhu B. York B. Sarkar P. Rendon D.A. Gaber M.W. LeMaire S.A. Coselli J.S. Milewicz D.M. Sutton V.R. Butte N.F. Moore D.D. Chopra A.R. Asprosin, a fasting-induced glucogenic protein hormone. Cell 2016 165 3 566 579 10.1016/j.cell.2016.02.063 27087445
    [Google Scholar]
  105. Hoffmann T. Morcos Y.A.T. Janoschek R. Turnwald E.M. Gerken A. Müller A. Sengle G. Dötsch J. Appel S. Hucklenbruch-Rother E. Correlation of metabolic characteristics with maternal, fetal and placental asprosin in human pregnancy. Endocr. Connect. 2022 11 3 e220069 10.1530/EC‑22‑0069 35148275
    [Google Scholar]
  106. Zhang L. Chen C. Zhou N. Fu Y. Cheng X. Circulating asprosin concentrations are increased in type 2 diabetes mellitus and independently associated with fasting glucose and triglyceride. Clin. Chim. Acta 2019 489 183 188 10.1016/j.cca.2017.10.034 29104036
    [Google Scholar]
  107. Alan M. Gurlek B. Yilmaz A. Aksit M. Aslanipour B. Gulhan I. Mehmet C. Taner C.E. Asprosin: A novel peptide hormone related to insulin resistance in women with polycystic ovary syndrome. Gynecol. Endocrinol. 2019 35 3 220 223 10.1080/09513590.2018.1512967 30325247
    [Google Scholar]
  108. Zhong L. Long Y. Wang S. Lian R. Deng L. Ye Z. Wang Z. Liu B. Continuous elevation of plasma asprosin in pregnant women complicated with gestational diabetes mellitus: A nested case-control study. Placenta 2020 93 17 22 10.1016/j.placenta.2020.02.004 32090964
    [Google Scholar]
  109. Baykus Y. Yavuzkir S. Ustebay S. Ugur K. Deniz R. Aydin S. Asprosin in umbilical cord of newborns and maternal blood of gestational diabetes, preeclampsia, severe preeclampsia, intrauterine growth retardation and macrosemic fetus. Peptides 2019 120 170132 10.1016/j.peptides.2019.170132 31400492
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266361462250618084953
Loading
/content/journals/ctmc/10.2174/0115680266361462250618084953
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: resistin ; gestational diabetes ; Adipokine ; chemerin ; asprosin ; omentin-1
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test