Skip to content
2000
image of The Green Synthesis of Cu Nanoparticles and Investigation of the
Antibacterial Properties and Cytotoxicity on Multidrug-Resistant E. coli

Abstract

Introduction

Although is considered a normal human microbiota, it may cause life-threatening infections such as septicemia, urinary tract infections, and enteric infections. Moreover, multidrug-resistant strains are a serious challenge in the clinic due to high mortality rates and the limited number of therapeutic options. Hence, the current study aimed to benefit from as a source of green synthesis of copper nanoparticles (Cu-NPs), to investigate the antibacterial features against multidrug-resistant and to measure the cytotoxicity of Cu-NPs.

Methods

were used as a reducing agent for Cu-NP synthesis, and then XRD, zeta potential, UV-Vis, FTIR, SEM, and DLS analyses were performed to characterize the synthesized NPs. Moreover, the MIC and zone of inhibition values of Cu-NPs were measured and compared to common antibiotics. Additionally, the MTT assay was performed to assess the cytotoxicity.

Results

The green synthesized Cu-NPs were spherical and uniform with a size of ~200 nm. The MIC of Cu-NPs was 1024 μg/ml on the MDR strain of , representing the antibacterial activity comparable to levofloxacin (p-value>0.05) but less than imipenem and trimethoprim (p-value<0.001). Moreover, the CC50 of synthesized Cu-NPs was 731.2 μg/ml and significantly lower than the studied antibiotics (p-value<0.001).

Conclusion

The findings may suggest Cu-NPs as a promising antibacterial strategy against MDR strains of , however, further studies are encouraged to clarify the safety of optimized doses.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266379834250605135159
2025-06-13
2025-09-13
Loading full text...

Full text loading...

/deliver/fulltext/ctmc/10.2174/0115680266379834250605135159/BMS-CTMC-2024-500.html?itemId=/content/journals/ctmc/10.2174/0115680266379834250605135159&mimeType=html&fmt=ahah

References

  1. Alam G.S. Hassan M.M. Ahaduzzaman M. Nath C. Dutta P. Khanom H. Khan S.A. Pasha M.R. Islam A. Magalhaes R.S. Cobbold R. Molecular detection of tetracycline-resistant genes in multi-drug-resistant Escherichia coli isolated from broiler meat in Bangladesh. Antibiotics 2023 12 2 418 10.3390/antibiotics12020418 36830329
    [Google Scholar]
  2. Moiketsi B.N. Makale K.P.P. Rantong G. Rahube T.O. Makhzoum A. Potential of selected African medicinal plants as alternative therapeutics against multi-drug-resistant bacteria. Biomedicines 2023 11 10 2605 37892979
    [Google Scholar]
  3. Muzammil S. Hayat S. Fakhar-E-Alam, M.; Aslam, B.; Siddique, M.H.; Nisar, M.A.; Saqalein, M.; Atif, M.; Sarwar, A.; Khurshid, A.; Amin, N.; Wang, Z. Nanoantibiotics: Future nanotechnologies to combat antibiotic resistance. Front. Biosci. (Elite Ed.) 2018 10 2 352 374 29293463
    [Google Scholar]
  4. Ameh T. Gibb M. Stevens D. Pradhan S.H. Braswell E. Sayes C.M. Silver and copper nanoparticles induce oxidative stress in bacteria and mammalian cells. Nanomaterials 2022 12 14 2402 10.3390/nano12142402 35889626
    [Google Scholar]
  5. Elbahnasawy M.A. Shehabeldine A.M. Khattab A.M. Amin B.H. Hashem A.H. Green biosynthesis of silver nanoparticles using novel endophytic Rothia endophytica: Characterization and anticandidal activity. J. Drug Deliv. Sci. Technol. 2021 62 102401 10.1016/j.jddst.2021.102401
    [Google Scholar]
  6. Hasanin M. Al Abboud M.A. Alawlaqi M.M. Abdelghany T.M. Hashem A.H. Ecofriendly synthesis of biosynthesized copper nanoparticles with starch-based nanocomposite: antimicrobial, antioxidant, and anticancer activities. Biol. Trace Elem. Res. 2021 2021 1 14 34283366
    [Google Scholar]
  7. Diksha D. Gupta S.K. Gupta P. Banerjee U.C. Kalita D. Gupta S. Antibacterial potential of gold nanoparticles synthesized from leaf extract of Syzygium cumini against multidrug-resistant urinary tract pathogens. Cureus 2023 15 2 e34830 10.7759/cureus.34830 36919069
    [Google Scholar]
  8. Cuong H.N. Pansambal S. Ghotekar S. Oza R. Thanh Hai N.T. Viet N.M. Nguyen V.H. New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: A review. Environ. Res. 2022 203 111858 10.1016/j.envres.2021.111858 34389352
    [Google Scholar]
  9. Khatami M. Varma R.S. Heydari M. Peydayesh M. Sedighi A. Agha Askari H. Rohani M. Baniasadi M. Arkia S. Seyedi F. Khatami S. Copper oxide nanoparticles greener synthesis using tea and its antifungal efficiency on Fusarium solani. Geomicrobiol. J. 2019 36 9 777 781 10.1080/01490451.2019.1621963
    [Google Scholar]
  10. Nagore P. Ghotekar S. Mane K. Ghoti A. Bilal M. Roy A. Structural properties and antimicrobial activities of Polyalthia longifolia leaf extract-mediated CuO nanoparticles. Bionanoscience 2021 11 2 579 589 10.1007/s12668‑021‑00851‑4
    [Google Scholar]
  11. Abu-Serie M.M. Eltarahony M. Novel nanoformulation of disulfiram with bacterially synthesized copper oxide nanoparticles for augmenting anticancer activity: An in vitro study. Cancer Nanotechnol. 2021 12 1 25 10.1186/s12645‑021‑00097‑5
    [Google Scholar]
  12. Sedigh Ebrahim-Saraie H. Heidari H. Rezaei V. Mortazavi S.M.J. Motamedifar M. Promising antibacterial effect of copper oxide nanoparticles against several multidrug resistant uropathogens. Ulum-i Daruyi 2018 24 3 213 218 10.15171/PS.2018.31
    [Google Scholar]
  13. Flores-Rábago K.M. Rivera-Mendoza D. Vilchis-Nestor A.R. Juarez-Moreno K. Castro-Longoria E. Antibacterial activity of biosynthesized copper oxide nanoparticles (CuONPs) using Ganoderma sessile. Antibiotics 2023 12 8 1251 10.3390/antibiotics12081251 37627671
    [Google Scholar]
  14. Murugan B. Rahman M.Z. Fatimah I. Anita Lett J. Annaraj J. Kaus N.H.M. Al-Anber M.A. Sagadevan S. Green synthesis of CuO nanoparticles for biological applications. Inorg. Chem. Commun. 2023 155 111088 10.1016/j.inoche.2023.111088
    [Google Scholar]
  15. Woźniak-Budych M.J. Staszak K. Staszak M. Copper and copper-based nanoparticles in medicine—perspectives and challenges. Molecules 2023 28 18 6687 10.3390/molecules28186687 37764463
    [Google Scholar]
  16. Mukherjee D. Ghosh S. Majumdar S. Annapurna K. Green synthesis of α-Fe2O3 nanoparticles for arsenic (V) remediation with a novel aspect for sludge management. J. Environ. Chem. Eng. 2016 4 1 639 650
    [Google Scholar]
  17. Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011 13 10 2638 2650 10.1039/c1gc15386b
    [Google Scholar]
  18. 2021
  19. Farhan S.M. El-Baky R.M.A. Abdalla S. EL-Gendy, A.O.; Ahmed, H.R.; Mohamed, D.S.; El Zawily, A.E.; Azmy, A.F. In vitro and in vivo effect of amikacin and imipenem combinations against multidrug-resistant E. coli. Trop. Med. Infect. Dis. 2022 7 10 281 10.3390/tropicalmed7100281 36288022
    [Google Scholar]
  20. Hadiya S. Liu X. Abd El-Hammed W. Elsabahy M. Aly S.A. Levofloxacin-loaded nanoparticles decrease emergence of fluoroquinolone resistance in Escherichia coli. Microb. Drug Resist. 2018 24 8 1098 1107 10.1089/mdr.2017.0304 29431570
    [Google Scholar]
  21. Phetsang W. Pelingon R. Butler M.S. Kc S. Pitt M.E. Kaeslin G. Cooper M.A. Blaskovich M.A. Fluorescent trimethoprim conjugate probes to assess drug accumulation in wild type and mutant Escherichia coli. ACS Infect. Dis. 2016 2 10 688 701 27737551 10.1021/acsinfecdis.6b00080
    [Google Scholar]
  22. Anwar M.A. Aqib A.I. Ashfaq K. Deeba F. Khan M.K. Khan S.R. Muzammil I. Shoaib M. Naseer M.A. Riaz T. Tanveer Q. Sadiq M. Lodhi F.L. Ashraf F. Antimicrobial resistance modulation of MDR E. coli by antibiotic coated ZnO nanoparticles. Microb. Pathog. 2020 148 104450 32853679
    [Google Scholar]
  23. Bhaumik J. Thakur N.S. Aili P.K. Ghanghoriya A. Mittal A.K. Banerjee U.C. Bioinspired nanotheranostic agents: synthesis, surface functionalization, and antioxidant potential. ACS Biomater. Sci. Eng. 2015 1 6 382 392 33445243
    [Google Scholar]
  24. Vakili S. Shabaninejad Z. Ameri M. Ebrahiminezhad A. Shojazadeh A. Safarpour H. Khalaf N. Noorozi S. Green synthesis, characterization and antibacterial activity of silver nanoparticles by Biarum chaduchrum leaf extract. Appl. Phys., A Mater. Sci. Process. 2022 128 3 241 10.1007/s00339‑022‑05384‑5
    [Google Scholar]
  25. Ayodhya D. Fabrication of SPR triggered Ag-CuO composite from Cu(II)-Schiff base complex for enhanced visible-light-driven degradation of single and binary-dyes and fluorometric detection of nitroaromatic compounds. Inorg. Chem. Commun. 2023 148 110295 10.1016/j.inoche.2022.110295
    [Google Scholar]
  26. Manikandan D.B. Arumugam M. Abdul U. Sridhar A. Abdul Kari Z. Téllez-Isaías G. Ramasamy T. Green synthesized AgNPs, CuONPs, and Ag‐CuO NCs to effective antibiofilm activities and their potential application in aquaculture. Appl. Organomet. Chem. 2023 37 12 e7293 10.1002/aoc.7293
    [Google Scholar]
  27. Khan S.N. Ali I. Ahmed F. Shah M.R. Shaheen F. Synthesis of conjugated silver nanoparticles of 18β-glycyrrhetinic acid peptide conjugate (GAP) as a colorimetric probe for barium ions. New J. Chem. 2023 47 18 8638 8648 10.1039/D3NJ01159C
    [Google Scholar]
  28. Zook J.M. Long S.E. Cleveland D. Geronimo C.L.A. MacCuspie R.I. Measuring silver nanoparticle dissolution in complex biological and environmental matrices using UV-visible absorbance. Anal. Bioanal. Chem. 2011 401 6 1993 2002 21808990
    [Google Scholar]
  29. Abdelghany T.M. Al-Rajhi A.M. Yahya R. Bakri M.M. Al Abboud M.A. Yahya R. Phytofabrication of zinc oxide nanoparticles with advanced characterization and its antioxidant, anticancer, and antimicrobial activity against pathogenic microorganisms. Biomass Convers. Biorefin. 2023 13 1 417 430
    [Google Scholar]
  30. Harisha K.S. Narayana B. Sangappa Y. Highly selective and sensitive colorimetric detection of arsenic(III) in aqueous solution using green synthesized unmodified gold nanoparticles. J. Dispers. Sci. Technol. 2023 44 1 132 143 10.1080/01932691.2021.1931286
    [Google Scholar]
  31. Jia Z. Li J. Gao L. Yang D. Kanaev A. Dynamic light scattering: A powerful tool for in situ nanoparticle sizing. Colloids and Interfaces 2023 7 1 15 10.3390/colloids7010015
    [Google Scholar]
  32. Zheng T. Bott S. Huo Q. Techniques for accurate sizing of gold nanoparticles using dynamic light scattering with particular application to chemical and biological sensing based on aggregate formation. ACS Appl. Mater. Interfaces 2016 8 33 21585 21594 10.1021/acsami.6b06903 27472008
    [Google Scholar]
  33. Butte S.M. Waghuley S.A. Optical properties of Cu2O and CuO. AIP Conf Proc 2020 2220 1 020093 10.1063/5.0001644
    [Google Scholar]
  34. Khashan K.S. Jabir M.S. Abdulameer F.A. Preparation and characterization of copper oxide nanoparticles decorated carbon nanoparticles using laser ablation in liquid. J. Phys. Conf. Ser. 2018 1003 1 012100 10.1088/1742‑6596/1003/1/012100
    [Google Scholar]
  35. Serrano-Lotina A. Portela R. Baeza P. Alcolea-Rodriguez V. Villarroel M. Ávila P. Zeta potential as a tool for functional materials development. Catal. Today 2023 423 113862 10.1016/j.cattod.2022.08.004
    [Google Scholar]
  36. Wu H. Wang Y. Sun B. Liu X. Zhang T. Ma Y. Concentration-dependent effects of humic acid and protein on the stability of hematite nanoparticles in an aqueous environment. J. Nanopart. Res. 2023 25 6 109
    [Google Scholar]
  37. Yu S. Liu H. Yang R. Zhou W. Liu J. Aggregation and stability of selenium nanoparticles: Complex roles of surface coating, electrolytes and natural organic matter. J. Environ. Sci. (China) 2023 130 14 23 10.1016/j.jes.2022.10.025 37032031
    [Google Scholar]
  38. Miao L. Wang C. Hou J. Wang P. Ao Y. Li Y. Lv B. Yang Y. You G. Xu Y. Enhanced stability and dissolution of CuO nanoparticles by extracellular polymeric substances in aqueous environment. J. Nanopart. Res. 2015 17 10 404 10.1007/s11051‑015‑3208‑x
    [Google Scholar]
  39. Ortelli S. Costa A.L. Blosi M. Brunelli A. Badetti E. Bonetto A. Hristozov D. Marcomini A. Colloidal characterization of CuO nanoparticles in biological and environmental media. Environ. Sci. Nano 2017 4 6 1264 1272 10.1039/C6EN00601A
    [Google Scholar]
  40. Bonten M. Johnson J.R. van den Biggelaar A.H.J. Georgalis L. Geurtsen J. de Palacios P.I. Gravenstein S. Verstraeten T. Hermans P. Poolman J.T. Epidemiology of Escherichia coli bacteremia: A systematic literature review. Clin. Infect. Dis. 2021 72 7 1211 1219 10.1093/cid/ciaa210 32406495
    [Google Scholar]
  41. Denamur E. Clermont O. Bonacorsi S. Gordon D. The population genetics of pathogenic Escherichia coli. Nat. Rev. Microbiol. 2021 19 1 37 54 10.1038/s41579‑020‑0416‑x 32826992
    [Google Scholar]
  42. Pöntinen A.K. Gladstone R.A. Pesonen H. Pesonen M. Cléon F. Parcell B.J. Kallonen T. Simonsen G.S. Croucher N.J. McNally A. Parkhill J. Johnsen P.J. Samuelsen Ø. Corander J. Modulation of multidrug-resistant clone success in Escherichia coli populations: A longitudinal, multi-country, genomic and antibiotic usage cohort study. Lancet Microbe 2024 5 2 e142 e150 38219757 10.1038/s41579‑020‑0416‑x
    [Google Scholar]
  43. Fernández J. Bert F. Nicolas-Chanoine M-H. The challenges of multi-drug-resistance in hepatology. J. Hepatol., 2016 65 5 1043 1054 27544545 10.1016/j.jhep.2016.08.002
    [Google Scholar]
  44. Williamson D.A. Barrett L.K. Rogers B.A. Freeman J.T. Hadway P. Paterson D.L. Infectious complications following transrectal ultrasound-guided prostate biopsy: New challenges in the era of multidrug-resistant Escherichia coli. Clin. Infect. Dis. 2013 57 2 267 274 10.1093/cid/cit193 23532481
    [Google Scholar]
  45. Lee N.Y. Ko W.C. Hsueh P.R. Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front. Pharmacol. 2019 10 1153 10.3389/fphar.2019.01153 31636564
    [Google Scholar]
  46. Mba I.E. Nweze E.I. Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: Research progress, challenges, and prospects. World J. Microbiol. Biotechnol. 2021 37 6 108 10.1007/s11274‑021‑03070‑x 34046779
    [Google Scholar]
  47. Kanmani P. Rhim J-W. Physicochemical properties of gelatin/silver nanoparticle antimicrobial composite films. Food Chem. 2014 148 162 169 24262541
    [Google Scholar]
  48. Shrivastava S. Bera T. Roy A. Singh G. Ramachandrarao P. Dash D. Retracted: Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology, 2007 18 22 225103 225500 37016550 10.1088/0957‑4484/18/22/225103
    [Google Scholar]
  49. Profeta F. Matteucci O. Orsini G. Sonsini L. Lombardi G. Capista S. Antonucci D. Ronchi G.F. Di Ventura M. Evaluation of veterinary autogenous vaccines safety by an MTT in-vitro cytotoxicity assay. Vet. Ital. 2019 55 4 299 305 31955551
    [Google Scholar]
  50. Ahamed M. Akhtar M.J. Alhadlaq H.A. Preventive effect of TiO2 nanoparticles on heavy metal Pb-induced toxicity in human lung epithelial (A549) cells. Toxicol. In vitro 2019 57 18 27 10.1016/j.tiv.2019.02.004 30738203
    [Google Scholar]
  51. Priyadarshini E. Priyadarshini S.S. Cousins B.G. Pradhan N. Metal-Fungus interaction: Review on cellular processes underlying heavy metal detoxification and synthesis of metal nanoparticles. Chemosphere 2021 274 129976 10.1016/j.chemosphere.2021.129976 33979913
    [Google Scholar]
  52. Rehman A.U. Nazir S. Irshad R. Tahir K. Toxicity of heavy metals in plants and animals and their uptake by magnetic iron oxide nanoparticles. J. Mol. Liq. 2021 321 114455
    [Google Scholar]
  53. Rosenfeldt R.R. Seitz F. Schulz R. Bundschuh M. Heavy metal uptake and toxicity in the presence of titanium dioxide nanoparticles: A factorial approach using Daphnia magna. Environ. Sci. Technol. 2014 48 12 6965 6972 24847969
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266379834250605135159
Loading
/content/journals/ctmc/10.2174/0115680266379834250605135159
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: bacteria ; Multi-drug resistant ; therapy ; E. coli ; nanoparticle
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test