Skip to content
2000
image of Benzoxathiolone-Thiazolidinone Hybrids: A New Class in the Search for Anticancer Agents

Abstract

Background

Cancer continues to be a significant public health issue and one of the leading causes of death globally. In this context, developing new, potent, and more specific treatments against this disease is urgent.

Methods

A total of 15 benzoxathiolone-thiazolidinones hybrids were synthesized in a 5-step route and tested for their cytotoxicity against five human cancer cell lines: AGP-01 (gastric), SKMEL-103 (melanoma), HCT-116 (colon), CAL27 (tongue), and K562 (leukemia), as well as a non-tumoral cell line MRC-5.

Results

Compounds 3-(6-hydroxy-2-oxobenzo[d][1,3]oxathiol-5-yl)-2-(4-nitrophenyl)thiazolidin-4-one and 2-(2,4-dichlorophenyl)-3-(6-hydroxy-2-oxobenzo[d][1,3]oxathiol-5-yl)thiazolidin-4-one exhibited good activity against the K562 leukemia cell line, with IC values of 4.0 μM and 5.3 μM, respectively. Docking studies demonstrated that these compounds likely bind to the BCR-ABL1 kinase, a key protein in the pathogenesis of chronic myeloid leukemia (CML).

Conclusion

The study suggests these benzoxathiolone-thiazolidinone hybrids could be promising lead compounds for developing new anticancer agents targeting leukemia.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266366285250528005320
2025-06-16
2025-09-13
Loading full text...

Full text loading...

References

  1. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  2. Cancer. 2025 Available from: (Accessed September 10, 2024). https://www.who.int/news-room/fact-sheets/detail/cancer
  3. WHO report on cancer: Setting priorities, investing wisely and providing care for all. 2020 Available from: https://www.who.int/publications/i/item/who-report-on-cancer-setting-priorities-investing-wisely-and-providing-care-for-all
  4. Global cancer burden growing, amidst mounting need for services. 2024 Available from: (Accessed September 10, 2024) https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services
  5. Baselga J. Bhardwaj N. Cantley L.C. DeMatteo R. DuBois R.N. Foti M. Gapstur S.M. Hahn W.C. Helman L.J. Jensen R.A. Paskett E.D. Lawrence T.S. Lutzker S.G. Szabo E. AACR Cancer Progress Report 2015. Clin. Cancer Res. 2015 21 19_Supplement Suppl. S1 S128 10.1158/1078‑0432.CCR‑15‑1846 26429991
    [Google Scholar]
  6. Vellasco Júnior W.T. Gomes C.R.B. Vasconcelos T.R.A. Chemistry and biological activities of 1,3-benzoxathiol-2-ones. Mini Rev. Org. Chem. 2011 8 103 109 10.2174/157019311793979882
    [Google Scholar]
  7. Nirwan S. Chahal V. Kakkar R. Thiazolidinones: Synthesis, Reactivity, and Their Biological Applications. J. Heterocyclic Chem. 2019 56 1239 1253 10.1002/jhet.3514
    [Google Scholar]
  8. Wildfeuer A. 6-Hydroxy-1,3-benzoxathiol-2-one, an antipsoriatic with antibacterial and antimycotic properties. Arzneim. Forsch. 1970 20 824 831 10.1002/jhet.3514
    [Google Scholar]
  9. Povalishev V.N. Polozov G.I. Shadyro O.I. Effects of α-tocopherol and related compounds on reactions involving various organic radicals. Bioorg. Med. Chem. Lett. 2006 16 5 1236 1239 10.1016/j.bmcl.2005.11.078 16343902
    [Google Scholar]
  10. Konieczny M.T. Konieczny W. Pirska D. Bulakowska A. Sabisz M. Skladanowski A. Wakiec´ R. Augustynowicz-Kopec´ E. Zwolska Z. Synthesis of Oxathiolone Fused Chalcones Bearing O-Aminoalkyl Side Chain. Comparison of Stability of Isomeric Benzoxathiolones under Alkylation Reaction Conditions. Heterocycles 2007 71 2595 2615 10.3987/COM‑07‑11165
    [Google Scholar]
  11. Chazin E. Sanches P. Lindgren E. Vellasco Júnior W. Pinto L. Burbano R. Yoneda J. Leal K. Gomes C. Wardell J. Wardell S. Montenegro R. Vasconcelos T. Synthesis and biological evaluation of novel 6-hydroxy-benzo[d][1,3]oxathiol-2-one Schiff bases as potential anticancer agents. Molecules 2015 20 2 1968 1983 10.3390/molecules20021968 25633329
    [Google Scholar]
  12. Terra L. de L Chazin E. de S Sanches P. Saito M. de Souza M.V.N. Gomes C.R.B. Wardell J.L. Wardell S.M.S.V. Sathler P.C. Silva G.C.C. Lione V.O. Kalil M. Joffily A. Castro H.C. Vasconcelos T.R.A. Evaluation of 1,3-benzoxathiol-2-one Derivatives as Potential Antifungal Agents. Med. Chem. 2018 14 3 304 310 10.2174/1573406413666170704095113 28676004
    [Google Scholar]
  13. Konieczny M.T. Konieczny W. Sabisz M. Skladanowski A. Wakieć R. Augustynowicz-Kopeć E. Zwolska Z. Acid-catalyzed synthesis of oxathiolone fused chalcones. Comparison of their activity toward various microorganisms and human cancer cells line. Eur. J. Med. Chem. 2007 42 5 729 733 10.1016/j.ejmech.2006.12.014 17300856
    [Google Scholar]
  14. El-Husseiny W.M. Synthesis and biological evaluation of new 3-phenylthiazolidin-4-one and 3-phenylthiazole derivatives as antimicrobial agents. Polycycl Aromat Comp 2020 1 15
    [Google Scholar]
  15. Hammad S.G. El-Gazzar M.G. Abutaleb N.S. Li D. Ramming I. Shekhar A. Abdel-Halim M. Elrazaz E.Z. Seleem M.N. Bilitewski U. Abouzid K.A.M. El-Hossary E.M. Synthesis and antimicrobial evaluation of new halogenated 1,3-Thiazolidin-4-ones. Bioorg. Chem. 2020 95 103517 10.1016/j.bioorg.2019.103517 31884138
    [Google Scholar]
  16. Carradori S. Bizzarri B. D’Ascenzio M. De Monte C. Grande R. Rivanera D. Zicari A. Mari E. Sabatino M. Patsilinakos A. Ragno R. Secci D. Synthesis, biological evaluation and quantitative structure-active relationships of 1,3-thiazolidin-4-one derivatives. A promising chemical scaffold endowed with high antifungal potency and low cytotoxicity. Eur. J. Med. Chem. 2017 140 274 292 10.1016/j.ejmech.2017.09.026 28963991
    [Google Scholar]
  17. Suryawanshi R. Jadhav S. Makwana N. Desai D. Chaturbhuj D. Sonawani A. Idicula-Thomas S. Murugesan V. Katti S.B. Tripathy S. Paranjape R. Kulkarni S. Evaluation of 4-thiazolidinone derivatives as potential reverse transcriptase inhibitors against HIV-1 drug resistant strains. Bioorg. Chem. 2017 71 211 218 10.1016/j.bioorg.2017.02.007 28236450
    [Google Scholar]
  18. de Oliveira Filho G.B. de Oliveira Cardoso M.V. Espíndola J.W.P. Ferreira L.F.G.R. de Simone C.A. Ferreira R.S. Coelho P.L. Meira C.S. Magalhaes Moreira D.R. Soares M.B.P. Lima Leite A.C. Structural design, synthesis and pharmacological evaluation of 4-thiazolidinones against Trypanosoma cruzi. Bioorg. Med. Chem. 2015 23 23 7478 7486 10.1016/j.bmc.2015.10.048 26549870
    [Google Scholar]
  19. Omar Y.M. Abdu-Allah H.H.M. Abdel-Moty S.G. Synthesis, biological evaluation and docking study of 1,3,4-thiadiazole-thiazolidinone hybrids as anti-inflammatory agents with dual inhibition of COX-2 and 15-LOX. Bioorg. Chem. 2018 80 461 471 10.1016/j.bioorg.2018.06.036 29986191
    [Google Scholar]
  20. Noorulla K.M. Suresh A.J. Devaraji V. Mathew B. Umesh D. Molecular modeling of drug-pathophysiological Mtb protein targets: Synthesis of some 2-thioxo-1, 3-thiazolidin-4-one derivatives as anti-tubercular agents. J. Mol. Struct. 2017 1147 682 696 10.1016/j.molstruc.2017.07.009
    [Google Scholar]
  21. Szychowski K.A. Leja M.L. Kaminskyy D.V. Kryshchyshyn A.P. Binduga U.E. Pinyazhko O.R. Lesyk R.B. Tobiasz J. Gmiński J. Anticancer properties of 4-thiazolidinone derivatives depend on peroxisome proliferator-activated receptor gamma (PPARγ). Eur. J. Med. Chem. 2017 141 162 168 10.1016/j.ejmech.2017.09.071 29031063
    [Google Scholar]
  22. Shingalapur R.V. Hosamani K.M. Keri R.S. Hugar M.H. Derivatives of benzimidazole pharmacophore: Synthesis, anticonvulsant, antidiabetic and DNA cleavage studies. Eur. J. Med. Chem. 2010 45 5 1753 1759 10.1016/j.ejmech.2010.01.007 20122763
    [Google Scholar]
  23. Werner G. Thiocarbonates of aromatic polyhydroxy compounds. U.S. Patent nº 2,332,418 1943
  24. Cunico W. Gomes C. Vellasco W. Jr Chemistry and Biological Activities of 1,3-Thiazolidin-4-ones. Mini Rev. Org. Chem. 2008 5 4 336 344 10.2174/157019308786242232
    [Google Scholar]
  25. Thakare M.P. Shaikh R. Tayade D. Developments in thiazolidinones synthesis: A review. Heterocycl. lett. 2018 8 493 506
    [Google Scholar]
  26. Sahiba N. Sethiya A. Soni J. Agarwal D.K. Agarwal S. Saturated Five-Membered Thiazolidines and Their Derivatives: From Synthesis to Biological Applications. Top. Curr. Chem. (Cham) 2020 378 2 34 10.1007/s41061‑020‑0298‑4 32206929
    [Google Scholar]
  27. Junior I. Lourenço M. Henriques M.G. Ferreira B. Vasconcelos T. Peralta M. de Oliveira P. Wardell S. de Souza M. Synthesis and anti-mycobacterial activity of N'-[(E)-(disubstituted-phenyl)methylidene]isonicotino-hydrazide derivatives. Lett. Drug Des. Discov. 2005 2 7 563 566 10.2174/157018005774479131
    [Google Scholar]
  28. Lourenço M.C.S. Ferreira M.L. de Souza M.V.N. Peralta M.A. Vasconcelos T.R.A. Henriques M.G.M.O. Synthesis and anti-mycobacterial activity of (E)-N′-(monosubstituted-benzylidene)isonicotinohydrazide derivatives. Eur. J. Med. Chem. 2008 43 6 1344 1347 10.1016/j.ejmech.2007.08.003 17923172
    [Google Scholar]
  29. Francisco Nogueira A. Carvalho Azevedo E. Francisco Ferreira V. Jersia Araujo A. Alves dos Santos E. Pessoa C. Veras Costa-Lotufo L. Carvalho Montenegro R. Odorico de Moraes M. Rocha Alves Vasconcelos T. Synthesis and antitumor evaluation of (E)-2-benzothiazole hydrazones. Lett. Drug Des. Discov. 2010 7 8 551 555 10.2174/157018010792062740
    [Google Scholar]
  30. Facchinetti V. Reis R.R. Gomes C.R.B. Vasconcelos T.R.A. Chemistry and biological activities of 1,3-benzothiazoles. Mini Rev. Org. Chem. 2012 9 44 53 10.2174/157019312799079929
    [Google Scholar]
  31. Facchinetti V. Gomes C.R.B. de Souza M.V.N. Vasconcelos T.R.A. Perspectives on the development of novel potentially active quinolones against tuberculosis and cancer. Mini Rev. Med. Chem. 2012 12 9 866 874 10.2174/138955712800959099 22512569
    [Google Scholar]
  32. Lindgren E.B. de Brito M.A. Vasconcelos T.R.A. de Moraes M.O. Montenegro R.C. Yoneda J.D. Leal K.Z. Synthesis and anticancer activity of (E)-2-benzothiazole hydrazones. Eur. J. Med. Chem. 2014 86 12 16 10.1016/j.ejmech.2014.08.039 25147145
    [Google Scholar]
  33. Facchinetti V. Guimarães F.A. de Souza M.V.N. Gomes C.R.B. de Souza M.C.B.V. Wardell J.L. Wardell S.M.S.V. Vasconcelos T.R.A. Synthesis of Novel Ethyl (substituted)phenyl‐4‐oxothiazolidin‐3‐yl)‐1‐ethyl‐4‐oxo‐1,4‐dihydroquinoline‐3‐Carboxylates as Potential Anticancer Agents. J. Heterocycl. Chem. 2015 52 4 1245 1252 10.1002/jhet.2212
    [Google Scholar]
  34. Vasconcelos Z.S. Ralph A.C.L. Calcagno D.Q. dos Santos Barbosa G. do Nascimento Pedrosa T. Antony L.P. de Arruda Cardoso Smith M. de Lucas Chazin E. Vasconcelos T.R.A. Montenegro R.C. de Vasconcellos M.C. Anticancer potential of benzothiazolic derivative (E)-2-((2-(benzo[d]thiazol-2-yl)hydrazono)methyl)-4-nitrophenol against melanoma cells. Toxicol. In Vitro 2018 50 225 235 10.1016/j.tiv.2018.03.001 29574239
    [Google Scholar]
  35. Facchinetti V. De Souza M.V.N. Nery A.C.S. Calixto S.L. Granato J.T. Coimbra E.S. Lourenco M.C.S. Gomes C.R.B. Vasconcelos T.R.A. Synthetic aspects and first-time assessment of 2-amino-1,3-selenazoles against Mycobacterium tuberculosis. Lett. Drug Des. Discov. 2018 15 11 1224 1229 10.2174/1570180815666180209153925
    [Google Scholar]
  36. Chazin E.L. Terra L. Moor L.F.E. Sanches P.S. Pinto L.C. Martins T. de Souza M.V.N. Gomes C.R.B. Montenegro R.C. Novais J.S. Carvalho M.F. Martins F.J. Figueiredo A.M.S. Joffily A. Castro H.C. Vasconcelos T.R.A. 1,3-Benzoxathiol-2-one and 1,3-Benzothiazole Compounds as Potential Anticancer and Antimicrobial Agents. Rev. Virtual Quim. 2020 12 1586 1598 10.21577/1984‑6835.20200125
    [Google Scholar]
  37. Chazin E. Martins L. de Souza M.V. Gomes C.R. da Silva A.C. Branco M. Sanchez E. Fuly A. Vasconcelos T. Synthesis and Biological Evaluation of Novel 1,3-Benzoxathiol-2-one Sulfonamides against Toxic Activities of the Venom of Bothrops jararaca and Bothrops jararacussu Snakes. J. Braz. Chem. Soc. 2022 33 2 12 10.21577/0103‑5053.20210119
    [Google Scholar]
  38. Facchinetti V. Gomes C.R.B. Aboud K.C.L. Fiorot R.G. Carvalho G.G.C. de Paier C.R.K. Pessoa C. do Ó Gomes A.C.C. de Souza M.V.N. Vasconcelos T.R.A. Design, synthesis, and molecular docking studies of new quinoline-thiazole hybrids, potential leads in the development of novel antileukemic agents. J. Braz. Chem. Soc 2024 35 1 12 10.21577/0103‑5053.20230139
    [Google Scholar]
  39. Kamel M.M. Ali H.I. Anwar M.M. Mohamed N.A. Soliman A.M. Synthesis, antitumor activity and molecular docking study of novel Sulfonamide-Schiff’s bases, thiazolidinones, benzothiazinones and their C-nucleoside derivatives. Eur. J. Med. Chem. 2010 45 2 572 580 10.1016/j.ejmech.2009.10.044 19932530
    [Google Scholar]
  40. Roszczenko P. Holota S. Szewczyk O.K. Dudchak R. Bielawski K. Bielawska A. Lesyk R. 4-Thiazolidinone-Bearing Hybrid Molecules in Anticancer Drug Design. Int. J. Mol. Sci. 2022 23 21 13135 10.3390/ijms232113135 36361924
    [Google Scholar]
  41. Shawky A.M. Almalki F.A. Abdalla A.N. Youssif B.G.M. Abdel-Fattah M.M. Hersi F. El-Sherief H.A.M. Ibrahim N.A. Gouda A.M. Discovery and optimization of 2,3-diaryl-1,3-thiazolidin-4-one-based derivatives as potent and selective cytotoxic agents with anti-inflammatory activity. Eur. J. Med. Chem. 2023 259 115712 10.1016/j.ejmech.2023.115712 37567059
    [Google Scholar]
  42. Rampersad S.N. Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors (Basel) 2012 12 9 12347 12360 10.3390/s120912347 23112716
    [Google Scholar]
  43. Pettersen E.F. Goddard T.D. Huang C.C. Couch G.S. Greenblatt D.M. Meng E.C. Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004 25 13 1605 1612 10.1002/jcc.20084 15264254
    [Google Scholar]
  44. Resource for Biocomputing Visualization and Informatics. United States University of California San Francisco 2018
    [Google Scholar]
  45. Bugnon M. Röhrig U.F. Goullieux M. Perez M.A.S. Daina A. Michielin O. Zoete V. SwissDock 2024: major enhancements for small-molecule docking with Attracting Cavities and AutoDock Vina. Nucleic Acids Res. 2024 52 W1 W324 W332 10.1093/nar/gkae300 38686803
    [Google Scholar]
  46. Bugnon M. Goullieux M. Röhrig U.F. Perez M.A.S. Daina A. Michielin O. Zoete V. SwissParam 2023: a modern web-based tool for efficient small molecule parametrization. J. Chem. Inf. Model. 2023 63 21 6469 6475 10.1021/acs.jcim.3c01053 37853543
    [Google Scholar]
  47. Röhrig U.F. Goullieux M. Bugnon M. Zoete V. Attracting Cavities 2.0: Improving the Flexibility and Robustness for Small-Molecule Docking. J. Chem. Inf. Model. 2023 63 12 3925 3940 10.1021/acs.jcim.3c00054 37285197
    [Google Scholar]
  48. Palacio-Rodríguez K. Lans I. Cavasotto C.N. Cossio P. Exponential consensus ranking improves the outcome in docking and receptor ensemble docking. Sci. Rep. 2019 9 1 5142 10.1038/s41598‑019‑41594‑3 30914702
    [Google Scholar]
  49. BIOVIA Dassault Systèmes; Discovery Studio Visualizer, version 2024. San Diego, USA Dassault Systèmes 2024
    [Google Scholar]
  50. Dash R.C. Suryawanshi M.R. Shelke S.M. Bhosale S.H. Mahadik K.R. Benzo[d][1,3] oxathiols: synthesis and biological evaluation as potential atypical antipsychotic agents. Med. Chem. Res. 2011 20 1 29 35 10.1007/s00044‑009‑9278‑5
    [Google Scholar]
  51. Ansar Ahmed S. Gogal R.M. Jr Walsh J.E. A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H]thymidine incorporation assay. J. Immunol. Methods 1994 170 2 211 224 10.1016/0022‑1759(94)90396‑4 8157999
    [Google Scholar]
  52. Irungu B.N. Nyangi M. Ndombera F.T. Anticancer potential of four triterpenoids against NCI-60 human tumor cell lines. Beni. Suef Univ. J. Basic Appl. Sci. 2024 13 1 50 10.1186/s43088‑024‑00507‑8
    [Google Scholar]
  53. Lipinski C.A. Lombardo F. Dominy B.W. Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1. Adv. Drug Deliv. Rev. 2001 46 1-3 3 26 10.1016/S0169‑409X(00)00129‑0 11259830
    [Google Scholar]
  54. Veber D.F. Johnson S.R. Cheng H.Y. Smith B.R. Ward K.W. Kopple K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002 45 12 2615 2623 10.1021/jm020017n 12036371
    [Google Scholar]
  55. Ke W. Zhao Y. Huang R. Jiang C. Pei Y. Enhanced oral bioavailability of doxorubicin in a dendrimer drug delivery system. J. Pharm. Sci. 2008 97 6 2208 2216 10.1002/jps.21155 17879294
    [Google Scholar]
  56. Benival D.M. Devarajan P.V. Lipomer of doxorubicin hydrochloride for enhanced oral bioavailability. Int. J. Pharm. 2012 423 2 554 561 10.1016/j.ijpharm.2011.11.035 22155412
    [Google Scholar]
  57. Ahmad N. Ahmad R. Alam M.A. Ahmad F.J. Enhancement of oral bioavailability of doxorubicin through surface modified biodegradable polymeric nanoparticles. Chem Cent J. 2018 12 1 65 10.1186/s13065‑018‑0434‑1
    [Google Scholar]
  58. Kim J.E. Cho H.J. Kim J.S. Shim C.K. Chung S.J. Oak M.H. Yoon I.S. Kim D.D. The limited intestinal absorption via paracellular pathway is responsible for the low oral bioavailability of doxorubicin. Xenobiotica 2013 43 7 579 591 10.3109/00498254.2012.751140 23252722
    [Google Scholar]
  59. Yu H.T. Meng D. Feng M.X. Ruan K.Y. Dong J.J. Bin-Shen Xiao Y.P. Zhang X.H. Shi L.L. Jiang X.H. RGD-modified solid lipid nanoparticles improve oral doxorubicin absorption: In vitro and in vivo study. J. Drug Deliv. Sci. Technol. 2024 91 105293 10.1016/j.jddst.2023.105293
    [Google Scholar]
  60. Calculation of molecular properties. 2025 Available from: (Accessed September 14, 2024).https://molinspiration.com/cgi/properties
  61. Amarante-Mendes G.P. Rana A. Datoguia T.S. Hamerschlak N. Brumatti G. BCR-ABL1 Tyrosine Kinase Complex Signaling Transduction: Challenges to Overcome Resistance in Chronic Myeloid Leukemia. Pharmaceutics 2022 14 1 215 10.3390/pharmaceutics14010215 35057108
    [Google Scholar]
  62. Chen P. Pathogenesis and treatment of chronic myeloid leukemia: current status. J. Leuk. Lymphoma 2016 12 509 512 10.1016/j.blre.2021.100825 33773846
    [Google Scholar]
  63. Suttorp M. Millot F. Sembill S. Deutsch H. Metzler M. Definition, Epidemiology, Pathophysiology, and Essential Criteria for Diagnosis of Pediatric Chronic Myeloid Leukemia. Cancers (Basel) 2021 13 4 798 10.3390/cancers13040798 33672937
    [Google Scholar]
  64. Khalid R. Riasat S. Molecular Pathogenesis and Treatment Strategies of Chronic Myeloid Leukemia (CML). Sudan Journal of Medical Sciences 2023 18 4 525 538 10.18502/sjms.v18i4.14741
    [Google Scholar]
  65. Levinson N.M. Boxer S.G. Structural and spectroscopic analysis of the kinase inhibitor bosutinib and an isomer of bosutinib binding to the Abl tyrosine kinase domain. PLoS One 2012 7 4 e29828 10.1371/journal.pone.0029828 22493660
    [Google Scholar]
  66. Ai J. Tiu R.V. Practical management of patients with chronic myeloid leukemia who develop tyrosine kinase inhibitor-resistant BCR-ABL1 mutations. Ther. Adv. Hematol. 2014 5 4 107 120 10.1177/2040620714537865 25360237
    [Google Scholar]
  67. Chan W.W. Wise S.C. Kaufman M.D. Ahn Y.M. Ensinger C.L. Haack T. Hood M.M. Jones J. Lord J.W. Lu W.P. Miller D. Patt W.C. Smith B.D. Petillo P.A. Rutkoski T.J. Telikepalli H. Vogeti L. Yao T. Chun L. Clark R. Evangelista P. Gavrilescu L.C. Lazarides K. Zaleskas V.M. Stewart L.J. Van Etten R.A. Flynn D.L. Conformational control inhibition of the BCR-ABL1 tyrosine kinase, including the gatekeeper T315I mutant, by the switch-control inhibitor DCC-2036. Cancer Cell 2011 19 4 556 68 10.1016/j.ccr.2011.03.003 21481795
    [Google Scholar]
  68. Hamid A.B. Petreaca R.C. Secondary Resistant Mutations to Small Molecule Inhibitors in Cancer Cells. Cancers (Basel) 2020 12 4 927 10.3390/cancers12040927 32283832
    [Google Scholar]
  69. Miller G.D. Bruno B.J. Lim C.S. Resistant mutations in CML and Ph(+)ALL - role of ponatinib. Biologics 2014 8 243 254 10.2147/btt.s50734 25349473
    [Google Scholar]
  70. Reddy E.P. Aggarwal A.K. The ins and outs of bcr-abl inhibition. Genes Cancer 2012 3 5-6 447 454 10.1177/1947601912462126 23226582
    [Google Scholar]
  71. Rossari F. Minutolo F. Orciuolo E. Past, present, and future of Bcr-Abl inhibitors: from chemical development to clinical efficacy. J. Hematol. Oncol. 2018 11 1 84 10.1186/s13045‑018‑0624‑2 29925402
    [Google Scholar]
  72. Carofiglio F. Trisciuzzi D. Gambacorta N. Leonetti F. Stefanachi A. Nicolotti O. Bcr-Abl Allosteric Inhibitors: Where We Are and Where We Are Going to. Molecules 2020 25 18 4210 10.3390/molecules25184210 32937901
    [Google Scholar]
  73. Wu P. Nielsen T.E. Clausen M.H. FDA-approved small-molecule kinase inhibitors. Trends Pharmacol. Sci. 2015 36 7 422 439 10.1016/j.tips.2015.04.005 25975227
    [Google Scholar]
  74. Hao Z. Mingsheng Z. Mingzi L. Duan N. Yuanhao W. Liping D. Kui D. Shaoyong L. Hui S. Chen C. Mechanistic insights into co-administration of allosteric and orthosteric drugs to overcome drug-resistance in t315i bcr-abl. Front. Pharmacol. 2022 13 10.3389/fphar.2022.862504 35370687
    [Google Scholar]
  75. Cohen P. Cross D. Jänne P.A. Kinase drug discovery 20 years after imatinib: progress and future directions. Nat. Rev. Drug Discov. 2021 20 7 551 569 10.1038/s41573‑021‑00195‑4 34002056
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266366285250528005320
Loading
/content/journals/ctmc/10.2174/0115680266366285250528005320
Loading

Data & Media loading...

Supplements

Supplementary material, along with the published article, is available on the publisher's website.


  • Article Type:
    Research Article
Keywords: Synthesis ; Thiazolidinone ; Leukemia ; Docking ; Benzoxathiolone ; Cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test