Skip to content
2000
image of Research Progress in Chemical Synthesis and Biosynthesis of Bioactive Pyridine Alkaloids

Abstract

Pyridine alkaloids possess important biological activities and are widely used in fields such as medicine and pesticides. This paper comprehensively reviews the research progress in the chemical synthesis and biosynthesis of pyridine alkaloids. In terms of chemical synthesis, there are diverse synthesis methods for arylpyridine compounds. For example, 2,4,6-triarylpyridine can be synthesized by using iron-organic framework materials or other reagents. The 3-ethylsulfone pyridine compounds with aryltriazole structures can be synthesized through specific reactions. And 2-arylpyridine can also be synthesized in this way. Heterocyclic pyridine compounds can be prepared into their corresponding derivatives through multiple approaches. The synthesis of polysubstituted pyridine adopts reactions such as cycloaddition, Diels-Alder, condensation, cyclization, and aromatization. The synthesis of polypyridine focuses on the construction of new complexes. Other synthesis methods such as ultrasound-assisted synthesis are also introduced. The main biosynthesis pathways include the co-synthesis of polyketide synthase and non-ribosomal peptide synthase, the origin of lysine, the participation of aspartate, and the synthesis of thiopeptide antibiotics. Meanwhile, the biosynthesis pathways of pyridomycin, pyridine pigment compounds in functional red yeast rice, and vitamin B6 were also discussed, which provides a theoretical basis for further research and application of pyridine alkaloids.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266385839250731040601
2025-08-11
2026-01-19
Loading full text...

Full text loading...

References

  1. Akram S. Aslam S. Rasool N. Ahmad M. Al-Hussain S.A. Zaki M.E.A. Furo[3,2-b]pyridine: Chemical synthesis, transformations and biological applications. J. Saudi Chem. Soc. 2024 28 5 101906 10.1016/j.jscs.2024.101906
    [Google Scholar]
  2. Aishwarya N.V.S.S. Matada G.S.P. Pal R. i, A.; Hosamani, K.R.; B, K.; Bv, M.; Ghara, A. Expanding the potential of pyridine scaffold for targeted therapy of cancer: Biological activity, molecular insights, and structure-activity relationship. J. Mol. Struct. 2025 1321 1 139655 10.1016/j.molstruc.2024.139655
    [Google Scholar]
  3. Şener N. Aldwib A.E.O. New Antibacterial 1,3,4‐Thiadiazole derivatives with pyridine moiety. Chem. Biodivers. 2024 21 6 e202400522 10.1002/cbdv.202400522 38606431
    [Google Scholar]
  4. Zhang X. Tao F. Cui T. Luo C. Zhou Z. Huang Y. Tan L. Peng W. Wu C. Sources, transformations, syntheses, and bioactivities of monoterpene pyridine alkaloids and cyclopenta[c]pyridine derivatives. Molecules 2022 27 21 7187 10.3390/molecules27217187 36364013
    [Google Scholar]
  5. Rafique I. Maqbool T. Javed M.S. Synthesis of Pyrazolo[3,4‐ b]pyridine derivatives and their in‐vitro and in‐silico antidiabetic activities. J. Cell. Biochem. 2024 125 10 e30646 10.1002/jcb.30646 39239805
    [Google Scholar]
  6. Ma Z. Han X. Yang Y. Fu A. Li G. Design and synthesis of 2,6-dihalogenated stilbene derivatives as potential anti-inflammatory and antitumor agents. Fitoterapia 2023 167 105493 10.1016/j.fitote.2023.105493 37023931
    [Google Scholar]
  7. Chaudhari B.B. Bali A. Balaini A. Design and synthesis of novel anti-inflammatory/Anti-ulcer hybrid molecules with antioxidant activity. Med. Chem. 2021 17 9 994 1006 10.2174/1573406416666200930114340 32998679
    [Google Scholar]
  8. Cruwys S. Hein P. Humphries B. Black D. Drug discovery and development in idiopathic pulmonary fibrosis: The changing landscape. Drug Discov. Today 2024 29 11 104207 10.1016/j.drudis.2024.104207 39396672
    [Google Scholar]
  9. McCarthy M.W. Walsh T.J. Drug development challenges and strategies to address emerging and resistant fungal pathogens. Expert Rev. Anti Infect. Ther. 2017 15 6 577 584 10.1080/14787210.2017.1328279 28480775
    [Google Scholar]
  10. Mustière R. Dassonville-Klimpt A. Sonnet P. Aminopyridines in the development of drug candidates against protozoan neglected tropical diseases. Future Med. Chem. 2024 16 13 1357 1373 10.1080/17568919.2024.2359361 39109436
    [Google Scholar]
  11. Deeks E.D. Furmonertinib: First approval. Drugs 2021 81 15 1775 1780 10.1007/s40265‑021‑01588‑w 34528187
    [Google Scholar]
  12. Donaire-Arias A. Montagut A.M. Puig de la Bellacasa R. Estrada-Tejedor R. Teixidó J. Borrell J.I. 1H-Pyrazolo[3,4-b]pyridines: Synthesis and biomedical applications. Molecules 2022 27 7 2237 10.3390/molecules27072237 35408636
    [Google Scholar]
  13. Chourasiya N.K. Fatima F. Mishra M. Kori S. Das R. Kashaw V. Iyer A.K. Kashaw S.K. Structural insights into N-heterocyclic moieties as an anticancer agent against hepatocellular carcinoma: an exhaustive perspective. Mini Rev. Med. Chem. 2023 23 19 1871 1892 10.2174/1389557523666230508160924 37157201
    [Google Scholar]
  14. Zhang L. Yang Z. Sang H. Jiang Y. Zhou M. Huang C. Huang C. Wu X. Zhang T. Zhang X. Wan S. Zhang J. Identification of imidazo[4,5-c]pyridin-2-one derivatives as novel Src family kinase inhibitors against glioblastoma. J. Enzyme Inhib. Med. Chem. 2021 36 1 1539 1550 10.1080/14756366.2021.1948542 34238111
    [Google Scholar]
  15. Villa-Reyna A.L. Perez-Velazquez M. González-Félix M.L. Gálvez-Ruiz J.C. Gonzalez-Mosquera D.M. Valencia D. Ballesteros-Monreal M.G. Aguilar-Martínez M. Leyva-Peralta M.A. The structure–antiproliferative activity relationship of pyridine derivatives. Int. J. Mol. Sci. 2024 25 14 7640 10.3390/ijms25147640 39062883
    [Google Scholar]
  16. Yamasaki M. Sawa R. Muramatsu H. Yamamoto Y. Umekita M. Kubota Y. Kanegae Y. Igarashi M. Catenulopyrizomicins, new anti-Hepatitis B virus compounds, from the rare actinomycete Catenuloplanes sp. MM782L-181F7. J. Antibiot. (Tokyo) 2024 77 2 85 92 10.1038/s41429‑023‑00681‑4 38008738
    [Google Scholar]
  17. de Abreu M.S. Giacomini A.C.V.V. Demin K.A. Galstyan D.S. Zabegalov K.N. Kolesnikova T.O. Amstislavskaya T.G. Strekalova T. Petersen E.V. Kalueff A.V. Unconventional anxiety pharmacology in zebrafish: Drugs beyond traditional anxiogenic and anxiolytic spectra. Pharmacol. Biochem. Behav. 2021 207 173205 10.1016/j.pbb.2021.173205 33991579
    [Google Scholar]
  18. Vellingiri B. Chandrasekhar M. Sri Sabari S. Gopalakrishnan A.V. Narayanasamy A. Venkatesan D. Iyer M. Kesari K. Dey A. Neurotoxicity of pesticides: A link to neurodegeneration. Ecotoxicol. Environ. Saf. 2022 243 113972 10.1016/j.ecoenv.2022.113972 36029574
    [Google Scholar]
  19. Earl R.A. Grivell R.M. Nifedipine for primary dysmenorrhoea. Cochrane Database Syst. Rev. 2021 12 12 CD012912 34921554
    [Google Scholar]
  20. Zhang B.W. Pang N.H. Xu R.A. Qu G.E. Tang C.R. Inhibition of Axitinib on Buspirone metabolism in vitro and in vivo. Drug Des. Devel. Ther. 2022 16 2031 2042 10.2147/DDDT.S359451 35795848
    [Google Scholar]
  21. Cohen P. Cross D. Jänne P.A. Kinase drug discovery 20 years after imatinib: progress and future directions. Nat. Rev. Drug Discov. 2021 20 7 551 569 10.1038/s41573‑021‑00195‑4 34002056
    [Google Scholar]
  22. Qin S. Chan S.L. Gu S. Bai Y. Ren Z. Lin X. Chen Z. Jia W. Jin Y. Guo Y. Hu X. Meng Z. Liang J. Cheng Y. Xiong J. Ren H. Yang F. Li W. Chen Y. Zeng Y. Sultanbaev A. Pazgan-Simon M. Pisetska M. Melisi D. Ponomarenko D. Osypchuk Y. Sinielnikov I. Yang T.S. Liang X. Chen C. Wang L. Cheng A.L. Kaseb A. Vogel A. Qin S. Chan S.L. Cheng A-L. Kaseb A. Vogel A. Gu S. Bai Y. Ren Z. Lin X. Chen Z. Jia W. Jin Y. Guo Y. Hu X. Meng Z. Liang J. Cheng Y. Xiong J. Ren H. Yang F. Li W. Chen Y. Zeng Y. Sultanbaev A. Pazgan-Simon M. Pisetska M. Melisi D. Ponomarenko D. Osypchuk Y. Sinielnikov I. Yang T-S. Liang X. Chen C. Wang L. Zhang M. Xu L. Yuan X. Li D. Ying J. Zhang J. Zhang T. Gu K. He Y. Hao P. Jiang D. Zhang S. Xing B. Zhang B. Wang D. Zhai X. Liang H. Cybulska-Stopa B. Dvorkin M. Stroyakovskiy D. Nechaeva M. Yen C-J. Su W-W. Chen Y-H. Bondarenko I. Yang L. Fang W. Gomez-Martin C. Ryu M-H. Kim H-S. Kim J-H. Zarubenkov O. Orlova R. Poddubskaya E. Fadeeva N. Makarova Y. Chao Y. Hung C-H. Neffa M. Vynnychenko O. Burgoyne A. Hao C. Mohr R.U. Diaz-Beveridge R. Feliu-Batlle J. Cubillo-Gracian A. Lee A-S. Daniele B. Antonuzzo L. Sangiovanni A. Gasbarrini A. Scartozzi M. Ahn M.S. Oh S-Y. Orlov S. Harputluoglu H. Oksuzoglu B. Hsu C. Rau K-M. Krechkovskyi O. Yareshko V. Xiong H. Lee F-C. Jiang Y. Gabayan A. Crow M. Van Steenkiste C. Verset G. Camrelizumab plus rivoceranib versus sorafenib as first-line therapy for unresectable hepatocellular carcinoma (CARES-310): A randomised, open-label, international phase 3 study. Lancet 2023 402 10408 1133 1146 10.1016/S0140‑6736(23)00961‑3 37499670
    [Google Scholar]
  23. Saglio G. Kim D.W. Issaragrisil S. le Coutre P. Etienne G. Lobo C. Pasquini R. Clark R.E. Hochhaus A. Hughes T.P. Gallagher N. Hoenekopp A. Dong M. Haque A. Larson R.A. Kantarjian H.M. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N. Engl. J. Med. 2010 362 24 2251 2259 10.1056/NEJMoa0912614 20525993
    [Google Scholar]
  24. Camidge D.R. Kim H.R. Ahn M.J. Yang J.C.H. Han J.Y. Hochmair M.J. Lee K.H. Delmonte A. Garcia Campelo M.R. Kim D.W. Griesinger F. Felip E. Califano R. Spira A.I. Gettinger S.N. Tiseo M. Lin H.M. Liu Y. Vranceanu F. Niu H. Zhang P. Popat S. Brigatinib versus crizotinib in ALK inhibitor–naive advanced ALK-positive NSCLC: Final results of phase 3 ALTA-1L Trial. J. Thorac. Oncol. 2021 16 12 2091 2108 10.1016/j.jtho.2021.07.035 34537440
    [Google Scholar]
  25. Arrieta O. Cárdenas-Fernández D. Rodriguez-Mayoral O. Gutierrez-Torres S. Castañares D. Flores-Estrada D. Reyes E. López D. Barragán P. Soberanis Pina P. Cardona A.F. Turcott J.G. Mirtazapine as appetite stimulant in patients with non–small cell lung cancer and anorexia. JAMA Oncol. 2024 10 3 305 314 10.1001/jamaoncol.2023.5232 38206631
    [Google Scholar]
  26. Pyne L. Smyth A. Molnar A.O. Moayyedi P. Muehlhofer E. Yusuf S. Eikelboom J. Bosch J. Walsh M. The effects of pantoprazole on kidney outcomes. J. Am. Soc. Nephrol. 2024 35 7 901 909 10.1681/ASN.0000000000000356 38602780
    [Google Scholar]
  27. Zheng Z. Dai A. Jin Z. Chi Y.R. Wu J. Trifluoromethylpyridine: An Important active fragment for the discovery of new pesticides. J. Agric. Food Chem. 2022 70 36 11019 11030 10.1021/acs.jafc.1c08383 35403429
    [Google Scholar]
  28. Lamberth C. Multicomponent reactions in crop protection chemistry. Bioorg. Med. Chem. 2020 28 10 115471 10.1016/j.bmc.2020.115471 32253096
    [Google Scholar]
  29. Zhao B. Liu X. Cheng Z. Liu X. Zhang X. Feng X. Smartphone-integrated paper-based sensing platform for the visualization and quantitative detection of pymetrozine. Food Chem. 2024 440 138269 10.1016/j.foodchem.2023.138269 38157705
    [Google Scholar]
  30. Heo S.E. Ha J.W. Chemical interface damping in single gold nanorods coated with silver via hot electron‐mediated photoreduction. Bull. Korean Chem. Soc. 2023 44 11 916 920 10.1002/bkcs.12771
    [Google Scholar]
  31. Kanth S. Puttaiahgowda Y.M. Kulal A. Synthesis and characterization of functionalized starch by grafting pyridine for use in antimicrobial applications. Stärke 2024 76 9-10 2300121 10.1002/star.202300121
    [Google Scholar]
  32. M, B.; Mathew, A.T.; K B, A.; Sirimahachai, U.; Varghese, A.; Hegde, G. Influence of electrochemical co-deposition of bimetallic Pt–Pd nanoclusters on polypyrrole modified ITO for enhanced oxidation of 4-(hydroxymethyl) pyridine. RSC Advances 2022 12 27 17036 17048 10.1039/D2RA02510H 35755597
    [Google Scholar]
  33. Chen H. Duan X. He X. Che W. Zhang Z. Xuan X. Wang L. Wang B. Xu J. Wang X. Multicomponent chitosan complex/polyvinyl alcohol blended film with full-band UV-shielding performance and excellent antioxidant property for active food packaging. Carbohydr. Polym. 2024 327 121705 10.1016/j.carbpol.2023.121705 38171667
    [Google Scholar]
  34. Geormezi M. Deimede V. Gourdoupi N. Triantafyllopoulos N. Neophytides S. Kallitsis J.K. Novel pyridine-based poly(ether sulfones) and their study in high temperature PEM fuel cells. Macromolecules 2008 41 23 9051 9056 10.1021/ma801678h
    [Google Scholar]
  35. Wang M. Zhang Z. Liu J. Song M. Zhang T. Chen Y. Hu H. Yang P. Li B. Song X. Pang J. Xing Y. Cao Z. Guo W. Yang H. Wang J. Yang J. Wang C. Gefitinib and fostamatinib target EGFR and SYK to attenuate silicosis: A multi-omics study with drug exploration. Signal Transduct. Target. Ther. 2022 7 1 157 10.1038/s41392‑022‑00959‑3 35551173
    [Google Scholar]
  36. Li Y.H. Chen J.H. Yang Z. Exo ‐Selective diels–alder reactions. Chemistry 2024 30 17 e202304371 10.1002/chem.202304371 38412422
    [Google Scholar]
  37. Faizan M. Kumar R. Mazumder A. Salahuddin; Kukreti, N.; Tyagi, P.K.; Kapoor, B. Hantzsch reaction: The important key for pyridine/dihydropyridine synthesis. Synth. Commun. 2024 54 15 1221 1244 10.1080/00397911.2024.2377738
    [Google Scholar]
  38. Jiang Q. Fang L.Q. Li Y.H. Wang J. Li J.H. Transition‐metal‐free chichibabin‐type coupling of halo‐azaarenes with grignard reagents. ChemistrySelect 2023 8 26 e202300780 10.1002/slct.202300780
    [Google Scholar]
  39. Sadri Z. Behbahani F.K. Synthesis of Spiro1,4–Dihydropyridines: A review. Curr. Org. Synth. 2020 17 5 324 343 10.2174/1570179417666200415150027 32294043
    [Google Scholar]
  40. Mendogralo E.Y. Uchuskin M.G. Synthesis of tetrahydrofuro[3,2- c]pyridines via Pictet–Spengler reaction. Beilstein J. Org. Chem. 2023 19 991 997 10.3762/bjoc.19.74 37404803
    [Google Scholar]
  41. Verma V. Schafer L.L. One-Pot sequential hydroamination protocol for n-heterocycle synthesis: One method to access five different classes of tri-substituted pyridines. J. Org. Chem. 2023 88 3 1378 1384 10.1021/acs.joc.2c02155 36634317
    [Google Scholar]
  42. Kang X. Ren C. Mei Z. Fan X. Xue J. Shao Y. Gu J. Hydrothermal assembly, structural multiplicity, and catalytic knoevenagel condensation reaction of a series of coordination polymers based on a pyridine-tricarboxylic acid. Molecules 2023 28 22 7474 10.3390/molecules28227474 38005197
    [Google Scholar]
  43. Li B. Hu X. Yao H. Li Y. Xu D. Huang N. Wang N. Pyridine-catalyzed chemoselective four-component cascade reaction of aromatic aldehydes, malononitrile/cyanoacetates, MBH carbonates, and alcohols. Org. Lett. 2024 26 36 7576 7583 10.1021/acs.orglett.4c02612 39225685
    [Google Scholar]
  44. Rajabi F. Ebrahimi A.Z. Rabiee A. Pineda A. Luque R. Synthesis and characterization of novel pyridine periodic mesoporous organosilicas and its catalytic activity in the knoevenagel condensation reaction. Materials 2020 13 5 1097 10.3390/ma13051097 32121622
    [Google Scholar]
  45. Singha D. Das S. Bhowmick N. Kundu A. Bhattacharyya A. Kumar M. Jana M. Roy S. Impact of soil type and temperature on dissipation dynamics of a new readymix formulation of halauxifen-methyl + pyroxsulam. Bull. Environ. Contam. Toxicol. 2022 109 2 373 378 10.1007/s00128‑022‑03542‑2 35622102
    [Google Scholar]
  46. Hameed S. Khan K.M. Taslimi P. Salar U. Taskin-Tok T. Kisa D. Saleem F. Solangi M. Ahmed M.H.U. Rani K. Evaluation of synthetic 2-aryl quinoxaline derivatives as α-amylase, α-glucosidase, acetylcholinesterase, and butyrylcholinesterase inhibitors. Int. J. Biol. Macromol. 2022 211 653 668 10.1016/j.ijbiomac.2022.05.040 35568155
    [Google Scholar]
  47. Doan S.H. Tran N.K.Q. Pham P.H. Nguyen V.H.H. Nguyen N.N. Ha P.T.M. Li S. Le H.V. Le N.T.H. Tu T.N. Phan N.T.S. A new synthetic pathway to triphenylpyridines via cascade reactions utilizing a new iron‐organic framework as a recyclable heterogeneous catalyst. Eur. J. Org. Chem. 2019 2019 13 2382 2389 10.1002/ejoc.201900094
    [Google Scholar]
  48. Guin S. Gudimella S.K. Samanta S. 1,6-Addition of vinyl p -quinone methides with cyclic sulfamidate imines: Access to 4-hydroxyaryl-2,6-diarylpyridines. Org. Biomol. Chem. 2020 18 7 1337 1342 10.1039/C9OB02708D 31998916
    [Google Scholar]
  49. Prakash M. Gudimella S.K. Lodhi R. Guin S. Samanta S. NH 4 OAc-Promoted domino route to hydroxyarylated unsymmetrical pyridines under neat conditions. J. Org. Chem. 2020 85 4 2151 2167 10.1021/acs.joc.9b02896 31875454
    [Google Scholar]
  50. Yao Y. Ren C. Chen L. Zhong L. Xu T. Tan C. Synthesis and insecticidal activity of 3-ethyl sulfone pyridine substituted aryl triazole compounds. Youji Huaxue 2021 41 5 2055 2062 10.6023/cjoc202009042
    [Google Scholar]
  51. Ryu H. Seo S. Kim M.S. Kim M.Y. Kim H.S. Ann J. Tran P.T. Hoang V.H. Byun J. Cui M. Son K. Sharma P.K. Choi S. Blumberg P.M. Frank-Foltyn R. Bahrenberg G. Koegel B.Y. Christoph T. Frormann S. Lee J. 2-Aryl substituted pyridine C-region analogues of 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides as highly potent TRPV1 antagonists. Bioorg. Med. Chem. Lett. 2014 24 16 4044 4047 10.1016/j.bmcl.2014.05.072 25011915
    [Google Scholar]
  52. Palmeiro A.G. Carvalho M. Gonçalves Castro C. Pimentel B. Catorze G. Vismodegib in Gorlin‐Goltz syndrome: A systematic review. Australas. J. Dermatol. 2024 65 6 e123 e133 10.1111/ajd.14326 38867459
    [Google Scholar]
  53. Tavakkoli A. Johnston T.P. Sahebkar A. Fluvastatin: A choice for COVID-19-associated mucormycosis management. Curr. Med. Chem. 2024 31 40 6649 6655 10.2174/0929867331666230706152616 37415368
    [Google Scholar]
  54. Yuan W. Jian F. Rong Y. Bifendate inhibits autophagy at multiple steps and attenuates oleic acid-induced lipid accumulation. Biochem. Biophys. Res. Commun. 2022 631 115 123 10.1016/j.bbrc.2022.09.067 36183552
    [Google Scholar]
  55. Preiss D Logue J Sammons E Zayed M Emberson J Wade R Wallendszus K Stevens W Cretney R Harding S Leese G Currie G Armitage J Effect of fenofibrate on progression of diabetic retinopathy. NEJM Evid 2024 3 8 EVIDoa2400179 10.1056/EVIDoa2400179
    [Google Scholar]
  56. Günter G. Schempp H. Robert-de-Saint-Vincent M. Gavryusev V. Helmrich S. Hofmann C.S. Whitlock S. Weidemüller M. Observing the dynamics of dipole-mediated energy transport by interaction-enhanced imaging. Science 2013 342 6161 954 956 10.1126/science.1244843 24200814
    [Google Scholar]
  57. Fier P.S. Hartwig J.F. Synthesis and late-stage functionalization of complex molecules through C-H fluorination and nucleophilic aromatic substitution. J. Am. Chem. Soc. 2014 136 28 10139 10147 10.1021/ja5049303 24918484
    [Google Scholar]
  58. Wang Z. Yin C.Y. Mei J.T. Zhang H. Nickel-catalyzed Suzuki coupling reaction of 2-fluoropyridines. In: J. South-Central Minzu Univ (Nat. Sci. Ed); , 2024 2024 1 3
    [Google Scholar]
  59. Patel A.K. Rathor S.S. Samanta S. Regioselective access to di- and trisubstituted pyridines via a metal-oxidant-solvent-free domino reaction involving 3-chloropropiophenones. Org. Biomol. Chem. 2022 20 34 6759 6765 10.1039/D2OB01193J 35972042
    [Google Scholar]
  60. Cody V. Pace J. Namjoshi O.A. Gangjee A. Structure–activity correlations for three pyrido[2,3- d]pyrimidine antifolates binding to human and Pneumocystis carinii dihydrofolate reductase. Acta Crystallogr. F Struct. Biol. Commun. 2015 71 6 799 803 10.1107/S2053230X15008468 26057816
    [Google Scholar]
  61. Al Nasr I.S. Corona A. Koko W.S. Khan T.A. Ben Said R. Daoud I. Rahali S. Tramontano E. Schobert R. Amdouni N. Biersack B. Versatile anti-infective properties of pyrido- and dihydropyrido[2,3-d]pyrimidine-based compounds. Bioorg. Med. Chem. 2023 90 117376 10.1016/j.bmc.2023.117376 37336083
    [Google Scholar]
  62. Liu E. Li L.W. Yao M. Zhang M. Synthesis of 2-Aryl substituted pyridio[2,3-d pyrimidine derivatives. Chem. Reagents 2019 41 2 199 202
    [Google Scholar]
  63. Li D.B. Li X. Ding Y.L. Sha J. Li P. Wang H.H. Pan L. Jin L. Zhou R. Synthesis and antifungal activity of 2-aryl benzofuran or furopyridine derivatives. Agrochem 2023 62 3 163 166
    [Google Scholar]
  64. Karale U.B. Shinde A.U. Babar D.A. Sangu K.G. Vagolu S.K. Eruva V.K. Jadav S.S. Misra S. Dharmarajan S. Rode H.B. 3‐Aryl‐substituted imidazo[1,2‐ a]pyridines as antituberculosis agents. Arch. Pharm. (Weinheim) 2021 354 10 2000419 10.1002/ardp.202000419 34185337
    [Google Scholar]
  65. Ryzhkova Y.E. Ryzhkov F.V. Elinson M.N. Maslov O.I. Fakhrutdinov A.N. One-Pot solvent-involved synthesis of 5-O-Substituted 5H-Chromeno[2,3-b]pyridines. Molecules 2022 28 1 64 10.3390/molecules28010064 36615259
    [Google Scholar]
  66. Reza A.I. Iwai K. Nishiwaki N. Recent advances in synthesis of multiply arylated/alkylated pyridines. Chem. Rec. 2022 22 9 e202200099 10.1002/tcr.202200099 35701177
    [Google Scholar]
  67. Sangshetti J. Zambare A. Khan F. Gonjari I. Zaheer Z. Synthesis and biological activity of substituted-4,5,6,7-tetrahydrothieno pyridines: A review. Mini Rev. Med. Chem. 2014 14 12 988 1020 10.2174/1389557514666141106131425 25373848
    [Google Scholar]
  68. Cho I.Y. Kim W.G. Jeon J.H. Lee J.W. Seo J.K. Seo J. Hong S.Y. Nickelocene as an Air- and moisture-tolerant precatalyst in the regioselective synthesis of multisubstituted pyridines. J. Org. Chem. 2021 86 14 9328 9343 10.1021/acs.joc.1c00577 34190562
    [Google Scholar]
  69. Duan J. Zhang L. Xu G. Chen H. Ding X. Mao Y. Rong B. Zhu N. Guo K. NH 4 I-Triggered [4 + 2] Annulation of α,β-unsaturated ketoxime acetates with N -acetyl enamides for the synthesis of pyridines. J. Org. Chem. 2020 85 12 8157 8165 10.1021/acs.joc.0c01081 32478514
    [Google Scholar]
  70. Carrillo Vallejo N.A. Scheerer J.R. Application of 1,4-Oxazinone precursors to the construction of pyridine derivatives by tandem intermolecular cycloaddition/cycloreversion. J. Org. Chem. 2021 86 8 5863 5869 10.1021/acs.joc.1c00288 33797249
    [Google Scholar]
  71. Hooper A.R. Oštrek A. Milian-Lopez A. Sarlah D. Bioinspired total synthesis of pyritide A2 through pyridine ring synthesis. Angew. Chem. Int. Ed. 2022 61 46 e202212299 10.1002/anie.202212299 36123301
    [Google Scholar]
  72. Kang L.Q. Ni Y.W. Ding H.M. Efficient synthesis of 1,4-dihydropyridines catalyzed by microwave and ionic liquids. J. Technol 2024 24 02 185 189
    [Google Scholar]
  73. Ghosh J. Mendoza J. Cooks R.G. Accelerated and concerted aza‐michael addition and SuFEx reaction in microdroplets in unitary and high‐throughput formats. Angew. Chem. Int. Ed. 2022 61 50 e202214090 10.1002/anie.202214090 36253886
    [Google Scholar]
  74. Gujjarappa R. Vodnala N. Kumar M. Malakar C.C. Pd-catalyzed decarboxylation and dual C(sp 3)–H functionalization protocols for the synthesis of 2,4-diarylpyridines. J. Org. Chem. 2019 84 9 5005 5020 10.1021/acs.joc.8b02971 30900889
    [Google Scholar]
  75. Gujjarappa R. Vodnala N. Malakar C.C. Decarboxylative cyclization of amino acids towards the Regioselective synthesis of 2,4-diarylpyridines via relay Fe(III)/In(III)-catalysis. Tetrahedron Lett. 2020 61 7 151495 10.1016/j.tetlet.2019.151495
    [Google Scholar]
  76. Han J. Guo X. Liu Y. Fu Y. Yan R. Chen B. One‐pot synthesis of benzene and pyridine derivatives via copper‐catalyzed coupling reactions. Adv. Synth. Catal. 2017 359 15 2676 2681 10.1002/adsc.201700053
    [Google Scholar]
  77. Hu Z. Zhang M. Zhou Q. Xu X. Tang B. Domino synthesis of fully substituted pyridines by silver-catalyzed chemoselective hetero-dimerization of isocyanides. Org. Chem. Front. 2020 7 3 507 512 10.1039/C9QO01333D
    [Google Scholar]
  78. Yang T. Deng Z. Wang K.H. Li P. Huang D. Su Y. Hu Y. Synthesis of polysubstituted trifluoromethylpyridines from trifluoromethyl-α,β - ynones. J. Org. Chem. 2020 85 2 924 933 10.1021/acs.joc.9b02873 31833770
    [Google Scholar]
  79. Luo H. Li Y. Du L. Xin X. Wang T. Han J. Tian Y. Li B. Divergent synthesis of highly substituted pyridines and benzenes from dienals, alkynes, and sulfonyl azides. Org. Lett. 2021 23 20 7883 7887 10.1021/acs.orglett.1c02900 34590870
    [Google Scholar]
  80. Wang J. Ba D. Yang M. Cheng G. Wang L. Regioselective synthesis of 2,4-Diaryl-6-trifluoromethylated pyridines through copper-catalyzed cyclization of CF 3 -Ynones and Vinyl Azides. J. Org. Chem. 2021 86 9 6423 6432 10.1021/acs.joc.1c00275 33905254
    [Google Scholar]
  81. Su M.D. Liu H.P. Cao Z.Z. Liu Y. Li H. Nie Z.W. Yang T.L. Luo W.P. Liu Q. Guo C.C. Two C═C bond participation in annulation to pyridines based on dmf as the nonadjacent N and C Atom donors. J. Org. Chem. 2021 86 19 13446 13453 10.1021/acs.joc.1c01550 34546730
    [Google Scholar]
  82. Zhan J.L. Wu M.W. Wei D. Wei B.Y. Jiang Y. Yu W. Han B. 4-HO-TEMPO-catalyzed redox annulation of cyclopropanols with oxime acetates toward pyridine derivatives. ACS Catal. 2019 9 5 4179 4188 10.1021/acscatal.9b00832
    [Google Scholar]
  83. Sun X.S. Gong Y.F. A study on construction of pyrrole and pyridine ringsfrom chlorocyclopropanes. Huazhong University of Science and Technology 2020
    [Google Scholar]
  84. Ng X.Y. Fong K.W. Kiew L.V. Chung P.Y. Liew Y.K. Delsuc N. Zulkefeli M. Low M.L. Ruthenium(II) polypyridyl complexes as emerging photosensitisers for antibacterial photodynamic therapy. J. Inorg. Biochem. 2024 250 112425 10.1016/j.jinorgbio.2023.112425 37977020
    [Google Scholar]
  85. Huang L. Geng Y. Wang H. Xiong Y.P. Zhang S.Q. Wang Y. Synthesis and antitumor activity of a novel Ru-Mn complex containing polypyridine. Chin J. Synth Chem. 2024 32 11 1007 1012
    [Google Scholar]
  86. Pathak S. Singh A.P. Sharma R. Pandey R. An overview of the pharmacological activities and synthesis of benzothiophene derivatives. Med. Chem. 2024 20 9 839 854 10.2174/0115734064315107240603055845 38920062
    [Google Scholar]
  87. Zhang N. Li Y. Sundquist J. Sundquist K. Ji J. Identifying actionable druggable targets for breast cancer: Mendelian randomization and population-based analyses. EBioMedicine 2023 98 104859 10.1016/j.ebiom.2023.104859 38251461
    [Google Scholar]
  88. Wang L.Q. Duan X.M. Synthesis and antibacterial activity of polypyridine ruthenium complexes with four active groups 2023
    [Google Scholar]
  89. Komaki K. Kasuya S. Toda Y. Tosaka T. Kamiya K. Koshiyama T. Cu(II)-triggered ion channel properties of a 2,2′-Bipyridine-modified amphotericin B. ACS Appl. Bio Mater. 2023 6 2 828 835 10.1021/acsabm.2c00995 36708326
    [Google Scholar]
  90. Lei Y.J. Ding M. Wu X.S. Ultrasound-assisted L-proline-catalyzed synthesis of 2,6-diaryl-3,4′-bipyridines. Chem. World 2022 63 03 145 149
    [Google Scholar]
  91. Yu Z. Huang J.P. Yang J. Liu C. Yan Y. Wang L. Zhao J. Chen Y. Xiang W. Huang S.X. Discovery and biosynthesis of karnamicins as angiotensin converting enzyme inhibitors. Nat. Commun. 2023 14 1 209 10.1038/s41467‑023‑35829‑1 36639377
    [Google Scholar]
  92. Shats I. Williams J.G. Liu J. Makarov M.V. Wu X. Lih F.B. Deterding L.J. Lim C. Xu X. Randall T.A. Lee E. Li W. Fan W. Li J.L. Sokolsky M. Kabanov A.V. Li L. Migaud M.E. Locasale J.W. Li X. Bacteria boost mammalian host nad metabolism by engaging the deamidated biosynthesis pathway. Cell Metab. 2020 31 3 564 579.e7 10.1016/j.cmet.2020.02.001 32130883
    [Google Scholar]
  93. Marković B.A. Marinković A. Stanković J.A. Mijatović S. Cvijetić I. Simić M. Arandjelović I. Synthesis and antimicrobial activity of newly synthesized nicotinamides. Pharmaceutics 2024 16 8 1084 10.3390/pharmaceutics16081084 39204429
    [Google Scholar]
  94. Huang T. Zhou Z. Wei M. Chen L. Xiao Z. Deng Z. Lin S. Characterization of pyridomycin B reveals the formation of functional groups in antimycobacterial pyridomycin. Appl. Environ. Microbiol. 2022 88 6 e02035 e21 10.1128/aem.02035‑21 35108072
    [Google Scholar]
  95. Mu N. Guo H. Zhang E. Yin Y. Wang W. Chen D. Wang S. Liu W. Mutasynthesis generates antibacterial benzothiophenic-containing nosiheptide analogues. J. Nat. Prod. 2022 85 10 2274 2281 10.1021/acs.jnatprod.2c00273 36122372
    [Google Scholar]
  96. Huang T.T. Deng Z.X. Deciphering the mechanism of the pyridomycin biosynthesis. Shanghai Jiao Tong University 2011
    [Google Scholar]
  97. Liu B.Y. Zheng X.M. Liu A.A. Xu F. Wei Q. Hu Y.C. Pyridine pigments from functional Monascus rice. Yao Xue Xue Bao 2023 58 8 2442 2447
    [Google Scholar]
  98. Richts B. Commichau F.M. Underground metabolism facilitates the evolution of novel pathways for vitamin B6 biosynthesis. Appl. Microbiol. Biotechnol. 2021 105 6 2297 2305 10.1007/s00253‑021‑11199‑w 33665688
    [Google Scholar]
  99. Tramonti A Nardella C di Salvo ML Barile A D'Alessio F de Crécy-Lagard V Contestabile R Knowns and unknowns of Vitamin B6 metabolism in Escherichia coli. EcoSal Plus 2021 9 2 eESP 10.1128/ecosalplus
    [Google Scholar]
  100. Michalik S. Reder A. Richts B. Faßhauer P. Mäder U. Pedreira T. Poehlein A. van Heel A.J. van Tilburg A.Y. Altenbuchner J. Klewing A. Reuß D.R. Daniel R. Commichau F.M. Kuipers O.P. Hamoen L.W. Völker U. Stülke J. The Bacillus subtilis minimal genome compendium. ACS Synth. Biol. 2021 10 10 2767 2771 10.1021/acssynbio.1c00339 34587446
    [Google Scholar]
  101. Rosenberg J. Yeak K.C. Commichau F.M. A two‐step evolutionary process establishes a non‐native vitamin B6 pathway in Bacillus subtilis. Environ. Microbiol. 2018 20 1 156 168 10.1111/1462‑2920.13950 29027347
    [Google Scholar]
  102. Li D.N. Zhen Z.L. SynthesisMetabolismandProductionApplication of VitaminB6. J. Huaqiao Univ. Nat. Sci. 2024 45 5
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266385839250731040601
Loading
/content/journals/ctmc/10.2174/0115680266385839250731040601
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test