Skip to content
2000
Volume 25, Issue 28
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Objectives

Mitochondria are dynamic organelles essential for energy metabolism and cellular homeostasis, playing critical roles in ATP production, calcium regulation, redox balance, and apoptosis. However, mitochondrial dysfunction is a central factor in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease, amyotrophic lateral sclerosis, Huntington's disease, and Parkinson's disease. Given the essential role of mitochondria in neuronal survival, targeted therapeutic strategies that restore mitochondrial function have gained significant attention. This review explores the latest advances in mitochondrial-targeted therapies and their potential applications in neurodegenerative diseases.

Methods

A comprehensive literature review was conducted on mitochondrial-targeted therapeutic strategies, with a focus on nanotechnology-based drug delivery systems. The analysis includes various nanoparticle-based approaches, such as liposomes, DQAsomes, and polymeric nanoparticles, which have demonstrated high biocompatibility, controlled drug release, and enhanced mitochondrial targeting efficiency. Additionally, mitochondria-penetrating peptides and delocalized lipophilic cations (DLCs) are discussed for their role in improving drug localization within mitochondria and overcoming biological barriers, including the blood-brain barrier (BBB).

Results

Recent research shows the potential of mitochondrial-targeted antioxidants, peptides, and biocompatible nanocarriers in arranging mitochondrial dysfunction and protecting neurons from oxidative damage. Various nanoparticle-based drug delivery systems have demonstrated the ability to selectively target mitochondria, improving drug bioavailability, therapeutic efficacy, and neuroprotective outcomes in neurodegenerative diseases.

Conclusion

Mitochondria-targeted therapies provide promising avenues for disease-modifying treatments aimed at preserving neuronal integrity and delaying disease progression. The unique properties of nanoparticles, such as their ability to enhance drug stability, facilitate controlled release, and achieve precise mitochondrial localization, make them valuable tools for neurodegenerative disease therapy. Future research should focus on optimizing delivery systems, validating clinical applicability, and exploring interdisciplinary approaches to accelerate translation into effective treatments.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266397447250723073446
2025-07-28
2026-02-01
Loading full text...

Full text loading...

References

  1. GrayM.W. BurgerG. LangB.F. Mitochondrial evolution.Science199928354071476148110.1126/science.283.5407.1476 10066161
    [Google Scholar]
  2. ApostolovaN. VictorV.M. Molecular strategies for targeting antioxidants to mitochondria: Therapeutic implications.Antioxid. Redox Signal.201522868672910.1089/ars.2014.5952 25546574
    [Google Scholar]
  3. SaganL. On the origin of mitosing cells.J. Theor. Biol.1967143225IN610.1016/0022‑5193(67)90079‑3 11541392
    [Google Scholar]
  4. GaoF. ZhangJ. Mitochondrial quality control and neurodegenerative diseases.Neuronal Signal.201824NS2018006210.1042/NS20180062 32714594
    [Google Scholar]
  5. BondS.T. MoodyS.C. LiuY. CivelekM. VillanuevaC.J. GregorevicP. KingwellB.A. HevenerA.L. LusisA.J. HenstridgeD.C. CalkinA.C. DrewB.G. The E3 ligase MARCH5 is a PPARγ target gene that regulates mitochondria and metabolism in adipocytes.Am. J. Physiol. Endocrinol. Metab.20193162E293E30410.1152/ajpendo.00394.2018 30512991
    [Google Scholar]
  6. KarbowskiM. NeutznerA. Neurodegeneration as a consequence of failed mitochondrial maintenance.Acta Neuropathol.2012123215717110.1007/s00401‑011‑0921‑0 22143516
    [Google Scholar]
  7. XuW. ZhuH. GuM. LuoQ. DingJ. YaoY. ChenF. WangZ. DHTKD1 is essential for mitochondrial biogenesis and function maintenance.FEBS Lett.2013587213587359210.1016/j.febslet.2013.08.047 24076469
    [Google Scholar]
  8. KlemmensenM.M. BorrowmanS.H. PearceC. PylesB. ChandraB. Mitochondrial dysfunction in neurodegenerative disorders.Neurotherapeutics20242110029210.1016/j.neurot.2023.10.002 38241161
    [Google Scholar]
  9. MoehleE.A. ShenK. DillinA. Mitochondrial proteostasis in the context of cellular and organismal health and aging.J. Biol. Chem.2019294145396540710.1074/jbc.TM117.000893 29622680
    [Google Scholar]
  10. Demers-LamarcheJ. GuillebaudG. TliliM. TodkarK. BélangerN. GrondinM. NguyenA.P. MichelJ. GermainM. Loss of mitochondrial function impairs lysosomes.J. Biol. Chem.201629119102631027610.1074/jbc.M115.695825 26987902
    [Google Scholar]
  11. DevallM. MillJ. LunnonK. The mitochondrial epigenome: A role in Alzheimer’s disease?Epigenomics20146666567510.2217/epi.14.50 25531259
    [Google Scholar]
  12. HyunD.H. LeeJ. A new insight into an alternative therapeutic approach to restore redox homeostasis and functional mitochondria in neurodegenerative diseases.Antioxidants2021111710.3390/antiox11010007 35052511
    [Google Scholar]
  13. CatanesiM. BrandoliniL. d’AngeloM. TuponeM.G. BenedettiE. AlfonsettiM. QuintilianiM. FratelliM. IaconisD. CiminiA. CastelliV. AllegrettiM. S-Carboxymethyl cysteine protects against oxidative stress and mitochondrial impairment in a parkinson’s disease in vitro model.Biomedicines2021910146710.3390/biomedicines9101467 34680584
    [Google Scholar]
  14. LuoJ.S. NingJ.Q. ChenZ.Y. LiW.J. ZhouR.L. YanR.Y. ChenM.J. DingL.L. The role of mitochondrial quality control in cognitive dysfunction in diabetes.Neurochem. Res.20224782158217210.1007/s11064‑022‑03631‑y 35661963
    [Google Scholar]
  15. ZhangQ. SongQ. YuR. WangA. JiangG. HuangY. ChenJ. XuJ. WangD. ChenH. GaoX. Nano‐brake halts mitochondrial dysfunction cascade to alleviate neuropathology and rescue alzheimer’s cognitive deficits.Adv. Sci.2023107220459610.1002/advs.202204596 36703613
    [Google Scholar]
  16. ZhaoJ. WangX. HuoZ. ChenY. LiuJ. ZhaoZ. MengF. SuQ. BaoW. ZhangL. WenS. WangX. LiuH. ZhouS. The impact of mitochondrial dysfunction in amyotrophic lateral sclerosis.Cells20221113204910.3390/cells11132049 35805131
    [Google Scholar]
  17. SchumackerP.T. GillespieM.N. NakahiraK. ChoiA.M.K. CrouserE.D. PiantadosiC.A. BhattacharyaJ. Mitochondria in lung biology and pathology: More than just a powerhouse.Am. J. Physiol. Lung Cell. Mol. Physiol.201430611L962L97410.1152/ajplung.00073.2014 24748601
    [Google Scholar]
  18. WiegmanC.H. MichaeloudesC. HajiG. NarangP. ClarkeC.J. RussellK.E. BaoW. PavlidisS. BarnesP.J. KanervaJ. BittnerA. RaoN. MurphyM.P. KirkhamP.A. ChungK.F. AdcockI.M. BrightlingC.E. DaviesD.E. FinchD.K. FisherA.J. GawA. KnoxA.J. MayerR.J. PolkeyM. SalmonM. SinghD. Oxidative stress–induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease.J. Allergy Clin. Immunol.2015136376978010.1016/j.jaci.2015.01.046 25828268
    [Google Scholar]
  19. RyanB.J. HoekS. FonE.A. Wade-MartinsR. Mitochondrial dysfunction and mitophagy in Parkinson’s: From familial to sporadic disease.Trends Biochem. Sci.201540420021010.1016/j.tibs.2015.02.003 25757399
    [Google Scholar]
  20. MoonH.E. PaekS.H. Mitochondrial dysfunction in parkinson’s disease.Exp. Neurobiol.201524210311610.5607/en.2015.24.2.103 26113789
    [Google Scholar]
  21. WallaceD.C. Mitochondria and cancer.Nat. Rev. Cancer2012121068569810.1038/nrc3365 23001348
    [Google Scholar]
  22. LleonartM.E. GrodzickiR. GraiferD.M. LyakhovichA. Mitochondrial dysfunction and potential anticancer therapy.Med. Res. Rev.20173761275129810.1002/med.21459 28682452
    [Google Scholar]
  23. Focusing on mitochondrial form and function.Nat. Cell Biol.201820773510.1038/s41556‑018‑0139‑7 29950569
    [Google Scholar]
  24. ErginA.D. ÜnerB. BalcıŞ. DemirbağÇ. BenettiC. OltuluÇ. Improving the bioavailability and efficacy of coenzyme q10 on alzheimer’s disease through the arginine based proniosomes.J. Pharm. Sci.2023112112921293210.1016/j.xphs.2023.07.020 37506768
    [Google Scholar]
  25. Dogan ErginA. BayindirZ.S. OzcelikayA.T. YukselN. A novel delivery system for enhancing bioavailability of S-adenosyl-l-methionine: Pectin nanoparticles-in-microparticles and their in vitro - in vivo evaluation’.J. Drug Deliv. Sci. Technol.20216110209610.1016/j.jddst.2020.102096
    [Google Scholar]
  26. ZhouL. DuY. ShangY. XiangD. XiaX. A novel triptolide nano-liposome with mitochondrial targeting for treatment of hepatocellular carcinoma.Int. J. Nanomedicine202419129751299810.2147/IJN.S498099 39654802
    [Google Scholar]
  27. ZuoQ. LyuJ. ShenX. WangF. XingL. ZhouM. ZhouZ. LiL. HuangY. A less-is-more strategy for mitochondria-targeted photodynamic therapy of rheumatoid arthritis.Small20242025e230726110.1002/smll.202307261
    [Google Scholar]
  28. HuangC. YuanY. LiG. TianS. HuH. ChenJ. LiangL. WangY. LiuY. Mitochondria-targeted iridium(III) complexes encapsulated in liposome induce cell death through ferroptosis and gasdermin-mediated pyroptosis.Eur. J. Med. Chem.202426511611210.1016/j.ejmech.2023.116112 38183779
    [Google Scholar]
  29. MursaleenL. ChanS.H.Y. NobleB. SomavarapuS. ZariwalaM.G. Curcumin and N-acetylcysteine nanocarriers alone or combined with deferoxamine target the mitochondria and protect against neurotoxicity and oxidative stress in a co-culture model of parkinson’s disease.Antioxidants202312113010.3390/antiox12010130 36670992
    [Google Scholar]
  30. KarunanidhiP. VermaN. KumarD.N. AgrawalA.K. SinghS. Triphenylphosphonium functionalized Ficus religiosa L. extract loaded nanoparticles improve the mitochondrial function in oxidative stress induced diabetes.AAPS PharmSciTech202122515810.1208/s12249‑021‑02016‑8 34009603
    [Google Scholar]
  31. LiW. ShenL. FuS. LiY. HuangF. LiQ. LinQ. LiuH. WangQ. ChenL. TanH. LiJ. ZhaoY. RanY. HaoY. Mitochondrial‐targeting mesoporous polydopamine nanoparticles for reducing kidney injury caused by depleted uranium.Adv. Healthc. Mater.2025142240301510.1002/adhm.202403015 39543790
    [Google Scholar]
  32. QianW. The Mitochondria-Targeted Micelle Inhibits Alzheimer’s Disease Progression by Alleviating Neuronal Mitochondrial Dysfunction and Neuroinflammation.Small2025216e240858110.1002/smll.202408581
    [Google Scholar]
  33. PardridgeW.M. The blood-brain barrier: Bottleneck in brain drug development.NeuroRx20052131410.1602/neurorx.2.1.3
    [Google Scholar]
  34. UgarteA. CorbachoD. AymerichM.S. García-OstaA. Cuadrado-TejedorM. OyarzabalJ. Impact of neurodegenerative diseases on drug binding to brain tissues: From animal models to human samples.Neurotherapeutics201815374275010.1007/s13311‑018‑0624‑5 29675823
    [Google Scholar]
  35. OuyangQ. MengY. ZhouW. TongJ. ChengZ. ZhuQ. New advances in brain-targeting nano-drug delivery systems for Alzheimer’s disease.J. Drug Target.2022301618110.1080/1061186X.2021.1927055 33983096
    [Google Scholar]
  36. QiuZ. YuZ. XuT. WangL. MengN. JinH. XuB. Novel nano-drug delivery system for brain tumor treatment.Cells20221123376110.3390/cells11233761 36497021
    [Google Scholar]
  37. LochheadJ.J. RonaldsonP.T. DavisT.P. Hypoxic stress and inflammatory pain disrupt blood-brain barrier tight junctions: Implications for drug delivery to the central nervous system.AAPS J.201719491092010.1208/s12248‑017‑0076‑6 28353217
    [Google Scholar]
  38. QiaoR. JiaQ. HüwelS. XiaR. LiuT. GaoF. GallaH.J. GaoM. Receptor-mediated delivery of magnetic nanoparticles across the blood-brain barrier.ACS Nano2012643304331010.1021/nn300240p 22443607
    [Google Scholar]
  39. Al-azzawiS. MashetaD. GuildfordA.L. PhillipsG. SantinM. Dendrimeric poly(Epsilon-Lysine) delivery systems for the enhanced permeability of flurbiprofen across the blood-brain barrier in alzheimer’s disease.Int. J. Mol. Sci.20181910322410.3390/ijms19103224 30340406
    [Google Scholar]
  40. MatsumotoJ. StewartT. ShengL. LiN. BullockK. SongN. ShiM. BanksW.A. ZhangJ. Transmission of α-synuclein-containing erythrocyte-derived extracellular vesicles across the blood-brain barrier via adsorptive mediated transcytosis: Another mechanism for initiation and progression of Parkinson’s disease?Acta Neuropathol. Commun.2017517110.1186/s40478‑017‑0470‑4 28903781
    [Google Scholar]
  41. ZhengP.P. RommeE. SpekP.J. DirvenC.M.F. WillemsenR. KrosJ.M. Glut1/SLC2A1 is crucial for the development of the blood‐brain barrier in vivo.Ann. Neurol.201068683584410.1002/ana.22318 21194153
    [Google Scholar]
  42. SakhraniN.M. PadhH. Organelle targeting: Third level of drug targeting.Drug Des. Devel. Ther.20137585599 23898223
    [Google Scholar]
  43. ChenC. DuanZ. YuanY. LiR. PangL. LiangJ. XuX. WangJ. Peptide-22 and cyclic rgd functionalized liposomes for glioma targeting drug delivery overcoming BBB and BBTB.ACS Appl. Mater. Interfaces2017975864587310.1021/acsami.6b15831 28128553
    [Google Scholar]
  44. KimG. ZhuR. ZhangY. JeonH. WangY. Fluorescent Chiral Quantum Dots to Unveil Origin-Dependent Exosome Uptake and Cargo Release.bioRxiv202316
    [Google Scholar]
  45. Vander HeidenM.G. ChandelN.S. LiX.X. SchumackerP.T. ColombiniM. ThompsonC.B. Outer mitochondrial membrane permeability can regulate coupled respiration and cell survival.Proc. Natl. Acad. Sci. USA20009794666467110.1073/pnas.090082297 10781072
    [Google Scholar]
  46. GiacomelloM. PyakurelA. GlytsouC. ScorranoL. The cell biology of mitochondrial membrane dynamics.Nat. Rev. Mol. Cell Biol.202021420422410.1038/s41580‑020‑0210‑7 32071438
    [Google Scholar]
  47. WeinbergS.E. ChandelN.S. Targeting mitochondria metabolism for cancer therapy.Nat. Chem. Biol.201511191510.1038/nchembio.1712 25517383
    [Google Scholar]
  48. MurphyM.P. Targeting lipophilic cations to mitochondria.Biochim. Biophys. Acta Bioenerg.200817777-81028103110.1016/j.bbabio.2008.03.029 18439417
    [Google Scholar]
  49. XuJ. DuW. ZhaoY. LimK. LuL. ZhangC. LiL. Mitochondria targeting drugs for neurodegenerative diseases—Design, mechanism and application.Acta Pharm. Sin. B20221262778278910.1016/j.apsb.2022.03.001 35755284
    [Google Scholar]
  50. TauskelaJ.S. MitoQ--a mitochondria-targeted antioxidant.IDrugs2007106399412
    [Google Scholar]
  51. JamesonV.J.A. CocheméH.M. LoganA. HantonL.R. SmithR.A.J. MurphyM.P. Synthesis of triphenylphosphonium vitamin E derivatives as mitochondria-targeted antioxidants.Tetrahedron201571448444845310.1016/j.tet.2015.09.014 26549895
    [Google Scholar]
  52. ChowdhuryA.R. ZielonkaJ. KalyanaramanB. HartleyR.C. MurphyM.P. AvadhaniN.G. Mitochondria-targeted paraquat and metformin mediate ROS production to induce multiple pathways of retrograde signaling: A dose-dependent phenomenon.Redox Biol.20203610160610.1016/j.redox.2020.101606 32604037
    [Google Scholar]
  53. XuY. WangS. ChanH.F. LiuY. LiH. HeC. LiZ. ChenM. Triphenylphosphonium-modified poly(ethylene glycol)-poly(ε-caprolactone) micelles for mitochondria- targeted gambogic acid delivery.Int. J. Pharm.20175221-2213310.1016/j.ijpharm.2017.01.064 28215509
    [Google Scholar]
  54. BiswasS. DodwadkarN.S. DeshpandeP.P. TorchilinV.P. Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo.J. Control. Release2012159339340210.1016/j.jconrel.2012.01.009 22286008
    [Google Scholar]
  55. BiswasS. DodwadkarN.S. PiroyanA. TorchilinV.P. Surface conjugation of triphenylphosphonium to target poly(amidoamine) dendrimers to mitochondria.Biomaterials201233184773478210.1016/j.biomaterials.2012.03.032 22469294
    [Google Scholar]
  56. LeeY.H. ParkH.I. ChangW.S. ChoiJ.S. Triphenylphosphonium-conjugated glycol chitosan microspheres for mitochondria-targeted drug delivery.Int. J. Biol. Macromol.2021167354510.1016/j.ijbiomac.2020.11.129 33227331
    [Google Scholar]
  57. ChengY. JiY. Mitochondria-targeting nanomedicine self-assembled from GSH-responsive paclitaxel-ss-berberine conjugate for synergetic cancer treatment with enhanced cytotoxicity.J. Control. Release2020318384910.1016/j.jconrel.2019.12.011 31830542
    [Google Scholar]
  58. ShiJ. ZhaoD. LiX. DingF. TangX. LiuN. HuangH. LiuC. The conjugation of rhodamine B enables carrier-free mitochondrial delivery of functional proteins.Org. Biomol. Chem.202018356829683910.1039/D0OB01305F 32761021
    [Google Scholar]
  59. BiswasS. DodwadkarN.S. SawantR.R. KoshkaryevA. TorchilinV.P. Surface modification of liposomes with rhodamine-123-conjugated polymer results in enhanced mitochondrial targeting.J. Drug Target.201119755256110.3109/1061186X.2010.536983 21348804
    [Google Scholar]
  60. XieC. ChangJ. HaoX.D. YuJ.M. LiuH.R. SunX. Mitochondrial-targeted prodrug cancer therapy using a rhodamine B labeled fluorinated docetaxel.Eur. J. Pharm. Biopharm.201385354154910.1016/j.ejpb.2013.06.008 23791719
    [Google Scholar]
  61. LvM. QianX. LiS. GongJ. WangQ. QianY. SuZ. XueX. LiuH.K. Unlocking the potential of iridium and ruthenium arene complexes as anti-tumor and anti-metastasis chemotherapeutic agents.J. Inorg. Biochem.202323811205710.1016/j.jinorgbio.2022.112057 36370504
    [Google Scholar]
  62. TanC.P. ZhongY.M. JiL.N. MaoZ.W. Phosphorescent metal complexes as theranostic anticancer agents: Combining imaging and therapy in a single molecule.Chem. Sci.20211272357236710.1039/D0SC06885C 34164000
    [Google Scholar]
  63. DubininM.V. SemenovaA.A. NedopekinaD.A. DavletshinE.V. SpivakA.Y. BelosludtsevK.N. Effect of f16-betulin conjugate on mitochondrial membranes and its role in cell death initiation.Membranes202111535210.3390/membranes11050352 34068772
    [Google Scholar]
  64. MiaoH. CuiW. ZhangT. ZhangY. ZhangJ. LouH. FanP. Mitochondrial targeting derivatives of honokiol enhanced selective antitumor activity in NCI-H446 cells and decreased in vivo toxicity in Caenorhabditis elegans.Eur. J. Med. Chem.202426411599610.1016/j.ejmech.2023.115996 38086195
    [Google Scholar]
  65. JiaoS. DongX. ZhaoW. Meso pyridinium BODIPY-based long wavelength infrared mitochondria-targeting fluorescent probe with high photostability.Anal. Methods202315263149315510.1039/D3AY00660C 37334656
    [Google Scholar]
  66. WangX. ZhangX. ZhengG. DongM. HuangZ. LinL. YanK. ZhengJ. WangJ. Mitochondria-targeted pentacyclic triterpene NIR-AIE derivatives for enhanced chemotherapeutic and chemo-photodynamic combined therapy.Eur. J. Med. Chem.202426411597510.1016/j.ejmech.2023.115975 38039788
    [Google Scholar]
  67. KimS. NamH.Y. LeeJ. SeoJ. Mitochondrion-targeting peptides and peptidomimetics: Recent progress and design principles.Biochemistry202059327028410.1021/acs.biochem.9b00857 31696703
    [Google Scholar]
  68. KangY.C. SonM. KangS. ImS. PiaoY. LimK.S. SongM.Y. ParkK.S. KimY.H. PakY.K. Cell-penetrating artificial mitochondria-targeting peptide-conjugated metallothionein 1A alleviates mitochondrial damage in Parkinson’s disease models.Exp. Mol. Med.201850811310.1038/s12276‑018‑0124‑z 30120245
    [Google Scholar]
  69. AbeN. FujitaS. MiyamotoT. TsuchiyaK. NumataK. Plant mitochondrial-targeted gene delivery by peptide/dna micelles quantitatively surface-modified with mitochondrial targeting and membrane-penetrating peptides.Biomacromolecules20232483657366510.1021/acs.biomac.3c00391 37385607
    [Google Scholar]
  70. YoshizumiT. OikawaK. ChuahJ.A. KodamaY. NumataK. Selective gene delivery for integrating exogenous dna into plastid and mitochondrial genomes using peptide–dna complexes.Biomacromolecules20181951582159110.1021/acs.biomac.8b00323 29601191
    [Google Scholar]
  71. LawS.S.Y. LiouG. NagaiY. Giménez-DejozJ. TateishiA. TsuchiyaK. KodamaY. FujigayaT. NumataK. Polymer-coated carbon nanotube hybrids with functional peptides for gene delivery into plant mitochondria.Nat. Commun.2022131241710.1038/s41467‑022‑30185‑y 35577779
    [Google Scholar]
  72. DaneshgarN. BaguleyA.W. LiangP.I. WuF. ChuY. KinterM.T. BenavidesG.A. JohnsonM.S. Darley-UsmarV. ZhangJ. ChanK.S. DaiD.F. Metabolic derangement in polycystic kidney disease mouse models is ameliorated by mitochondrial-targeted antioxidants.Commun. Biol.202141120010.1038/s42003‑021‑02730‑w 34671066
    [Google Scholar]
  73. ZhaoT. HeF. ZhaoK. YuxiaL. LiH. LiuX. CenJ. DuanS. A triple-targeted rutin-based self-assembled delivery vector for treating ischemic stroke by vascular normalization and anti-inflammation via ACE2/Ang1-7 signaling.ACS Cent. Sci.2023961180119910.1021/acscentsci.3c00377 37396868
    [Google Scholar]
  74. ZhangY. YangH. WeiD. ZhangX. WangJ. WuX. ChangJ. Mitochondria‐targeted nanoparticles in treatment of neurodegenerative diseases.Exploration2021132021011510.1002/EXP.20210115 37323688
    [Google Scholar]
  75. LuoG.F. ChenW.H. LiuY. LeiQ. ZhuoR.X. ZhangX.Z. Multifunctional enveloped mesoporous silica nanoparticles for subcellular co-delivery of drug and therapeutic peptide.Sci. Rep.201441606410.1038/srep06064 25317538
    [Google Scholar]
  76. Sena OzbayH. Yabanoglu-CiftciS. BaysalI. GultekinogluM. Can EylemC. UlubayramK. NemutluE. TopalogluR. OzaltinF. Mitochondria-targeted CoQ10 loaded PLGA-b-PEG-TPP nanoparticles: Their effects on mitochondrial functions of COQ8B HK-2 cells.Eur. J. Pharm. Biopharm.2022173223310.1016/j.ejpb.2022.02.018 35231556
    [Google Scholar]
  77. YamadaY. AkitaH. KamiyaH. KogureK. YamamotoT. ShinoharaY. YamashitaK. KobayashiH. KikuchiH. HarashimaH. MITO-Porter: A liposome-based carrier system for delivery of macromolecules into mitochondria via membrane fusion.Biochim. Biophys. Acta Biomembr.20081778242343210.1016/j.bbamem.2007.11.002 18054323
    [Google Scholar]
  78. YeL. YaoQ. XuF. HeL. DingJ. XiaoR. DingL. LuoB. Preparation and antitumor activity of triphenylphosphine-based mitochondrial targeting polylactic acid nanoparticles loaded with 7-hydroxyl coumarin.J. Biomater. Appl.20223661064107510.1177/08853282211037030 34338057
    [Google Scholar]
  79. KhanM.S. Jaswanth GowdaB.H. AlmalkiW.H. SinghT. SahebkarA. KesharwaniP. Unravelling the potential of mitochondria-targeted liposomes for enhanced cancer treatment.Drug Discov. Today202429110381910.1016/j.drudis.2023.103819 37940034
    [Google Scholar]
  80. YamadaY. MaruyamaM. KitaT. UsamiS. KitajiriS. HarashimaH. The use of a MITO-Porter to deliver exogenous therapeutic RNA to a mitochondrial disease’s cell with a A1555G mutation in the mitochondrial 12S rRNA gene results in an increase in mitochondrial respiratory activity.Mitochondrion20205513414410.1016/j.mito.2020.09.008 33035688
    [Google Scholar]
  81. WeissigV. LozoyaM. YuN. D’SouzaG. 202122751325
  82. MarracheS. DharS. Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics.Proc. Natl. Acad. Sci. USA201210940162881629310.1073/pnas.1210096109
    [Google Scholar]
  83. JuangV. ChangC.H. WangC.S. WangH.E. LoY.L. pH-responsive PEG-shedding and targeting peptide-modified nanoparticles for dual-delivery of irinotecan and microRNA to enhance tumor-specific therapy.Small20191549e1903296
    [Google Scholar]
  84. PerumalS. AtchudanR. LeeW. A review of polymeric micelles and their applications.Polymers20221412251010.3390/polym14122510 35746086
    [Google Scholar]
  85. WeissigV. LaschJ. ErdosG. MeyerH.W. RoweT.C. HughesJ. DQAsomes: A novel potential drug and gene delivery system made from Dequalinium.Pharm. Res.199815233433710.1023/A:1011991307631 9523323
    [Google Scholar]
  86. LaschJ. MeyeA. TaubertH. KoelschR. Mansa-ardJ. WeissigV. Dequalinium vesicles form stable complexes with plasmid DNA which are protected from DNase attack.Biol. Chem.1999380664765210.1515/BC.1999.080
    [Google Scholar]
  87. MendirattaS. HusseinM. NasserH.A. AliA.A.A. Multidisciplinary role of mesoporous silica nanoparticles in brain regeneration and cancers: From crossing the blood–brain barrier to treatment.Part. Part. Syst. Charact.2019369190019510.1002/ppsc.201900195
    [Google Scholar]
  88. YuanP. MaoX. WuX. LiewS.S. LiL. YaoS.Q. Mitochondria‐targeting, intracellular delivery of native proteins using biodegradable silica nanoparticles.Angew. Chem. Int. Ed.201958237657766110.1002/anie.201901699 30994955
    [Google Scholar]
  89. Díaz-GarcíaD. Ferrer-DonatoÁ. Méndez-ArriagaJ.M. Cabrera-PintoM. Díaz-SánchezM. PrasharS. Fernandez-MartosC.M. Gómez-RuizS. Design of mesoporous silica nanoparticles for the treatment of amyotrophic lateral sclerosis (ALS) with a therapeutic cocktail based on leptin and pioglitazone.ACS Biomater. Sci. Eng.20228114838484910.1021/acsbiomaterials.2c00865 36240025
    [Google Scholar]
  90. ZhangY. QiaoL-L. ZhangZ-Q. LiuY-F. LiL-S. ShenH. ZhaoM-X. A mitochondrial-targetable fluorescent probe based on high-quality InP quantum dots for the imaging of living cells.Mater. Des.202221956711073610.1016/j.matdes.2022.110736
    [Google Scholar]
  91. ZhangZ-Q. RenB. QiaoL-L. ZhangY-B. LiuY-F. XuJ-J. YangX. ZhaoM-X. Development of a Mitochondrially Targeted Probe Based on Polyethyleneimine-(3-carboxypropyl) Triphenylphosphine-Modified Quantum Dots for Fluorescence Imaging.Adv. Photo Res.2021222000085
    [Google Scholar]
  92. MaleD. GromnicovaR. McQuaidC. International Review of Neurobiology Al-JamalK.T. Academic PressUnited States2016130155198
    [Google Scholar]
  93. SilveiraP.L. SilveiraG.B. MullerA.P. Machado-de-ÁvilaR.A. Advance in the use of gold nanoparticles in the treatment of neurodegenerative diseases: New perspectives.Neural Regen. Res.202116122425242610.4103/1673‑5374.313040 33907028
    [Google Scholar]
  94. WangG. ShenX. SongX. WangN. WoX. GaoY. Protective mechanism of gold nanoparticles on human neural stem cells injured by β-amyloid protein through miR-21–5p/SOCS6 pathway.Neurotoxicology202395122210.1016/j.neuro.2022.12.011 36623431
    [Google Scholar]
  95. DowdingJ.M. SongW. BossyK. KarakotiA. KumarA. KimA. BossyB. SealS. EllismanM.H. PerkinsG. SelfW.T. Bossy-WetzelE. Cerium oxide nanoparticles protect against Aβ-induced mitochondrial fragmentation and neuronal cell death.Cell Death Differ.201421101622163210.1038/cdd.2014.72 24902900
    [Google Scholar]
  96. NazS. BeachJ. HeckertB. TummalaT. PashchenkoO. BanerjeeT. SantraS. Cerium oxide nanoparticles: A ‘radical’ approach to neurodegenerative disease treatment.Nanomedicine201712554555310.2217/nnm‑2016‑0399 28181459
    [Google Scholar]
  97. MavroudisI. PetridisF. KazisD. NjauS. CostaV. BaloyannisS. Dentritic, spinal and mitochondrial alternations in alzheimer’s desease. a preliminary descriptive study.Ann Acad. Roma Scient Ser Biol. Sci.202092434910.56082/annalsarscibio.2020.2.43
    [Google Scholar]
  98. BaloyannisS.J. Mitochondria and alzheimer’s disease: An electron microscopy study. Redirecting Alzheimer Strategy - Tracing Memory Loss to Self Pathology.United KingdomIntechOpen201910.5772/intechopen.84881
    [Google Scholar]
  99. PaganiL. EckertA. Amyloid-beta interaction with mitochondria.Int. J. Alzheimers Dis.20112011192505010.4061/2011/925050 21461357
    [Google Scholar]
  100. Vivek Sharma Priyanka Nagu Raneev Thakur Pankaj Sharma Harish Kumar, Amyloid beta mediated mitochondrial dysfunction in alzheimer’s disease: A mini review.J. Curr. Pharma Res.2019932981299010.33786/JCPR.2019.v09i03.017
    [Google Scholar]
  101. SwerdlowR.H. Mitochondria and cell bioenergetics: Increasingly recognized components and a possible etiologic cause of Alzheimer’s disease.Antioxid. Redox Signal.201216121434145510.1089/ars.2011.4149 21902597
    [Google Scholar]
  102. CalkinsM.J. ReddyP.H. Biochimica et biophysica acta (Bba) -.Molec Basis Dis.20111812450751310.1016/j.bbadis.2011.01.007
    [Google Scholar]
  103. ZhangL. ZhangS. MaezawaI. TrushinS. MinhasP. PintoM. JinL.W. PrasainK. NguyenT.D.T. YamazakiY. KanekiyoT. BuG. GatenoB. ChangK.O. NathK.A. NemutluE. DzejaP. PangY.P. HuaD.H. TrushinaE. Modulation of mitochondrial complex I activity averts cognitive decline in multiple animal models of familial Alzheimer’s Disease.EBioMedicine20152429430510.1016/j.ebiom.2015.03.009 26086035
    [Google Scholar]
  104. JohriA. Disentangling mitochondria in alzheimer’s disease.Int. J. Mol. Sci.202122211152010.3390/ijms222111520 34768950
    [Google Scholar]
  105. BhattP. VermaA. Al-AbassiF. AnwarF. KumarV. PandaB. Development of surface-engineered PLGA nanoparticulate-delivery system of Tet-1-conjugated nattokinase enzyme for inhibition of Aβ40 plaques in Alzheimer’s disease.Int. J. Nanomedicine2017128749876810.2147/IJN.S144545 29263666
    [Google Scholar]
  106. CenX. ChenY. XuX. WuR. HeF. ZhaoQ. SunQ. YiC. WuJ. NajafovA. XiaH. Pharmacological targeting of MCL-1 promotes mitophagy and improves disease pathologies in an Alzheimer’s disease mouse model.Nat. Commun.2020111573110.1038/s41467‑020‑19547‑6 33184293
    [Google Scholar]
  107. CaiQ. JeongY.Y. Mitophagy in Alzheimer’s Disease and Other Age-Related Neurodegenerative Diseases.Cells20209115010.3390/cells9010150 31936292
    [Google Scholar]
  108. GanX. HuangS. WuL. WangY. HuG. LiG. ZhangH. YuH. SwerdlowR.H. ChenJ.X. YanS.S. Biochimica ET biophysica acta (Bba) -.Molec Basis Dis.20141842222023110.1016/j.bbadis.2013.11.009
    [Google Scholar]
  109. WangJ. ChenG.J. Mitochondria as a therapeutic target in Alzheimer’s disease.Genes Dis.20163322022710.1016/j.gendis.2016.05.001 30258891
    [Google Scholar]
  110. LanzillottaC. Di DomenicoF. PerluigiM. ButterfieldD.A. Targeting mitochondria in alzheimer disease: Rationale and perspectives.CNS Drugs2019331095796910.1007/s40263‑019‑00658‑8 31410665
    [Google Scholar]
  111. GaoC. WangY. SunJ. HanY. GongW. LiY. FengY. WangH. YangM. LiZ. YangY. GaoC. Neuronal mitochondria-targeted delivery of curcumin by biomimetic engineered nanosystems in Alzheimer’s disease mice.Acta Biomater.202010828529910.1016/j.actbio.2020.03.029 32251785
    [Google Scholar]
  112. KhanM.M. PaezH.G. PitzerC.R. AlwayS.E. The therapeutic potential of mitochondria transplantation therapy in neurodegenerative and neurovascular disorders.Curr. Neuropharmacol.20232151100111610.2174/1570159X05666220908100545 36089791
    [Google Scholar]
  113. SinghY.P. PrasadS. KumarH. A comprehensive analysis on galantamine based hybrids for the management of alzheimer’s disease.Chem. Biol. Drug Des.202410457000410.1111/cbdd.70004 39494477
    [Google Scholar]
  114. SinghY.P. KumarH. Recent advances in medicinal chemistry of memantine against alzheimer’s disease.Chem. Biol. Drug Des.202410441463810.1111/cbdd.14638 39370170
    [Google Scholar]
  115. SinghY.P. KumarH. A recent update on huprine and its hybrids as a potential multifunctional agent for the treatment of Alzheimer’s disease.Chem. Biol. Drug Des.202410321447810.1111/cbdd.14478
    [Google Scholar]
  116. SinghY.P. KumarH. Berberine derivatives as inhibitors of acetylcholinesterase: A systematic review.Chem. Biol. Drug Des.202310261592160310.1111/cbdd.14337 37665093
    [Google Scholar]
  117. DawsonT.M. DawsonV.L. Molecular pathways of neurodegeneration in Parkinson’s disease.Science2003302564681982210.1126/science.1087753 14593166
    [Google Scholar]
  118. ExnerN. LutzA.K. HaassC. WinklhoferK.F. Mitochondrial dysfunction in Parkinson’s disease: Molecular mechanisms and pathophysiological consequences.EMBO J.201231143038306210.1038/emboj.2012.170 22735187
    [Google Scholar]
  119. RenK.D. LiuW.N. TianJ. ZhangY.Y. PengJ.J. ZhangD. LiN.S. YangJ. PengJ. LuoX.J. Mitochondrial E3 ubiquitin ligase 1 promotes brain injury by disturbing mitochondrial dynamics in a rat model of ischemic stroke.Eur. J. Pharmacol.201986117261710.1016/j.ejphar.2019.172617 31430457
    [Google Scholar]
  120. ParkJ.H. BurgessJ.D. FaroqiA.H. DeMeoN.N. FieselF.C. SpringerW. DelenclosM. McLeanP.J. Alpha-synuclein-induced mitochondrial dysfunction is mediated via a sirtuin 3-dependent pathway.Mol. Neurodegener.2020151510.1186/s13024‑019‑0349‑x 31931835
    [Google Scholar]
  121. BraidyN. GaiW.P. XuY.H. SachdevP. GuilleminG.J. JiangX.M. BallardJ.W.O. HoranM.P. FangZ.M. ChongB.H. ChanD.Y. Uptake and mitochondrial dysfunction of alpha-synuclein in human astrocytes, cortical neurons and fibroblasts.Transl. Neurodegener.2013212010.1186/2047‑9158‑2‑20 24093918
    [Google Scholar]
  122. ReeveA.K. LudtmannM.H. AngelovaP.R. SimcoxE.M. HorrocksM.H. KlenermanD. GandhiS. TurnbullD.M. AbramovA.Y. Aggregated α-synuclein and complex I deficiency: Exploration of their relationship in differentiated neurons.Cell Death Dis.201567182010.1038/cddis.2015.166 26181201
    [Google Scholar]
  123. HauserD.N. HastingsT.G. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease and monogenic parkinsonism.Neurobiol. Dis.201351354210.1016/j.nbd.2012.10.011 23064436
    [Google Scholar]
  124. MatsudaS. KitagishiY. KobayashiM. Function and characteristics of PINK1 in mitochondria.Oxid. Med. Cell. Longev.201320131610.1155/2013/601587 23533695
    [Google Scholar]
  125. MurtazaM. ShanJ. MatigianN. TodorovicM. CookA.L. RavishankarS. DongL.F. NeuzilJ. SilburnP. Mackay-SimA. MellickG.D. WoodS.A. Rotenone susceptibility phenotype in olfactory derived patient cells as a model of idiopathic parkinson’s disease.PLoS One2016114015454410.1371/journal.pone.0154544 27123847
    [Google Scholar]
  126. AbrahamsS. MillerH.C. LombardC. van der WesthuizenF.H. BardienS. Curcumin pre-treatment may protect against mitochondrial damage in LRRK2-mutant Parkinson’s disease and healthy control fibroblasts.Biochem. Biophys. Rep.20212710103510.1016/j.bbrep.2021.101035 34189277
    [Google Scholar]
  127. MeloT.Q. van ZomerenK.C. FerrariM.F.R. BoddekeH.W.G.M. CoprayJ.C.V.M. Impairment of mitochondria dynamics by human A53T α-synuclein and rescue by NAP (davunetide) in a cell model for Parkinson’s disease.Exp. Brain Res.2017235373174210.1007/s00221‑016‑4836‑9 27866262
    [Google Scholar]
  128. Di MaioR. BarrettP.J. HoffmanE.K. BarrettC.W. ZharikovA. BorahA. HuX. McCoyJ. ChuC.T. BurtonE.A. HastingsT.G. GreenamyreJ.T. α-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson’s disease.Sci. Transl. Med.20168342342ra7810.1126/scitranslmed.aaf3634 27280685
    [Google Scholar]
  129. BurbullaL.F. KrebiehlG. KrügerR. Balance is the challenge – The impact of mitochondrial dynamics in Parkinson’s disease.Eur. J. Clin. Invest.201040111048106010.1111/j.1365‑2362.2010.02354.x 20735469
    [Google Scholar]
  130. TysnesO.B. StorsteinA. Epidemiology of parkinson’s disease.J. Neural Transm.2017124890190510.1007/s00702‑017‑1686‑y 28150045
    [Google Scholar]
  131. Winkler-StuckK. KirchesE. MawrinC. DietzmannK. LinsH. WalleschC.W. KunzW.S. WiedemannF.R. Re-evaluation of the dysfunction of mitochondrial respiratory chain in skeletal muscle of patients with Parkinson?s disease.J. Neural Transm.2005112449951810.1007/s00702‑004‑0195‑y 15340872
    [Google Scholar]
  132. KraytsbergY. KudryavtsevaE. McKeeA.C. GeulaC. KowallN.W. KhrapkoK. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons.Nat. Genet.200638551852010.1038/ng1778 16604072
    [Google Scholar]
  133. DaiY. ClarkJ. ZhengK. KujothG.C. ProllaT.A. SimonD.K. Somatic mitochondrial DNA mutations do not increase neuronal vulnerability to MPTP in young POLG mutator mice.Neurotoxicol. Teratol.201446626710.1016/j.ntt.2014.10.004 25450660
    [Google Scholar]
  134. ZhengQ. LiuH. ZhangH. HanY. YuanJ. WangT. GaoY. LiZ. Ameliorating mitochondrial dysfunction of neurons by biomimetic targeting nanoparticles mediated mitochondrial biogenesis to boost the therapy of parkinson’s disease.Adv. Sci.20231022230075810.1002/advs.202300758 37202595
    [Google Scholar]
  135. YanoH. BaranovS.V. BaranovaO.V. KimJ. PanY. YablonskaS. CarlisleD.L. FerranteR.J. KimA.H. FriedlanderR.M. Inhibition of mitochondrial protein import by mutant huntingtin.Nat. Neurosci.201417682283110.1038/nn.3721 24836077
    [Google Scholar]
  136. GuoX. DisatnikM.H. MonbureauM. ShamlooM. Mochly-RosenD. QiX. Inhibition of mitochondrial fragmentation diminishes Huntington’s disease–associated neurodegeneration.J. Clin. Invest.2013123125371538810.1172/JCI70911 24231356
    [Google Scholar]
  137. RahmanM.M. TumpaM.A.A. RahamanM.S. IslamF. SutradharP.R. AhmedM. AlghamdiB.S. HafeezA. AlexiouA. PerveenA. AshrafG.M. Emerging promise of therapeutic approaches targeting mitochondria in neurodegenerative disorders.Curr. Neuropharmacol.20232151081109910.2174/1570159X21666230316150559 36927428
    [Google Scholar]
  138. ReddyP.H. ShirendebU. Biochimica Et biophysica acta (Bba) -.Molec Basis Dis.20121822210111010.1016/j.bbadis.2011.10.016
    [Google Scholar]
  139. GolpichM. AminiE. MohamedZ. Azman AliR. Mohamed IbrahimN. AhmadianiA. Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: Pathogenesis and treatment.CNS Neurosci. Ther.201723152210.1111/cns.12655 27873462
    [Google Scholar]
  140. MoreiraP.I. ZhuX. WangX. LeeH. NunomuraA. PetersenR.B. PerryG. SmithM.A. Mitochondria: A therapeutic target in neurodegeneration.Biochim. Biophys. Acta Mol. Basis Dis.20101802121222010.1016/j.bbadis.2009.10.007
    [Google Scholar]
  141. BrennanW.A. BirdE.D. AprilleJ.R. Regional mitochondrial respiratory activity in Huntington’s disease brain.J. Neurochem.19854461948195010.1111/j.1471‑4159.1985.tb07192.x 2985766
    [Google Scholar]
  142. GuM. GashM.T. MannV.M. Javoy-AgidF. CooperJ.M. SchapiraA.H.V. Mitochondrial defect in Huntington’s disease caudate nucleus.Ann. Neurol.199639338538910.1002/ana.410390317 8602759
    [Google Scholar]
  143. GardinerS.L. MilaneseC. BoogaardM.W. BuijsenR.A.M. HogenboomM. RoosR.A.C. MastroberardinoP.G. van Roon-MomW.M.C. AzizN.A. Bioenergetics in fibroblasts of patients with Huntington disease are associated with age at onset.Neurol. Genet.20184527510.1212/NXG.0000000000000275 30338295
    [Google Scholar]
  144. JurcauA. JurcauC. Mitochondria in Huntington’s disease: Implications in pathogenesis and mitochondrial-targeted therapeutic strategies.Neural Regen. Res.20231871472147710.4103/1673‑5374.360289 36571344
    [Google Scholar]
  145. YonutasH.M. PandyaJ.D. SullivanP.G. Changes in mitochondrial bioenergetics in the brain versus spinal cord become more apparent with age.J. Bioenerg. Biomembr.2015471-214915410.1007/s10863‑014‑9593‑5 25472025
    [Google Scholar]
  146. LiuF. LuJ. ManaenkoA. TangJ. HuQ. Mitochondria in Ischemic Stroke: New Insight and Implications.Aging Dis.20189592493710.14336/AD.2017.1126 30271667
    [Google Scholar]
  147. GibbsW.S. WeberR.A. SchnellmannR.G. AdkinsD.L. Disrupted mitochondrial genes and inflammation following stroke.Life Sci.201616613914810.1016/j.lfs.2016.09.021 27693381
    [Google Scholar]
  148. ZhaoY. SongC. WangH. GaiC. LiT. ChengY. LiuJ. SongY. LuoQ. GuB. LiuW. ChaiL. LiuD. WangZ. Polydopamine-cloaked nanoarchitectonics of prussian blue nanoparticles promote functional recovery in neonatal and adult ischemic stroke models.Biomater Res.202428007910.34133/bmr.0079
    [Google Scholar]
  149. ZhangY. ZhangH. ZhaoF. JiangZ. CuiY. OuM. MeiL. WangQ. Mitochondrial-targeted and ROS-responsive nanocarrier via nose-to-brain pathway for ischemic stroke treatment.Acta Pharm. Sin. B202313125107512010.1016/j.apsb.2023.06.011 38045064
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266397447250723073446
Loading
/content/journals/ctmc/10.2174/0115680266397447250723073446
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test