Skip to content
2000
image of Nanotechnological Approaches for Mitochondrial Targeting in 
Neurodegenerative Diseases

Abstract

Objectives

Mitochondria are dynamic organelles essential for energy metabolism and cellular homeostasis, playing critical roles in ATP production, calcium regulation, redox balance, and apoptosis. However, mitochondrial dysfunction is a central factor in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease, amyotrophic lateral sclerosis, Huntington's disease, and Parkinson's disease. Given the essential role of mitochondria in neuronal survival, targeted therapeutic strategies that restore mitochondrial function have gained significant attention. This review explores the latest advances in mitochondrial-targeted therapies and their potential applications in neurodegenerative diseases.

Methods

A comprehensive literature review was conducted on mitochondrial-targeted therapeutic strategies, with a focus on nanotechnology-based drug delivery systems. The analysis includes various nanoparticle-based approaches, such as liposomes, DQAsomes, and polymeric nanoparticles, which have demonstrated high biocompatibility, controlled drug release, and enhanced mitochondrial targeting efficiency. Additionally, mitochondria-penetrating peptides and delocalized lipophilic cations (DLCs) are discussed for their role in improving drug localization within mitochondria and overcoming biological barriers, including the blood-brain barrier (BBB).

Results

Recent research shows the potential of mitochondrial-targeted antioxidants, peptides, and biocompatible nanocarriers in arranging mitochondrial dysfunction and protecting neurons from oxidative damage. Various nanoparticle-based drug delivery systems have demonstrated the ability to selectively target mitochondria, improving drug bioavailability, therapeutic efficacy, and neuroprotective outcomes in neurodegenerative diseases.

Conclusion

Mitochondria-targeted therapies provide promising avenues for disease-modifying treatments aimed at preserving neuronal integrity and delaying disease progression. The unique properties of nanoparticles, such as their ability to enhance drug stability, facilitate controlled release, and achieve precise mitochondrial localization, make them valuable tools for neurodegenerative disease therapy. Future research should focus on optimizing delivery systems, validating clinical applicability, and exploring interdisciplinary approaches to accelerate translation into effective treatments.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266397447250723073446
2025-07-28
2025-09-13
Loading full text...

Full text loading...

References

  1. Gray M.W. Burger G. Lang B.F. Mitochondrial evolution. Science 1999 283 5407 1476 1481 10.1126/science.283.5407.1476 10066161
    [Google Scholar]
  2. Apostolova N. Victor V.M. Molecular strategies for targeting antioxidants to mitochondria: Therapeutic implications. Antioxid. Redox Signal. 2015 22 8 686 729 10.1089/ars.2014.5952 25546574
    [Google Scholar]
  3. Sagan L. On the origin of mitosing cells. J. Theor. Biol. 1967 14 3 225 IN6 10.1016/0022‑5193(67)90079‑3 11541392
    [Google Scholar]
  4. Gao F. Zhang J. Mitochondrial quality control and neurodegenerative diseases. Neuronal Signal. 2018 2 4 NS20180062 10.1042/NS20180062 32714594
    [Google Scholar]
  5. Bond S.T. Moody S.C. Liu Y. Civelek M. Villanueva C.J. Gregorevic P. Kingwell B.A. Hevener A.L. Lusis A.J. Henstridge D.C. Calkin A.C. Drew B.G. The E3 ligase MARCH5 is a PPARγ target gene that regulates mitochondria and metabolism in adipocytes. Am. J. Physiol. Endocrinol. Metab. 2019 316 2 E293 E304 10.1152/ajpendo.00394.2018 30512991
    [Google Scholar]
  6. Karbowski M. Neutzner A. Neurodegeneration as a consequence of failed mitochondrial maintenance. Acta Neuropathol. 2012 123 2 157 171 10.1007/s00401‑011‑0921‑0 22143516
    [Google Scholar]
  7. Xu W. Zhu H. Gu M. Luo Q. Ding J. Yao Y. Chen F. Wang Z. DHTKD1 is essential for mitochondrial biogenesis and function maintenance. FEBS Lett. 2013 587 21 3587 3592 10.1016/j.febslet.2013.08.047 24076469
    [Google Scholar]
  8. Klemmensen M.M. Borrowman S.H. Pearce C. Pyles B. Chandra B. Mitochondrial dysfunction in neurodegenerative disorders. Neurotherapeutics 2024 21 1 00292 10.1016/j.neurot.2023.10.002 38241161
    [Google Scholar]
  9. Moehle E.A. Shen K. Dillin A. Mitochondrial proteostasis in the context of cellular and organismal health and aging. J. Biol. Chem. 2019 294 14 5396 5407 10.1074/jbc.TM117.000893 29622680
    [Google Scholar]
  10. Demers-Lamarche J. Guillebaud G. Tlili M. Todkar K. Bélanger N. Grondin M. Nguyen A.P. Michel J. Germain M. Loss of mitochondrial function impairs lysosomes. J. Biol. Chem. 2016 291 19 10263 10276 10.1074/jbc.M115.695825 26987902
    [Google Scholar]
  11. Devall M. Mill J. Lunnon K. The mitochondrial epigenome: A role in Alzheimer’s disease? Epigenomics 2014 6 6 665 675 10.2217/epi.14.50 25531259
    [Google Scholar]
  12. Hyun D.H. Lee J. A new insight into an alternative therapeutic approach to restore redox homeostasis and functional mitochondria in neurodegenerative diseases. Antioxidants 2021 11 1 7 10.3390/antiox11010007 35052511
    [Google Scholar]
  13. Catanesi M. Brandolini L. d’Angelo M. Tupone M.G. Benedetti E. Alfonsetti M. Quintiliani M. Fratelli M. Iaconis D. Cimini A. Castelli V. Allegretti M. S-Carboxymethyl cysteine protects against oxidative stress and mitochondrial impairment in a parkinson’s disease in vitro model. Biomedicines 2021 9 10 1467 10.3390/biomedicines9101467 34680584
    [Google Scholar]
  14. Luo J.S. Ning J.Q. Chen Z.Y. Li W.J. Zhou R.L. Yan R.Y. Chen M.J. Ding L.L. The role of mitochondrial quality control in cognitive dysfunction in diabetes. Neurochem. Res. 2022 47 8 2158 2172 10.1007/s11064‑022‑03631‑y 35661963
    [Google Scholar]
  15. Zhang Q. Song Q. Yu R. Wang A. Jiang G. Huang Y. Chen J. Xu J. Wang D. Chen H. Gao X. Nano‐brake halts mitochondrial dysfunction cascade to alleviate neuropathology and rescue alzheimer’s cognitive deficits. Adv. Sci. 2023 10 7 2204596 10.1002/advs.202204596 36703613
    [Google Scholar]
  16. Zhao J. Wang X. Huo Z. Chen Y. Liu J. Zhao Z. Meng F. Su Q. Bao W. Zhang L. Wen S. Wang X. Liu H. Zhou S. The impact of mitochondrial dysfunction in amyotrophic lateral sclerosis. Cells 2022 11 13 2049 10.3390/cells11132049 35805131
    [Google Scholar]
  17. Schumacker P.T. Gillespie M.N. Nakahira K. Choi A.M.K. Crouser E.D. Piantadosi C.A. Bhattacharya J. Mitochondria in lung biology and pathology: More than just a powerhouse. Am. J. Physiol. Lung Cell. Mol. Physiol. 2014 306 11 L962 L974 10.1152/ajplung.00073.2014 24748601
    [Google Scholar]
  18. Wiegman C.H. Michaeloudes C. Haji G. Narang P. Clarke C.J. Russell K.E. Bao W. Pavlidis S. Barnes P.J. Kanerva J. Bittner A. Rao N. Murphy M.P. Kirkham P.A. Chung K.F. Adcock I.M. Brightling C.E. Davies D.E. Finch D.K. Fisher A.J. Gaw A. Knox A.J. Mayer R.J. Polkey M. Salmon M. Singh D. Oxidative stress–induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 2015 136 3 769 780 10.1016/j.jaci.2015.01.046 25828268
    [Google Scholar]
  19. Ryan B.J. Hoek S. Fon E.A. Wade-Martins R. Mitochondrial dysfunction and mitophagy in Parkinson’s: From familial to sporadic disease. Trends Biochem. Sci. 2015 40 4 200 210 10.1016/j.tibs.2015.02.003 25757399
    [Google Scholar]
  20. Moon H.E. Paek S.H. Mitochondrial dysfunction in parkinson’s disease. Exp. Neurobiol. 2015 24 2 103 116 10.5607/en.2015.24.2.103 26113789
    [Google Scholar]
  21. Wallace D.C. Mitochondria and cancer. Nat. Rev. Cancer 2012 12 10 685 698 10.1038/nrc3365 23001348
    [Google Scholar]
  22. Lleonart M.E. Grodzicki R. Graifer D.M. Lyakhovich A. Mitochondrial dysfunction and potential anticancer therapy. Med. Res. Rev. 2017 37 6 1275 1298 10.1002/med.21459 28682452
    [Google Scholar]
  23. Focusing on mitochondrial form and function. Nat. Cell Biol. 2018 20 7 735 10.1038/s41556‑018‑0139‑7 29950569
    [Google Scholar]
  24. Ergin A.D. Üner B. Balcı Ş. Demirbağ Ç. Benetti C. Oltulu Ç. Improving the bioavailability and efficacy of coenzyme q10 on alzheimer’s disease through the arginine based proniosomes. J. Pharm. Sci. 2023 112 11 2921 2932 10.1016/j.xphs.2023.07.020 37506768
    [Google Scholar]
  25. Dogan Ergin A. Bayindir Z.S. Ozcelikay A.T. Yuksel N. A novel delivery system for enhancing bioavailability of S-adenosyl-l-methionine: Pectin nanoparticles-in-microparticles and their in vitro - in vivo evaluation’. J. Drug Deliv. Sci. Technol. 2021 61 102096 10.1016/j.jddst.2020.102096
    [Google Scholar]
  26. Zhou L. Du Y. Shang Y. Xiang D. Xia X. A novel triptolide nano-liposome with mitochondrial targeting for treatment of hepatocellular carcinoma. Int. J. Nanomedicine 2024 19 12975 12998 10.2147/IJN.S498099 39654802
    [Google Scholar]
  27. Zuo Q. Lyu J. Shen X. Wang F. Xing L. Zhou M. Zhou Z. Li L. Huang Y. A less-is-more strategy for mitochondria-targeted photodynamic therapy of rheumatoid arthritis. Small 2024 20 25 e2307261 10.1002/smll.202307261
    [Google Scholar]
  28. Huang C. Yuan Y. Li G. Tian S. Hu H. Chen J. Liang L. Wang Y. Liu Y. Mitochondria-targeted iridium(III) complexes encapsulated in liposome induce cell death through ferroptosis and gasdermin-mediated pyroptosis. Eur. J. Med. Chem. 2024 265 116112 10.1016/j.ejmech.2023.116112 38183779
    [Google Scholar]
  29. Mursaleen L. Chan S.H.Y. Noble B. Somavarapu S. Zariwala M.G. Curcumin and N-acetylcysteine nanocarriers alone or combined with deferoxamine target the mitochondria and protect against neurotoxicity and oxidative stress in a co-culture model of parkinson’s disease. Antioxidants 2023 12 1 130 10.3390/antiox12010130 36670992
    [Google Scholar]
  30. Karunanidhi P. Verma N. Kumar D.N. Agrawal A.K. Singh S. Triphenylphosphonium functionalized Ficus religiosa L. extract loaded nanoparticles improve the mitochondrial function in oxidative stress induced diabetes. AAPS PharmSciTech 2021 22 5 158 10.1208/s12249‑021‑02016‑8 34009603
    [Google Scholar]
  31. Li W. Shen L. Fu S. Li Y. Huang F. Li Q. Lin Q. Liu H. Wang Q. Chen L. Tan H. Li J. Zhao Y. Ran Y. Hao Y. Mitochondrial‐targeting mesoporous polydopamine nanoparticles for reducing kidney injury caused by depleted uranium. Adv. Healthc. Mater. 2025 14 2 2403015 10.1002/adhm.202403015 39543790
    [Google Scholar]
  32. Qian W. The Mitochondria-Targeted Micelle Inhibits Alzheimer’s Disease Progression by Alleviating Neuronal Mitochondrial Dysfunction and Neuroinflammation. Small 2025 21 6 e2408581 10.1002/smll.202408581
    [Google Scholar]
  33. Pardridge W.M. The blood-brain barrier: Bottleneck in brain drug development. NeuroRx 2005 2 1 3 14 10.1602/neurorx.2.1.3
    [Google Scholar]
  34. Ugarte A. Corbacho D. Aymerich M.S. García-Osta A. Cuadrado-Tejedor M. Oyarzabal J. Impact of neurodegenerative diseases on drug binding to brain tissues: From animal models to human samples. Neurotherapeutics 2018 15 3 742 750 10.1007/s13311‑018‑0624‑5 29675823
    [Google Scholar]
  35. Ouyang Q. Meng Y. Zhou W. Tong J. Cheng Z. Zhu Q. New advances in brain-targeting nano-drug delivery systems for Alzheimer’s disease. J. Drug Target. 2022 30 1 61 81 10.1080/1061186X.2021.1927055 33983096
    [Google Scholar]
  36. Qiu Z. Yu Z. Xu T. Wang L. Meng N. Jin H. Xu B. Novel nano-drug delivery system for brain tumor treatment. Cells 2022 11 23 3761 10.3390/cells11233761 36497021
    [Google Scholar]
  37. Lochhead J.J. Ronaldson P.T. Davis T.P. Hypoxic stress and inflammatory pain disrupt blood-brain barrier tight junctions: Implications for drug delivery to the central nervous system. AAPS J. 2017 19 4 910 920 10.1208/s12248‑017‑0076‑6 28353217
    [Google Scholar]
  38. Qiao R. Jia Q. Hüwel S. Xia R. Liu T. Gao F. Galla H.J. Gao M. Receptor-mediated delivery of magnetic nanoparticles across the blood-brain barrier. ACS Nano 2012 6 4 3304 3310 10.1021/nn300240p 22443607
    [Google Scholar]
  39. Al-azzawi S. Masheta D. Guildford A.L. Phillips G. Santin M. Dendrimeric poly(Epsilon-Lysine) delivery systems for the enhanced permeability of flurbiprofen across the blood-brain barrier in alzheimer’s disease. Int. J. Mol. Sci. 2018 19 10 3224 10.3390/ijms19103224 30340406
    [Google Scholar]
  40. Matsumoto J. Stewart T. Sheng L. Li N. Bullock K. Song N. Shi M. Banks W.A. Zhang J. Transmission of α-synuclein-containing erythrocyte-derived extracellular vesicles across the blood-brain barrier via adsorptive mediated transcytosis: Another mechanism for initiation and progression of Parkinson’s disease? Acta Neuropathol. Commun. 2017 5 1 71 10.1186/s40478‑017‑0470‑4 28903781
    [Google Scholar]
  41. Zheng P.P. Romme E. Spek P.J. Dirven C.M.F. Willemsen R. Kros J.M. Glut1/SLC2A1 is crucial for the development of the blood‐brain barrier in vivo. Ann. Neurol. 2010 68 6 835 844 10.1002/ana.22318 21194153
    [Google Scholar]
  42. Sakhrani N.M. Padh H. Organelle targeting: Third level of drug targeting. Drug Des. Devel. Ther. 2013 7 585 599 23898223
    [Google Scholar]
  43. Chen C. Duan Z. Yuan Y. Li R. Pang L. Liang J. Xu X. Wang J. Peptide-22 and cyclic rgd functionalized liposomes for glioma targeting drug delivery overcoming BBB and BBTB. ACS Appl. Mater. Interfaces 2017 9 7 5864 5873 10.1021/acsami.6b15831 28128553
    [Google Scholar]
  44. Kim G. Zhu R. Zhang Y. Jeon H. Wang Y. Fluorescent Chiral Quantum Dots to Unveil Origin-Dependent Exosome Uptake and Cargo Release. bioRxiv 2023 1 6
    [Google Scholar]
  45. Vander Heiden M.G. Chandel N.S. Li X.X. Schumacker P.T. Colombini M. Thompson C.B. Outer mitochondrial membrane permeability can regulate coupled respiration and cell survival. Proc. Natl. Acad. Sci. USA 2000 97 9 4666 4671 10.1073/pnas.090082297 10781072
    [Google Scholar]
  46. Giacomello M. Pyakurel A. Glytsou C. Scorrano L. The cell biology of mitochondrial membrane dynamics. Nat. Rev. Mol. Cell Biol. 2020 21 4 204 224 10.1038/s41580‑020‑0210‑7 32071438
    [Google Scholar]
  47. Weinberg S.E. Chandel N.S. Targeting mitochondria metabolism for cancer therapy. Nat. Chem. Biol. 2015 11 1 9 15 10.1038/nchembio.1712 25517383
    [Google Scholar]
  48. Murphy M.P. Targeting lipophilic cations to mitochondria. Biochim. Biophys. Acta Bioenerg. 2008 1777 7-8 1028 1031 10.1016/j.bbabio.2008.03.029 18439417
    [Google Scholar]
  49. Xu J. Du W. Zhao Y. Lim K. Lu L. Zhang C. Li L. Mitochondria targeting drugs for neurodegenerative diseases—Design, mechanism and application. Acta Pharm. Sin. B 2022 12 6 2778 2789 10.1016/j.apsb.2022.03.001 35755284
    [Google Scholar]
  50. Tauskela J.S. MitoQ--a mitochondria-targeted antioxidant. IDrugs 2007 10 6 399 412
    [Google Scholar]
  51. Jameson V.J.A. Cochemé H.M. Logan A. Hanton L.R. Smith R.A.J. Murphy M.P. Synthesis of triphenylphosphonium vitamin E derivatives as mitochondria-targeted antioxidants. Tetrahedron 2015 71 44 8444 8453 10.1016/j.tet.2015.09.014 26549895
    [Google Scholar]
  52. Chowdhury A.R. Zielonka J. Kalyanaraman B. Hartley R.C. Murphy M.P. Avadhani N.G. Mitochondria-targeted paraquat and metformin mediate ROS production to induce multiple pathways of retrograde signaling: A dose-dependent phenomenon. Redox Biol. 2020 36 101606 10.1016/j.redox.2020.101606 32604037
    [Google Scholar]
  53. Xu Y. Wang S. Chan H.F. Liu Y. Li H. He C. Li Z. Chen M. Triphenylphosphonium-modified poly(ethylene glycol)-poly(ε-caprolactone) micelles for mitochondria- targeted gambogic acid delivery. Int. J. Pharm. 2017 522 1-2 21 33 10.1016/j.ijpharm.2017.01.064 28215509
    [Google Scholar]
  54. Biswas S. Dodwadkar N.S. Deshpande P.P. Torchilin V.P. Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo. J. Control. Release 2012 159 3 393 402 10.1016/j.jconrel.2012.01.009 22286008
    [Google Scholar]
  55. Biswas S. Dodwadkar N.S. Piroyan A. Torchilin V.P. Surface conjugation of triphenylphosphonium to target poly(amidoamine) dendrimers to mitochondria. Biomaterials 2012 33 18 4773 4782 10.1016/j.biomaterials.2012.03.032 22469294
    [Google Scholar]
  56. Lee Y.H. Park H.I. Chang W.S. Choi J.S. Triphenylphosphonium-conjugated glycol chitosan microspheres for mitochondria-targeted drug delivery. Int. J. Biol. Macromol. 2021 167 35 45 10.1016/j.ijbiomac.2020.11.129 33227331
    [Google Scholar]
  57. Cheng Y. Ji Y. Mitochondria-targeting nanomedicine self-assembled from GSH-responsive paclitaxel-ss-berberine conjugate for synergetic cancer treatment with enhanced cytotoxicity. J. Control. Release 2020 318 38 49 10.1016/j.jconrel.2019.12.011 31830542
    [Google Scholar]
  58. Shi J. Zhao D. Li X. Ding F. Tang X. Liu N. Huang H. Liu C. The conjugation of rhodamine B enables carrier-free mitochondrial delivery of functional proteins. Org. Biomol. Chem. 2020 18 35 6829 6839 10.1039/D0OB01305F 32761021
    [Google Scholar]
  59. Biswas S. Dodwadkar N.S. Sawant R.R. Koshkaryev A. Torchilin V.P. Surface modification of liposomes with rhodamine-123-conjugated polymer results in enhanced mitochondrial targeting. J. Drug Target. 2011 19 7 552 561 10.3109/1061186X.2010.536983 21348804
    [Google Scholar]
  60. Xie C. Chang J. Hao X.D. Yu J.M. Liu H.R. Sun X. Mitochondrial-targeted prodrug cancer therapy using a rhodamine B labeled fluorinated docetaxel. Eur. J. Pharm. Biopharm. 2013 85 3 541 549 10.1016/j.ejpb.2013.06.008 23791719
    [Google Scholar]
  61. Lv M. Qian X. Li S. Gong J. Wang Q. Qian Y. Su Z. Xue X. Liu H.K. Unlocking the potential of iridium and ruthenium arene complexes as anti-tumor and anti-metastasis chemotherapeutic agents. J. Inorg. Biochem. 2023 238 112057 10.1016/j.jinorgbio.2022.112057 36370504
    [Google Scholar]
  62. Tan C.P. Zhong Y.M. Ji L.N. Mao Z.W. Phosphorescent metal complexes as theranostic anticancer agents: Combining imaging and therapy in a single molecule. Chem. Sci. (Camb.) 2021 12 7 2357 2367 10.1039/D0SC06885C 34164000
    [Google Scholar]
  63. Dubinin M.V. Semenova A.A. Nedopekina D.A. Davletshin E.V. Spivak A.Y. Belosludtsev K.N. Effect of f16-betulin conjugate on mitochondrial membranes and its role in cell death initiation. Membranes 2021 11 5 352 10.3390/membranes11050352 34068772
    [Google Scholar]
  64. Miao H. Cui W. Zhang T. Zhang Y. Zhang J. Lou H. Fan P. Mitochondrial targeting derivatives of honokiol enhanced selective antitumor activity in NCI-H446 cells and decreased in vivo toxicity in Caenorhabditis elegans. Eur. J. Med. Chem. 2024 264 115996 10.1016/j.ejmech.2023.115996 38086195
    [Google Scholar]
  65. Jiao S. Dong X. Zhao W. Meso pyridinium BODIPY-based long wavelength infrared mitochondria-targeting fluorescent probe with high photostability. Anal. Methods 2023 15 26 3149 3155 10.1039/D3AY00660C 37334656
    [Google Scholar]
  66. Wang X. Zhang X. Zheng G. Dong M. Huang Z. Lin L. Yan K. Zheng J. Wang J. Mitochondria-targeted pentacyclic triterpene NIR-AIE derivatives for enhanced chemotherapeutic and chemo-photodynamic combined therapy. Eur. J. Med. Chem. 2024 264 115975 10.1016/j.ejmech.2023.115975 38039788
    [Google Scholar]
  67. Kim S. Nam H.Y. Lee J. Seo J. Mitochondrion-targeting peptides and peptidomimetics: Recent progress and design principles. Biochemistry 2020 59 3 270 284 10.1021/acs.biochem.9b00857 31696703
    [Google Scholar]
  68. Kang Y.C. Son M. Kang S. Im S. Piao Y. Lim K.S. Song M.Y. Park K.S. Kim Y.H. Pak Y.K. Cell-penetrating artificial mitochondria-targeting peptide-conjugated metallothionein 1A alleviates mitochondrial damage in Parkinson’s disease models. Exp. Mol. Med. 2018 50 8 1 13 10.1038/s12276‑018‑0124‑z 30120245
    [Google Scholar]
  69. Abe N. Fujita S. Miyamoto T. Tsuchiya K. Numata K. Plant mitochondrial-targeted gene delivery by peptide/dna micelles quantitatively surface-modified with mitochondrial targeting and membrane-penetrating peptides. Biomacromolecules 2023 24 8 3657 3665 10.1021/acs.biomac.3c00391 37385607
    [Google Scholar]
  70. Yoshizumi T. Oikawa K. Chuah J.A. Kodama Y. Numata K. Selective gene delivery for integrating exogenous dna into plastid and mitochondrial genomes using peptide–dna complexes. Biomacromolecules 2018 19 5 1582 1591 10.1021/acs.biomac.8b00323 29601191
    [Google Scholar]
  71. Law S.S.Y. Liou G. Nagai Y. Giménez-Dejoz J. Tateishi A. Tsuchiya K. Kodama Y. Fujigaya T. Numata K. Polymer-coated carbon nanotube hybrids with functional peptides for gene delivery into plant mitochondria. Nat. Commun. 2022 13 1 2417 10.1038/s41467‑022‑30185‑y 35577779
    [Google Scholar]
  72. Daneshgar N. Baguley A.W. Liang P.I. Wu F. Chu Y. Kinter M.T. Benavides G.A. Johnson M.S. Darley-Usmar V. Zhang J. Chan K.S. Dai D.F. Metabolic derangement in polycystic kidney disease mouse models is ameliorated by mitochondrial-targeted antioxidants. Commun. Biol. 2021 4 1 1200 10.1038/s42003‑021‑02730‑w 34671066
    [Google Scholar]
  73. Zhao T. He F. Zhao K. Yuxia L. Li H. Liu X. Cen J. Duan S. A triple-targeted rutin-based self-assembled delivery vector for treating ischemic stroke by vascular normalization and anti-inflammation via ACE2/Ang1-7 signaling. ACS Cent. Sci. 2023 9 6 1180 1199 10.1021/acscentsci.3c00377 37396868
    [Google Scholar]
  74. Zhang Y. Yang H. Wei D. Zhang X. Wang J. Wu X. Chang J. Mitochondria‐targeted nanoparticles in treatment of neurodegenerative diseases. Exploration 2021 1 3 20210115 10.1002/EXP.20210115 37323688
    [Google Scholar]
  75. Luo G.F. Chen W.H. Liu Y. Lei Q. Zhuo R.X. Zhang X.Z. Multifunctional enveloped mesoporous silica nanoparticles for subcellular co-delivery of drug and therapeutic peptide. Sci. Rep. 2014 4 1 6064 10.1038/srep06064 25317538
    [Google Scholar]
  76. Sena Ozbay H. Yabanoglu-Ciftci S. Baysal I. Gultekinoglu M. Can Eylem C. Ulubayram K. Nemutlu E. Topaloglu R. Ozaltin F. Mitochondria-targeted CoQ10 loaded PLGA-b-PEG-TPP nanoparticles: Their effects on mitochondrial functions of COQ8B HK-2 cells. Eur. J. Pharm. Biopharm. 2022 173 22 33 10.1016/j.ejpb.2022.02.018 35231556
    [Google Scholar]
  77. Yamada Y. Akita H. Kamiya H. Kogure K. Yamamoto T. Shinohara Y. Yamashita K. Kobayashi H. Kikuchi H. Harashima H. MITO-Porter: A liposome-based carrier system for delivery of macromolecules into mitochondria via membrane fusion. Biochim. Biophys. Acta Biomembr. 2008 1778 2 423 432 10.1016/j.bbamem.2007.11.002 18054323
    [Google Scholar]
  78. Ye L. Yao Q. Xu F. He L. Ding J. Xiao R. Ding L. Luo B. Preparation and antitumor activity of triphenylphosphine-based mitochondrial targeting polylactic acid nanoparticles loaded with 7-hydroxyl coumarin. J. Biomater. Appl. 2022 36 6 1064 1075 10.1177/08853282211037030 34338057
    [Google Scholar]
  79. Khan M.S. Jaswanth Gowda B.H. Almalki W.H. Singh T. Sahebkar A. Kesharwani P. Unravelling the potential of mitochondria-targeted liposomes for enhanced cancer treatment. Drug Discov. Today 2024 29 1 103819 10.1016/j.drudis.2023.103819 37940034
    [Google Scholar]
  80. Yamada Y. Maruyama M. Kita T. Usami S. Kitajiri S. Harashima H. The use of a MITO-Porter to deliver exogenous therapeutic RNA to a mitochondrial disease’s cell with a A1555G mutation in the mitochondrial 12S rRNA gene results in an increase in mitochondrial respiratory activity. Mitochondrion 2020 55 134 144 10.1016/j.mito.2020.09.008 33035688
    [Google Scholar]
  81. Weissig V. Lozoya M. Yu N. D’Souza G. 2021 2275 13 25
  82. Marrache S. Dhar S. Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc. Natl. Acad. Sci. USA 2012 109 40 16288 16293 10.1073/pnas.1210096109
    [Google Scholar]
  83. Juang V. Chang C.H. Wang C.S. Wang H.E. Lo Y.L. pH-responsive PEG-shedding and targeting peptide-modified nanoparticles for dual-delivery of irinotecan and microRNA to enhance tumor-specific therapy. Small 2019 15 49 e1903296
    [Google Scholar]
  84. Perumal S. Atchudan R. Lee W. A review of polymeric micelles and their applications. Polymers 2022 14 12 2510 10.3390/polym14122510 35746086
    [Google Scholar]
  85. Weissig V. Lasch J. Erdos G. Meyer H.W. Rowe T.C. Hughes J. DQAsomes: A novel potential drug and gene delivery system made from Dequalinium. Pharm. Res. 1998 15 2 334 337 10.1023/A:1011991307631 9523323
    [Google Scholar]
  86. Lasch J. Meye A. Taubert H. Koelsch R. Mansa-ard J. Weissig V. Dequalinium vesicles form stable complexes with plasmid DNA which are protected from DNase attack. Biol. Chem. 1999 380 6 647 652 10.1515/BC.1999.080
    [Google Scholar]
  87. Mendiratta S. Hussein M. Nasser H.A. Ali A.A.A. Multidisciplinary role of mesoporous silica nanoparticles in brain regeneration and cancers: From crossing the blood–brain barrier to treatment. Part. Part. Syst. Charact. 2019 36 9 1900195 10.1002/ppsc.201900195
    [Google Scholar]
  88. Yuan P. Mao X. Wu X. Liew S.S. Li L. Yao S.Q. Mitochondria‐targeting, intracellular delivery of native proteins using biodegradable silica nanoparticles. Angew. Chem. Int. Ed. 2019 58 23 7657 7661 10.1002/anie.201901699 30994955
    [Google Scholar]
  89. Díaz-García D. Ferrer-Donato Á. Méndez-Arriaga J.M. Cabrera-Pinto M. Díaz-Sánchez M. Prashar S. Fernandez-Martos C.M. Gómez-Ruiz S. Design of mesoporous silica nanoparticles for the treatment of amyotrophic lateral sclerosis (ALS) with a therapeutic cocktail based on leptin and pioglitazone. ACS Biomater. Sci. Eng. 2022 8 11 4838 4849 10.1021/acsbiomaterials.2c00865 36240025
    [Google Scholar]
  90. Zhang Y. Qiao L-L. Zhang Z-Q. Liu Y-F. Li L-S. Shen H. Zhao M-X. A mitochondrial-targetable fluorescent probe based on high-quality InP quantum dots for the imaging of living cells. Mater. Des. 2022 219 567 110736 10.1016/j.matdes.2022.110736
    [Google Scholar]
  91. Zhang Z-Q. Ren B. Qiao L-L. Zhang Y-B. Liu Y-F. Xu J-J. Yang X. Zhao M-X. Development of a Mitochondrially Targeted Probe Based on Polyethyleneimine-(3-carboxypropyl) Triphenylphosphine-Modified Quantum Dots for Fluorescence Imaging. Adv. Photon. Res. 2021 2 2 2000085
    [Google Scholar]
  92. Male D. Gromnicova R. McQuaid C. International Review of Neurobiology Al-Jamal, K.T., Ed.; Academic Press: United States, 2016 130 155 198
    [Google Scholar]
  93. Silveira P.L. Silveira G.B. Muller A.P. Machado-de-Ávila R.A. Advance in the use of gold nanoparticles in the treatment of neurodegenerative diseases: New perspectives. Neural Regen. Res. 2021 16 12 2425 2426 10.4103/1673‑5374.313040 33907028
    [Google Scholar]
  94. Wang G. Shen X. Song X. Wang N. Wo X. Gao Y. Protective mechanism of gold nanoparticles on human neural stem cells injured by β-amyloid protein through miR-21–5p/SOCS6 pathway. Neurotoxicology 2023 95 12 22 10.1016/j.neuro.2022.12.011 36623431
    [Google Scholar]
  95. Dowding J.M. Song W. Bossy K. Karakoti A. Kumar A. Kim A. Bossy B. Seal S. Ellisman M.H. Perkins G. Self W.T. Bossy-Wetzel E. Cerium oxide nanoparticles protect against Aβ-induced mitochondrial fragmentation and neuronal cell death. Cell Death Differ. 2014 21 10 1622 1632 10.1038/cdd.2014.72 24902900
    [Google Scholar]
  96. Naz S. Beach J. Heckert B. Tummala T. Pashchenko O. Banerjee T. Santra S. Cerium oxide nanoparticles: A ‘radical’ approach to neurodegenerative disease treatment. Nanomedicine 2017 12 5 545 553 10.2217/nnm‑2016‑0399 28181459
    [Google Scholar]
  97. Mavroudis I. Petridis F. Kazis D. Njau S. Costa V. Baloyannis S. Dentritic, spinal and mitochondrial alternations in alzheimer’s desease. a preliminary descriptive study. Ann Acad. Roma Scient Ser Biol. Sci. 2020 9 2 43 49 10.56082/annalsarscibio.2020.2.43
    [Google Scholar]
  98. Baloyannis S.J. Mitochondria and alzheimer’s disease: An electron microscopy study. Redirecting Alzheimer Strategy - Tracing Memory Loss to Self Pathology. United Kingdom IntechOpen 2019 10.5772/intechopen.84881
    [Google Scholar]
  99. Pagani L. Eckert A. Amyloid-beta interaction with mitochondria. Int. J. Alzheimers Dis. 2011 2011 1 925050 10.4061/2011/925050 21461357
    [Google Scholar]
  100. Vivek Sharma Priyanka Nagu; Raneev Thakur; Pankaj Sharma; Harish Kumar, Amyloid beta mediated mitochondrial dysfunction in alzheimer’s disease: A mini review. J. Curr. Pharma Res. 2019 9 3 2981 2990 10.33786/JCPR.2019.v09i03.017
    [Google Scholar]
  101. Swerdlow R.H. Mitochondria and cell bioenergetics: Increasingly recognized components and a possible etiologic cause of Alzheimer’s disease. Antioxid. Redox Signal. 2012 16 12 1434 1455 10.1089/ars.2011.4149 21902597
    [Google Scholar]
  102. Calkins M.J. Reddy P.H. Biochimica et biophysica acta (Bba) -. Molec Basis Dis. 2011 1812 4 507 513 10.1016/j.bbadis.2011.01.007
    [Google Scholar]
  103. Zhang L. Zhang S. Maezawa I. Trushin S. Minhas P. Pinto M. Jin L.W. Prasain K. Nguyen T.D.T. Yamazaki Y. Kanekiyo T. Bu G. Gateno B. Chang K.O. Nath K.A. Nemutlu E. Dzeja P. Pang Y.P. Hua D.H. Trushina E. Modulation of mitochondrial complex I activity averts cognitive decline in multiple animal models of familial Alzheimer’s Disease. EBioMedicine 2015 2 4 294 305 10.1016/j.ebiom.2015.03.009 26086035
    [Google Scholar]
  104. Johri A. Disentangling mitochondria in alzheimer’s disease. Int. J. Mol. Sci. 2021 22 21 11520 10.3390/ijms222111520 34768950
    [Google Scholar]
  105. Bhatt P. Verma A. Al-Abassi F. Anwar F. Kumar V. Panda B. Development of surface-engineered PLGA nanoparticulate-delivery system of Tet-1-conjugated nattokinase enzyme for inhibition of Aβ40 plaques in Alzheimer’s disease. Int. J. Nanomedicine 2017 12 8749 8768 10.2147/IJN.S144545 29263666
    [Google Scholar]
  106. Cen X. Chen Y. Xu X. Wu R. He F. Zhao Q. Sun Q. Yi C. Wu J. Najafov A. Xia H. Pharmacological targeting of MCL-1 promotes mitophagy and improves disease pathologies in an Alzheimer’s disease mouse model. Nat. Commun. 2020 11 1 5731 10.1038/s41467‑020‑19547‑6 33184293
    [Google Scholar]
  107. Cai Q. Jeong Y.Y. Mitophagy in Alzheimer’s Disease and Other Age-Related Neurodegenerative Diseases. Cells 2020 9 1 150 10.3390/cells9010150 31936292
    [Google Scholar]
  108. Gan X. Huang S. Wu L. Wang Y. Hu G. Li G. Zhang H. Yu H. Swerdlow R.H. Chen J.X. Yan S.S. Biochimica ET biophysica acta (Bba) -. Molec Basis Dis. 2014 1842 2 220 231 10.1016/j.bbadis.2013.11.009
    [Google Scholar]
  109. Wang J. Chen G.J. Mitochondria as a therapeutic target in Alzheimer’s disease. Genes Dis. 2016 3 3 220 227 10.1016/j.gendis.2016.05.001 30258891
    [Google Scholar]
  110. Lanzillotta C. Di Domenico F. Perluigi M. Butterfield D.A. Targeting mitochondria in alzheimer disease: Rationale and perspectives. CNS Drugs 2019 33 10 957 969 10.1007/s40263‑019‑00658‑8 31410665
    [Google Scholar]
  111. Gao C. Wang Y. Sun J. Han Y. Gong W. Li Y. Feng Y. Wang H. Yang M. Li Z. Yang Y. Gao C. Neuronal mitochondria-targeted delivery of curcumin by biomimetic engineered nanosystems in Alzheimer’s disease mice. Acta Biomater. 2020 108 285 299 10.1016/j.actbio.2020.03.029 32251785
    [Google Scholar]
  112. Khan M.M. Paez H.G. Pitzer C.R. Alway S.E. The therapeutic potential of mitochondria transplantation therapy in neurodegenerative and neurovascular disorders. Curr. Neuropharmacol. 2023 21 5 1100 1116 10.2174/1570159X05666220908100545 36089791
    [Google Scholar]
  113. Singh Y.P. Prasad S. Kumar H. A comprehensive analysis on galantamine based hybrids for the management of alzheimer’s disease. Chem. Biol. Drug Des. 2024 104 5 70004 10.1111/cbdd.70004 39494477
    [Google Scholar]
  114. Singh Y.P. Kumar H. Recent advances in medicinal chemistry of memantine against alzheimer’s disease. Chem. Biol. Drug Des. 2024 104 4 14638 10.1111/cbdd.14638 39370170
    [Google Scholar]
  115. Singh Y.P. Kumar H. A recent update on huprine and its hybrids as a potential multifunctional agent for the treatment of Alzheimer’s disease. Chem. Biol. Drug Des. 2024 103 2 14478 10.1111/cbdd.14478
    [Google Scholar]
  116. Singh Y.P. Kumar H. Berberine derivatives as inhibitors of acetylcholinesterase: A systematic review. Chem. Biol. Drug Des. 2023 102 6 1592 1603 10.1111/cbdd.14337 37665093
    [Google Scholar]
  117. Dawson T.M. Dawson V.L. Molecular pathways of neurodegeneration in Parkinson’s disease. Science 2003 302 5646 819 822 10.1126/science.1087753 14593166
    [Google Scholar]
  118. Exner N. Lutz A.K. Haass C. Winklhofer K.F. Mitochondrial dysfunction in Parkinson’s disease: Molecular mechanisms and pathophysiological consequences. EMBO J. 2012 31 14 3038 3062 10.1038/emboj.2012.170 22735187
    [Google Scholar]
  119. Ren K.D. Liu W.N. Tian J. Zhang Y.Y. Peng J.J. Zhang D. Li N.S. Yang J. Peng J. Luo X.J. Mitochondrial E3 ubiquitin ligase 1 promotes brain injury by disturbing mitochondrial dynamics in a rat model of ischemic stroke. Eur. J. Pharmacol. 2019 861 172617 10.1016/j.ejphar.2019.172617 31430457
    [Google Scholar]
  120. Park J.H. Burgess J.D. Faroqi A.H. DeMeo N.N. Fiesel F.C. Springer W. Delenclos M. McLean P.J. Alpha-synuclein-induced mitochondrial dysfunction is mediated via a sirtuin 3-dependent pathway. Mol. Neurodegener. 2020 15 1 5 10.1186/s13024‑019‑0349‑x 31931835
    [Google Scholar]
  121. Braidy N. Gai W.P. Xu Y.H. Sachdev P. Guillemin G.J. Jiang X.M. Ballard J.W.O. Horan M.P. Fang Z.M. Chong B.H. Chan D.Y. Uptake and mitochondrial dysfunction of alpha-synuclein in human astrocytes, cortical neurons and fibroblasts. Transl. Neurodegener. 2013 2 1 20 10.1186/2047‑9158‑2‑20 24093918
    [Google Scholar]
  122. Reeve A.K. Ludtmann M.H. Angelova P.R. Simcox E.M. Horrocks M.H. Klenerman D. Gandhi S. Turnbull D.M. Abramov A.Y. Aggregated α-synuclein and complex I deficiency: Exploration of their relationship in differentiated neurons. Cell Death Dis. 2015 6 7 1820 10.1038/cddis.2015.166 26181201
    [Google Scholar]
  123. Hauser D.N. Hastings T.G. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease and monogenic parkinsonism. Neurobiol. Dis. 2013 51 35 42 10.1016/j.nbd.2012.10.011 23064436
    [Google Scholar]
  124. Matsuda S. Kitagishi Y. Kobayashi M. Function and characteristics of PINK1 in mitochondria. Oxid. Med. Cell. Longev. 2013 2013 1 6 10.1155/2013/601587 23533695
    [Google Scholar]
  125. Murtaza M. Shan J. Matigian N. Todorovic M. Cook A.L. Ravishankar S. Dong L.F. Neuzil J. Silburn P. Mackay-Sim A. Mellick G.D. Wood S.A. Rotenone susceptibility phenotype in olfactory derived patient cells as a model of idiopathic parkinson’s disease. PLoS One 2016 11 4 0154544 10.1371/journal.pone.0154544 27123847
    [Google Scholar]
  126. Abrahams S. Miller H.C. Lombard C. van der Westhuizen F.H. Bardien S. Curcumin pre-treatment may protect against mitochondrial damage in LRRK2-mutant Parkinson’s disease and healthy control fibroblasts. Biochem. Biophys. Rep. 2021 27 101035 10.1016/j.bbrep.2021.101035 34189277
    [Google Scholar]
  127. Melo T.Q. van Zomeren K.C. Ferrari M.F.R. Boddeke H.W.G.M. Copray J.C.V.M. Impairment of mitochondria dynamics by human A53T α-synuclein and rescue by NAP (davunetide) in a cell model for Parkinson’s disease. Exp. Brain Res. 2017 235 3 731 742 10.1007/s00221‑016‑4836‑9 27866262
    [Google Scholar]
  128. Di Maio R. Barrett P.J. Hoffman E.K. Barrett C.W. Zharikov A. Borah A. Hu X. McCoy J. Chu C.T. Burton E.A. Hastings T.G. Greenamyre J.T. α-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson’s disease. Sci. Transl. Med. 2016 8 342 342ra78 10.1126/scitranslmed.aaf3634 27280685
    [Google Scholar]
  129. Burbulla L.F. Krebiehl G. Krüger R. Balance is the challenge – The impact of mitochondrial dynamics in Parkinson’s disease. Eur. J. Clin. Invest. 2010 40 11 1048 1060 10.1111/j.1365‑2362.2010.02354.x 20735469
    [Google Scholar]
  130. Tysnes O.B. Storstein A. Epidemiology of parkinson’s disease. J. Neural Transm. 2017 124 8 901 905 10.1007/s00702‑017‑1686‑y 28150045
    [Google Scholar]
  131. Winkler-Stuck K. Kirches E. Mawrin C. Dietzmann K. Lins H. Wallesch C.W. Kunz W.S. Wiedemann F.R. Re-evaluation of the dysfunction of mitochondrial respiratory chain in skeletal muscle of patients with Parkinson?s disease. J. Neural Transm. 2005 112 4 499 518 10.1007/s00702‑004‑0195‑y 15340872
    [Google Scholar]
  132. Kraytsberg Y. Kudryavtseva E. McKee A.C. Geula C. Kowall N.W. Khrapko K. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat. Genet. 2006 38 5 518 520 10.1038/ng1778 16604072
    [Google Scholar]
  133. Dai Y. Clark J. Zheng K. Kujoth G.C. Prolla T.A. Simon D.K. Somatic mitochondrial DNA mutations do not increase neuronal vulnerability to MPTP in young POLG mutator mice. Neurotoxicol. Teratol. 2014 46 62 67 10.1016/j.ntt.2014.10.004 25450660
    [Google Scholar]
  134. Zheng Q. Liu H. Zhang H. Han Y. Yuan J. Wang T. Gao Y. Li Z. Ameliorating mitochondrial dysfunction of neurons by biomimetic targeting nanoparticles mediated mitochondrial biogenesis to boost the therapy of parkinson’s disease. Adv. Sci. 2023 10 22 2300758 10.1002/advs.202300758 37202595
    [Google Scholar]
  135. Yano H. Baranov S.V. Baranova O.V. Kim J. Pan Y. Yablonska S. Carlisle D.L. Ferrante R.J. Kim A.H. Friedlander R.M. Inhibition of mitochondrial protein import by mutant huntingtin. Nat. Neurosci. 2014 17 6 822 831 10.1038/nn.3721 24836077
    [Google Scholar]
  136. Guo X. Disatnik M.H. Monbureau M. Shamloo M. Mochly-Rosen D. Qi X. Inhibition of mitochondrial fragmentation diminishes Huntington’s disease–associated neurodegeneration. J. Clin. Invest. 2013 123 12 5371 5388 10.1172/JCI70911 24231356
    [Google Scholar]
  137. Rahman M.M. Tumpa M.A.A. Rahaman M.S. Islam F. Sutradhar P.R. Ahmed M. Alghamdi B.S. Hafeez A. Alexiou A. Perveen A. Ashraf G.M. Emerging promise of therapeutic approaches targeting mitochondria in neurodegenerative disorders. Curr. Neuropharmacol. 2023 21 5 1081 1099 10.2174/1570159X21666230316150559 36927428
    [Google Scholar]
  138. Reddy P.H. Shirendeb U. Biochimica Et biophysica acta (Bba) -. Molec Basis Dis. 2012 1822 2 101 110 10.1016/j.bbadis.2011.10.016
    [Google Scholar]
  139. Golpich M. Amini E. Mohamed Z. Azman Ali R. Mohamed Ibrahim N. Ahmadiani A. Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: Pathogenesis and treatment. CNS Neurosci. Ther. 2017 23 1 5 22 10.1111/cns.12655 27873462
    [Google Scholar]
  140. Moreira P.I. Zhu X. Wang X. Lee H. Nunomura A. Petersen R.B. Perry G. Smith M.A. Mitochondria: A therapeutic target in neurodegeneration. Biochim. Biophys. Acta Mol. Basis Dis. 2010 1802 1 212 220 10.1016/j.bbadis.2009.10.007
    [Google Scholar]
  141. Brennan W.A. Bird E.D. Aprille J.R. Regional mitochondrial respiratory activity in Huntington’s disease brain. J. Neurochem. 1985 44 6 1948 1950 10.1111/j.1471‑4159.1985.tb07192.x 2985766
    [Google Scholar]
  142. Gu M. Gash M.T. Mann V.M. Javoy-Agid F. Cooper J.M. Schapira A.H.V. Mitochondrial defect in Huntington’s disease caudate nucleus. Ann. Neurol. 1996 39 3 385 389 10.1002/ana.410390317 8602759
    [Google Scholar]
  143. Gardiner S.L. Milanese C. Boogaard M.W. Buijsen R.A.M. Hogenboom M. Roos R.A.C. Mastroberardino P.G. van Roon-Mom W.M.C. Aziz N.A. Bioenergetics in fibroblasts of patients with Huntington disease are associated with age at onset. Neurol. Genet. 2018 4 5 275 10.1212/NXG.0000000000000275 30338295
    [Google Scholar]
  144. Jurcau A. Jurcau C. Mitochondria in Huntington’s disease: Implications in pathogenesis and mitochondrial-targeted therapeutic strategies. Neural Regen. Res. 2023 18 7 1472 1477 10.4103/1673‑5374.360289 36571344
    [Google Scholar]
  145. Yonutas H.M. Pandya J.D. Sullivan P.G. Changes in mitochondrial bioenergetics in the brain versus spinal cord become more apparent with age. J. Bioenerg. Biomembr. 2015 47 1-2 149 154 10.1007/s10863‑014‑9593‑5 25472025
    [Google Scholar]
  146. Liu F. Lu J. Manaenko A. Tang J. Hu Q. Mitochondria in Ischemic Stroke: New Insight and Implications. Aging Dis. 2018 9 5 924 937 10.14336/AD.2017.1126 30271667
    [Google Scholar]
  147. Gibbs W.S. Weber R.A. Schnellmann R.G. Adkins D.L. Disrupted mitochondrial genes and inflammation following stroke. Life Sci. 2016 166 139 148 10.1016/j.lfs.2016.09.021 27693381
    [Google Scholar]
  148. Zhao Y. Song C. Wang H. Gai C. Li T. Cheng Y. Liu J. Song Y. Luo Q. Gu B. Liu W. Chai L. Liu D. Wang Z. Polydopamine-cloaked nanoarchitectonics of prussian blue nanoparticles promote functional recovery in neonatal and adult ischemic stroke models. Biomater Res. 2024 28 0079 10.34133/bmr.0079
    [Google Scholar]
  149. Zhang Y. Zhang H. Zhao F. Jiang Z. Cui Y. Ou M. Mei L. Wang Q. Mitochondrial-targeted and ROS-responsive nanocarrier via nose-to-brain pathway for ischemic stroke treatment. Acta Pharm. Sin. B 2023 13 12 5107 5120 10.1016/j.apsb.2023.06.011 38045064
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266397447250723073446
Loading
/content/journals/ctmc/10.2174/0115680266397447250723073446
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test