Skip to content
2000
image of Impact of IDH Mutations on Ligand Unbinding: Insights from Steered Molecular Dynamics

Abstract

Aim

This study explores the unbinding dynamics of alpha-ketoglutarate (AKG) from wild-type and mutant IDH1/IDH2 enzymes through steered molecular dynamics (SMD) simulations, examining how mutations influence binding, stability and enzymatic behaviour.

Background

Isocitrate dehydrogenase (IDH) enzymes are essential for cellular metabolism, catalyzing the conversion of isocitrate to AKG in the tricarboxylic acid cycle. Mutations in IDH1 and IDH2 lead to the aberrant accumulation of the oncometabolite 2-hydroxyglutarate (2-HG), disrupting normal metabolic processes and contributing to tumorigenesis.

Methods

SMD simulations were employed to investigate AKG unbinding from both wild-type and mutant IDH1/IDH2. External forces were applied to quantify rupture forces and assess differences in stability among enzyme variants.

Results

Wild-type IDH1 exhibited strong and stable AKG interactions, reflected by higher rupture forces and a greater number of hydrogen bonds, consistent with its normal catalytic function. In contrast, the R132H mutation in IDH1 weakened AKG binding, facilitating dissociation and potentially promoting 2-HG formation. Among IDH2 variants, the R140Q mutant demonstrated lower binding stability compared to R172K, while the wild-type enzyme maintained stronger interactions.

Conclusion

Mutations in IDH1 and IDH2 disrupt AKG binding and alter the stability, which may contribute to the pathological accumulation of 2-HG. These findings provide molecular insights into the oncogenic effects of IDH mutations and may aid in the development of targeted therapeutic strategies to inhibit mutant enzyme activity in cancer.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266358471250714090015
2025-07-24
2025-09-13
Loading full text...

Full text loading...

References

  1. Anand P. Kunnumakara A.B. Sundaram C. Harikumar K.B. Tharakan S.T. Lai O.S. Sung B. Aggarwal B.B. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res. 2008 25 9 2097 2116 10.1007/s11095‑008‑9661‑9 18626751
    [Google Scholar]
  2. Theories of carcinogenesis: An emerging perspective. Sonnenschein, C.; Soto, A.M., Eds.; Semin Cancer Biol. 2008 18 5 372 10.1016/j.semcancer.2008.03.012.
    [Google Scholar]
  3. Losman J.A. Kaelin W.G. What a difference a hydroxyl makes: Mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev. 2013 27 8 836 852 10.1101/gad.217406.113 23630074
    [Google Scholar]
  4. Szent-Györgyi A. The living state and cancer. Proc. Natl. Acad. Sci. USA 1977 74 7 2844 2847 10.1073/pnas.74.7.2844 268635
    [Google Scholar]
  5. Warburg O. Wind F. Negelein E. The metabolism of tumors in the body. J. Gen. Physiol. 1927 8 6 519 530 10.1085/jgp.8.6.519 19872213
    [Google Scholar]
  6. Raimundo N. Baysal B.E. Shadel G.S. Revisiting the TCA cycle: Signaling to tumor formation. Trends Mol. Med. 2011 17 11 641 649 10.1016/j.molmed.2011.06.001 21764377
    [Google Scholar]
  7. Menendez Menendez J. Alarcón T. Joven J. Gerometabolites: The pseudohypoxic aging side of cancer oncometabolites. Cell Cycle 2014 13 5 699 709 10.4161/cc.28079 24526120
    [Google Scholar]
  8. Nam H. Campodonico M. Bordbar A. Hyduke D.R. Kim S. Zielinski D.C. Palsson B.O. A systems approach to predict oncometabolites via context-specific genome-scale metabolic networks. PLOS Comput. Biol. 2014 10 9 e1003837 10.1371/journal.pcbi.1003837 25232952
    [Google Scholar]
  9. Wallace D.C. The mitochondrial genome in human adaptive radiation and disease: On the road to therapeutics and performance enhancement. Gene 2005 354 169 180 10.1016/j.gene.2005.05.001 16024186
    [Google Scholar]
  10. Mitochondria in cancer: Not just innocent bystanders. Frezza, C.; Gottlieb, E., Eds.; Semin Cancer Biol. 2009 19 1 4 11 10.1016/j.semcancer.2008.11.008
    [Google Scholar]
  11. Gaude E. Frezza C. Defects in mitochondrial metabolism and cancer. Cancer Metab. 2014 2 1 10 10.1186/2049‑3002‑2‑10 25057353
    [Google Scholar]
  12. Wu F. Jiang H. Zheng B. Kogiso M. Yao Y. Zhou C. Li X.N. Song Y. Inhibition of cancer-associated mutant isocitrate dehydrogenases by 2-thiohydantoin compounds. J. Med. Chem. 2015 58 17 6899 6908 10.1021/acs.jmedchem.5b00684 26280302
    [Google Scholar]
  13. Geisbrecht B.V. Gould S.J. The human PICD gene encodes a cytoplasmic and peroxisomal NADP(+)-dependent isocitrate dehydrogenase. J. Biol. Chem. 1999 274 43 30527 30533 10.1074/jbc.274.43.30527 10521434
    [Google Scholar]
  14. Yoshihara T. Hamamoto T. Munakata R. Tajiri R. Ohsumi M. Yokota S. Localization of cytosolic NADP-dependent isocitrate dehydrogenase in the peroxisomes of rat liver cells: Biochemical and immunocytochemical studies. J. Histochem. Cytochem. 2001 49 9 1123 1131 10.1177/002215540104900906 11511681
    [Google Scholar]
  15. Yang H. Ye D. Guan K.L. Xiong Y. IDH1 and IDH2 mutations in tumorigenesis: Mechanistic insights and clinical perspectives. Clin. Cancer Res. 2012 18 20 5562 5571 10.1158/1078‑0432.CCR‑12‑1773 23071358
    [Google Scholar]
  16. Norsworthy K.J. Luo L. Hsu V. Gudi R. Dorff S.E. Przepiorka D. Deisseroth A. Shen Y.L. Sheth C.M. Charlab R. Williams G.M. Goldberg K.B. Farrell A.T. Pazdur R. FDA approval summary: Ivosidenib for relapsed or refractory acute myeloid leukemia with an isocitrate dehydrogenase-1 mutation. Clin. Cancer Res. 2019 25 11 3205 3209 10.1158/1078‑0432.CCR‑18‑3749 30692099
    [Google Scholar]
  17. Myers R.A. Wirth S. Williams S. Kiel P.J. Enasidenib: an oral IDH2 inhibitor for the treatment of acute myeloid leukemia. J. Adv. Pract. Oncol. 2018 9 4 435 440 30719396
    [Google Scholar]
  18. Tawfik H.O. Mousa M.H.A. Zaky M.Y. El-Dessouki A.M. Sharaky M. Abdullah O. El-Hamamsy M.H. Al-Karmalawy A.A. Rationale design of novel substituted 1,3,5-triazine candidates as dual IDH1(R132H)/IDH2(R140Q) inhibitors with high selectivity against acute myeloid leukemia: In vitro and in vivo preclinical investigations. Bioorg. Chem. 2024 149 107483 10.1016/j.bioorg.2024.107483 38805913
    [Google Scholar]
  19. Mellinghoff I.K. van den Bent M.J. Blumenthal D.T. Touat M. Peters K.B. Clarke J. Mendez J. Yust-Katz S. Welsh L. Mason W.P. Ducray F. Umemura Y. Nabors B. Holdhoff M. Hottinger A.F. Arakawa Y. Sepulveda J.M. Wick W. Soffietti R. Perry J.R. Giglio P. de la Fuente M. Maher E.A. Schoenfeld S. Zhao D. Pandya S.S. Steelman L. Hassan I. Wen P.Y. Cloughesy T.F. Vorasidenib in IDH1-or IDH2-mutant low-grade glioma. N. Engl. J. Med. 2023 389 7 589 601 10.1056/NEJMoa2304194 37272516
    [Google Scholar]
  20. Han S. Liu Y. Cai S.J. Qian M. Ding J. Larion M. Gilbert M.R. Yang C. IDH mutation in glioma: Molecular mechanisms and potential therapeutic targets. Br. J. Cancer 2020 122 11 1580 1589 10.1038/s41416‑020‑0814‑x 32291392
    [Google Scholar]
  21. Clark O. Yen K. Mellinghoff I.K. Molecular pathways: Isocitrate dehydrogenase mutations in cancer. Clin. Cancer Res. 2016 22 8 1837 1842 10.1158/1078‑0432.CCR‑13‑1333 26819452
    [Google Scholar]
  22. Xu W. Yang H. Liu Y. Yang Y. Wang P. Kim S.H. Ito S. Yang C. Wang P. Xiao M.T. Liu L. Jiang W. Liu J. Zhang J. Wang B. Frye S. Zhang Y. Xu Y. Lei Q. Guan K.L. Zhao S. Xiong Y. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 2011 19 1 17 30 10.1016/j.ccr.2010.12.014 21251613
    [Google Scholar]
  23. Prensner J.R. Chinnaiyan A.M. Metabolism unhinged: IDH mutations in cancer. Nat. Med. 2011 17 3 291 293 10.1038/nm0311‑291 21383741
    [Google Scholar]
  24. Montalban-Bravo G. DiNardo C.D. The role of IDH mutations in acute myeloid leukemia. Future Oncol. 2018 14 10 979 993 10.2217/fon‑2017‑0523 29543066
    [Google Scholar]
  25. Chowdhury R. Yeoh K.K. Tian Y.M. Hillringhaus L. Bagg E.A. Rose N.R. Leung I.K.H. Li X.S. Woon E.C.Y. Yang M. McDonough M.A. King O.N. Clifton I.J. Klose R.J. Claridge T.D.W. Ratcliffe P.J. Schofield C.J. Kawamura A. The oncometabolite 2‐hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep. 2011 12 5 463 469 10.1038/embor.2011.43 21460794
    [Google Scholar]
  26. Losman J.A. Koivunen P. Kaelin W.G. 2-Oxoglutarate-dependent dioxygenases in cancer. Nat. Rev. Cancer 2020 20 12 710 726 10.1038/s41568‑020‑00303‑3 33087883
    [Google Scholar]
  27. Gerçek M. Narang A. Körber M.I. Friedrichs K.P. Puthumana J.J. Ivannikova M. Al-Kazaz M. Cremer P. Baldridge A.S. Meng Z. Luedike P. Thomas J.D. Rudolph T.K. Geisler T. Rassaf T. Pfister R. Rudolph V. Davidson C.J. GLIDE Score. JACC Cardiovasc. Imaging 2024 17 7 729 742 10.1016/j.jcmg.2024.04.008 38842961
    [Google Scholar]
  28. Kumar S. Li M.S. Biomolecules under mechanical force. Phys. Rep. 2010 486 1-2 1 74 10.1016/j.physrep.2009.11.001
    [Google Scholar]
  29. Kouza M. Hu C.K. Li M.S. New force replica exchange method and protein folding pathways probed by force-clamp technique. J. Chem. Phys. 2008 128 4 045103 10.1063/1.2822272 18248010
    [Google Scholar]
  30. Carrion-Vazquez M. Li H. Lu H. Marszalek P.E. Oberhauser A.F. Fernandez J.M. The mechanical stability of ubiquitin is linkage dependent. Nat. Struct. Mol. Biol. 2003 10 9 738 743 10.1038/nsb965 12923571
    [Google Scholar]
  31. Petřek M. Otyepka M. Banáš P. Košinová P. Koča J. Damborský J. CAVER: A new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinformatics 2006 7 1 316 10.1186/1471‑2105‑7‑316 16792811
    [Google Scholar]
  32. Van Der Spoel D. Lindahl E. Hess B. Groenhof G. Mark A.E. Berendsen H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005 26 16 1701 1718 10.1002/jcc.20291 16211538
    [Google Scholar]
  33. Huang J. MacKerell A.D. CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem. 2013 34 25 2135 2145 10.1002/jcc.23354 23832629
    [Google Scholar]
  34. Mark P. Nilsson L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A 2001 105 43 9954 9960 10.1021/jp003020w
    [Google Scholar]
  35. Hockney R.W. Goel S.P. Eastwood J.W. Quiet high-resolution computer models of a plasma. J. Comput. Phys. 1974 14 2 148 158 10.1016/0021‑9991(74)90010‑2
    [Google Scholar]
  36. Hess B. Bekker H. Berendsen H.J.C. Fraaije J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997 18 12 1463 1472 10.1002/(SICI)1096‑987X(199709)18:12<1463:AID‑JCC4>3.0.CO;2‑H
    [Google Scholar]
  37. Darden T. York D. Pedersen L. Particle mesh Ewald: An N ⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993 98 12 10089 10092 10.1063/1.464397
    [Google Scholar]
  38. Berendsen H.J.C. Postma J.P.M. van Gunsteren W.F. DiNola A. Haak J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984 81 8 3684 3690 10.1063/1.448118
    [Google Scholar]
  39. Parrinello M. Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981 52 12 7182 7190 10.1063/1.328693
    [Google Scholar]
  40. Mai B.K. Viet M.H. Li M.S. Top leads for swine influenza A/H1N1 virus revealed by steered molecular dynamics approach. J. Chem. Inf. Model. 2010 50 12 2236 2247 10.1021/ci100346s 21090736
    [Google Scholar]
  41. Genheden S. Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 2015 10 5 449 461 10.1517/17460441.2015.1032936 25835573
    [Google Scholar]
  42. Roos K. Wu C. Damm W. Reboul M. Stevenson J.M. Lu C. Dahlgren M.K. Mondal S. Chen W. Wang L. Abel R. Friesner R.A. Harder E.D. OPLS3e: Extending force field coverage for drug-like small molecules. J. Chem. Theory Comput. 2019 15 3 1863 1874 10.1021/acs.jctc.8b01026 30768902
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266358471250714090015
Loading
/content/journals/ctmc/10.2174/0115680266358471250714090015
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: binding affinity ; MM/GBSA ; mutations ; Isocitrate dehydrogenase ; steered molecular dynamics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test