Skip to content
2000
image of Exploring Therapeutic Potential of Emblica officinalis (Amla) Against Streptozotocin-Induced Diabetic Nephropathy in Wistar Rats

Abstract

Introduction

Diabetic nephropathy is a common microvascular complication that affects 20-40% of individuals with diabetes worldwide. This study aimed to evaluate the therapeutic potential of amla fruit against streptozotocin-induced diabetic nephropathy using animal models.

Methods

The male Wistar rats procured for the study were divided into four groups randomly, G1 (negative control group), G2 (positive control group), G3 (rats receiving amla powder at 5% of their diet), and G4 (rats receiving amla powder at 7% of their diet). Diabetic nephropathy (DN) was induced using streptozotocin at a dose of 65 mg/kg. High-performance liquid chromatography (HPLC) was used to quantify the bioactive constituents of amla. Physical, glycemic, oxidative, inflammatory, and renal biomarkers were assessed periodically.

Results

HPLC analysis confirmed the presence of high levels of vitamin C, gallic acid, and quercetin in amla. Amla supplementation significantly improved body weight, controlled kidney hypertrophy, reduced blood glucose levels, enhanced antioxidant enzyme activity such as superoxide dismutase (SOD) and catalase (CAT), and suppressed inflammatory cytokines. Renal function markers, including serum creatinine, blood urea nitrogen (BUN), and urine albumin, were significantly improved in the amla-treated groups. The 5% amla diet showed slightly superior effects compared to the 7% amla diet, although the differences were not statistically significant.

Discussion

The findings suggested that amla mitigates DN progression by targeting key pathological pathways, particularly oxidative stress and inflammation. Its bioactive compounds appear to modulate glucose homeostasis, restore antioxidant defence, and reduce inflammatory responses. The findings also suggested a potential non-linear dose-response relationship, indicating 5% as a more effective dietary inclusion.

Conclusion

Conclusively, amla fruit effectively alleviated streptozotocin-induced diabetic nephropathy in rats by controlling oxidative stress, inflammation, and hyperglycemia.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266387196250714050937
2025-07-24
2025-09-12
Loading full text...

Full text loading...

References

  1. Deng W. Zhao L. Chen C. Ren Z. Jing Y. Qiu J. Liu D. National burden and risk factors of diabetes mellitus in China from 1990 to 2021: Results from the Global Burden of Disease study 2021. J. Diabetes 2024 16 10 e70012 10.1111/1753‑0407.70012 39373380
    [Google Scholar]
  2. Zhang J. Liu J. Qin X. Advances in early biomarkers of diabetic nephropathy. Rev. Assoc. Med. Bras. 2018 64 1 85 92 10.1590/1806‑9282.64.01.85 29561946
    [Google Scholar]
  3. Sulaiman M.K. Diabetic nephropathy: Recent advances in pathophysiology and challenges in dietary management. Diabetol. Metab. Syndr. 2019 11 1 7 10.1186/s13098‑019‑0403‑4 30679960
    [Google Scholar]
  4. Sagoo M.K. Gnudi L. Diabetic nephropathy: An overview. Methods Mol. Biol. 2020 2067 3 7 10.1007/978‑1‑4939‑9841‑8_1 31701441
    [Google Scholar]
  5. Lin C.H. Shih C.C. The ethyl acetate extract of Phyllanthus emblica L. alleviates diabetic nephropathy in a murine model of diabetes. Int. J. Mol. Sci. 2024 25 12 6686 10.3390/ijms25126686 38928391
    [Google Scholar]
  6. Deng Y. Li N. Wu Y. Wang M. Yang S. Zheng Y. Deng X. Xiang D. Zhu Y. Xu P. Zhai Z. Zhang D. Dai Z. Gao J. Global, regional, and national burden of diabetes-related chronic kidney disease from 1990 to 2019. Front. Endocrinol. (Lausanne) 2021 12 672350 10.3389/fendo.2021.672350 34276558
    [Google Scholar]
  7. Zawada A. Machowiak A. Rychter A.M. Ratajczak A.E. Szymczak-Tomczak A. Dobrowolska A. Krela-Kaźmierczak I. Accumulation of advanced glycation end-products in the body and dietary habits. Nutrients 2022 14 19 3982 10.3390/nu14193982 36235635
    [Google Scholar]
  8. Pandey S. Metabolomics characterization of disease markers in diabetes and its associated pathologies. Metab. Syndr. Relat. Disord. 2024 22 7 499 509 10.1089/met.2024.0038 38778629
    [Google Scholar]
  9. Jin Q. Liu T. Qiao Y. Liu D. Yang L. Mao H. Ma F. Wang Y. Peng L. Zhan Y. Oxidative stress and inflammation in diabetic nephropathy: role of polyphenols. Front. Immunol. 2023 14 1185317 10.3389/fimmu.2023.1185317 37545494
    [Google Scholar]
  10. Sanchez-Alamo B. Shabaka A. Cachofeiro V. Cases-Corona C. Fernandez-Juarez G. Serum interleukin-6 levels predict kidney disease progression in diabetic nephropathy. Clin. Nephrol. 2022 97 1 1 9 10.5414/CN110223 34753557
    [Google Scholar]
  11. El-Tahir F. Esh A. Ghorab A. Shendi A.M. Chemerin, TNF − α and the degree of albuminuria in patients with diabetic kidney disease. Cytokine 2024 184 156772 10.1016/j.cyto.2024.156772 39366065
    [Google Scholar]
  12. Shahin D.H.H. Sultana R. Farooq J. Taj T. Khaiser U.F. Alanazi N.S.A. Alshammari M.K. Alshammari M.N. Alsubaie F.H. Asdaq S.M.B. Alotaibi A.A. Alamir A.A. Imran M. Jomah S. Insights into the uses of traditional plants for diabetes nephropathy: A review. Curr. Issues Mol. Biol. 2022 44 7 2887 2902 10.3390/cimb44070199 35877423
    [Google Scholar]
  13. Tewari R. Kumar V. Sharma H.K. Thermal and nonthermal processing of an underutilized fruit Emblica officinalis (Amla): A sustainable approach. Sustainable Food Technol. 2023 1 5 658 680 10.1039/D3FB00058C
    [Google Scholar]
  14. Muzaffar K. Sofi S.A. Makroo H.A. Darakshan Majid; Dar, B.N. Insight about the biochemical composition, postharvest processing, therapeutic potential of Indian gooseberry (amla), and its utilization in development of functional foods—A comprehensive review. J. Food Biochem. 2022 46 11 e14132 10.1111/jfbc.14132 35342961
    [Google Scholar]
  15. Li H. Liu X. Lee M.H. Li H. Vitamin C alleviates hyperuricemia nephropathy by reducing inflammation and fibrosis. J. Food Sci. 2021 86 7 3265 3276 10.1111/1750‑3841.15803 34160066
    [Google Scholar]
  16. Moradi A. Abolfathi M. Javadian M. Heidarian E. Roshanmehr H. Khaledi M. Nouri A. Gallic acid exerts nephroprotective, anti-oxidative stress, and anti-inflammatory effects against diclofenac-induced renal injury in malerats. Arch. Med. Res. 2021 52 4 380 388 10.1016/j.arcmed.2020.12.005 33358172
    [Google Scholar]
  17. Saikia L. Barbhuiya S.A.A. Saikia K. Kalita P. Dutta P.P. Therapeutic potential of quercetin in diabetic neuropathy and retinopathy: Exploring molecular mechanisms. Curr. Top. Med. Chem. 2024 24 27 2351 2361 10.2174/0115680266330678240821060623 39253913
    [Google Scholar]
  18. Modi R. Sahota P. Singh N.D. Garg M. Hepatoprotective and hypoglycemic effect of lactic acid fermented Indian Gooseberry-Amla beverage on chronic alcohol-induced liver damage and diabetes in rats. Food Hydrocoll. Health 2023 4 100155 10.1016/j.fhfh.2023.100155
    [Google Scholar]
  19. Almatroodi S.A. Alsahli M.A. Almatroudi A. Dev K. Rafat S. Verma A.K. Rahmani A.H. Amla (Emblica officinalis): Role in health management via controlling various biological activities. Gene Rep. 2020 21 100820 10.1016/j.genrep.2020.100820
    [Google Scholar]
  20. Arora M.K. Singh M. Tomar R. Singh L. Jangra A. Amla (Emblica Officinalis) alleviates doxorubicin-induced cardiotoxicity and nephrotoxicity in rats. - Mod. Chinese Med. 2024 11 100443
    [Google Scholar]
  21. Suryavanshi S.V. Garud M.S. Barve K. Addepalli V. Utpat S.V. Kulkarni Y.A. Triphala ameliorates nephropathy via inhi- bition of TGF-β1 and oxidative stress in diabetic rats. Pharmacology 2020 105 11-12 681 691 10.1159/000508238 32674108
    [Google Scholar]
  22. Sharif M.A. Khan A.M. Salekeen R. Rahman M.H. Mahmud S. Bibi S. Biswas P. Nazmul Hasan M. Islam K.M.D. Rahman S.M.M. Islam M.E. Alshammari A. Alharbi M. Hayee A. Phyllanthus emblica (Amla) methanolic extract regulates multiple checkpoints in 15-lipoxygenase mediated inflammopathies: Computational simulation and in vitro evidence. Saudi Pharm. J. 2023 31 8 101681 10.1016/j.jsps.2023.06.014 37576860
    [Google Scholar]
  23. Chahal A.K. Chandan G. Kumar R. Chhillar A.K. Saini A.K. Saini R.V. Bioactive constituents of Emblica officinalis overcome oxidative stress in mammalian cells by inhibiting hyperoxidation of peroxiredoxins. J. Food Biochem. 2020 44 2 e13115 10.1111/jfbc.13115 31821595
    [Google Scholar]
  24. Sharma S.S. Srinivas Bharath M.M. Doreswamy Y. Laxmi T.R. Effects of early life stress during stress hyporesponsive period (SHRP) on anxiety and curiosity in adolescent rats. Exp. Brain Res. 2022 240 4 1127 1138 10.1007/s00221‑022‑06319‑5 35141770
    [Google Scholar]
  25. Latif A. Issa Khan M. Rakha A. Ali Khan J. Evaluating the therapeutic potential of white button mushroom (Agaricus bisporus) against DMBA‐induced breast cancer in Sprague Dawley rats. J. Food Biochem. 2021 45 12 e13979 10.1111/jfbc.13979 34698374
    [Google Scholar]
  26. Saeed R.A. Khan M.I. Butt M.S. Faisal M.N. Phytochemical screening of Prunus avium for its antioxidative and anti-mutagenic potential against DMBA-induced hepatocarcinogenesis. Front. Nutr. 2023 10 1132356 10.3389/fnut.2023.1132356 37266135
    [Google Scholar]
  27. Althubyani S.A. The protective effects of Saudi propolis against hepatic injury induced by gold nanoparticles in adult male albino rats. Vet. World 2025 18 2 252 262 10.14202/vetworld.2025.252‑262 40182808
    [Google Scholar]
  28. Pakgohar A. Sample size calculation based on research approaches in animal studies. J. Biostat. Epidemiol. 2023 9 474 483
    [Google Scholar]
  29. ALTamimi J.Z. AlFaris N.A. Alshammari G.M. Alagal R.I. Aljabryn D.H. Aldera H. Alrfaei B.M. Alkhateeb M.A. Yahya M.A. Ellagic acid protects against diabetic nephropathy in rats by regulating the transcription and activity of Nrf2. J. Funct. Foods 2021 79 104397 10.1016/j.jff.2021.104397
    [Google Scholar]
  30. Baliga M.S. Shivashankara A.R. Thilakchand K.R. Baliga-Rao M.P. Palatty P.L. George T. Rao S. Hepatoprotective effects of the Indian Gooseberry (Emblica Officinalis Gaertn): A Revisit. In: Dietary Interventions in Liver Disease. Academic Press 2019 193 201 10.1016/B978‑0‑12‑814466‑4.00016‑1
    [Google Scholar]
  31. Rahman M.M. Ferdous K.U. Roy S. Nitul I.A. Mamun F. Hossain M.H. Subhan N. Alam M.A. Haque M.A. Polyphenolic compounds of amla prevent oxidative stress and fibrosis in the kidney and heart of 2K1C rats. Food Sci. Nutr. 2020 8 7 3578 3589 10.1002/fsn3.1640 32724620
    [Google Scholar]
  32. Peng Z. Li Z. Zhang Z. Liao J. Xie M. Xia Y. Xia C. Wang Z. Self-assembly method of glucose oxidase in a fully packaged microfluidic glucose biosensor. Chin. J. Anal. Chem. 2023 51 11 100329 10.1016/j.cjac.2023.100329
    [Google Scholar]
  33. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004 37 4 277 285 10.1016/j.clinbiochem.2003.11.015 15003729
    [Google Scholar]
  34. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 2005 38 12 1103 1111 10.1016/j.clinbiochem.2005.08.008 16214125
    [Google Scholar]
  35. Gündüz A.M. Demir H. Toprak N. Akdeniz H. Demir C. Arslan A. Göya C. The effect of computed tomography on oxidative stress level and some antioxidant parameters. Acta Radiol. 2021 62 2 260 265 10.1177/0284185120922135 32397734
    [Google Scholar]
  36. Kadhum M.A. Hadwan M.H. A precise and simple method for measuring catalase activity in biological samples. Chem. Pap. 2021 75 4 1669 1678 10.1007/s11696‑020‑01401‑0
    [Google Scholar]
  37. Yilgor A. Demir C. Determination of oxidative stress level and some antioxidant activities in refractory epilepsy patients. Sci. Rep. 2024 14 1 6688 10.1038/s41598‑024‑57224‑6 38509121
    [Google Scholar]
  38. Boss K. Stolpe S. Müller A. Wagner B. Wichert M. Assert R. Volbracht L. Stang A. Kowall B. Kribben A. Effect of serum creatinine difference between the Jaffe and the enzymatic method on kidney disease detection and staging. Clin. Kidney J. 2023 16 11 2147 2155 10.1093/ckj/sfad178 37915891
    [Google Scholar]
  39. Burtis C.A. Ashwood E.R. Bruns D.E. Tietz Textbook of Clinical Chemistry and Molecular Diagnostics. 5th ed Philadelphia W.B. Saunders 2012
    [Google Scholar]
  40. Mohammadi Y. Zangooei M. Zardast M. Mamashli M. Rezaei Farimani A. The effect of crocin and losartan on TGF-β gene expression and histopathology of kidney tissue in a rat model of diabetic nephropathy. Avicenna J. Phytomed. 2023 13 2 189 199 37333473
    [Google Scholar]
  41. Mokhtari T. Hussein Osman H.E. El-Meghawry El-Kenawy A. Dashti N. Ameliorative effect of virgin olive oil against nephrotoxicity following sub-chronic administration of ethephon in male rats. J. Tradit. Complement. Med. 2020 10 5 487 495 10.1016/j.jtcme.2019.08.005 32953565
    [Google Scholar]
  42. Montgomery D.C. Design and Analysis of Experiments. 9th ed Hoboken, NJ, USA 2017
    [Google Scholar]
  43. Krishnaveni M. Mirunalini S. Chemopreventive efficacy of Phyllanthus emblica L. (amla) fruit extract on 7,12-dimethylbenz(a)anthracene induced oral carcinogenesis: A dose–response study. Environ. Toxicol. Pharmacol. 2012 34 3 801 810 10.1016/j.etap.2012.09.006 23058484
    [Google Scholar]
  44. Patil P. Killedar S. Chitosan and glyceryl monooleate nanostructures containing gallic acid isolated from amla fruit: targeted delivery system. Heliyon 2021 7 3 e06526 10.1016/j.heliyon.2021.e06526 33851042
    [Google Scholar]
  45. Usha T. Middha S.K. Goyal A.K. Lokesh P. Yardi V. Mojamdar L. Keni D.S. Babu D. Toxicological evaluation of Emblica officinalis fruit extract and its anti-inflammatory and free radical scavenging properties. Pharmacogn. Mag. 2015 11 44 427.(Suppl. 3) 10.4103/0973‑1296.168982 26929577
    [Google Scholar]
  46. Kumari P. Khatkar B.S. Duhan A. Aonla phytochemicals: Extraction, identification and quantification. J. Food Sci. Technol. 2019 56 4 2278 2286 10.1007/s13197‑019‑03716‑7 30996461
    [Google Scholar]
  47. Zaky A.A. Akram M.U. Rybak K. Witrowa-Rajchert D. Nowacka M. Zaky A.A. Akram M.U. Rybak K. Witrowa-Rajchert D. Nowacka M. Bioactive compounds from plants and by-products: Novel extraction methods, applications, and limitations. AIMS Mol. Sci. 2024 11 2 150 188 10.3934/molsci.2024010
    [Google Scholar]
  48. Hussain Lodhi A. Ahmad F.D. Furwa K. Madni A. Role of Oxidative stress and reduced endogenous hydrogen sulfide in diabetic nephropathy. Drug Des. Devel. Ther. 2021 15 1031 1043 10.2147/DDDT.S291591 33707940
    [Google Scholar]
  49. Mojadami S. Ahangarpour A. Mard S.A. Khorsandi L. Diabetic nephropathy induced by methylglyoxal: Gallic acid regulates kidney microRNAs and glyoxalase1–Nrf2 in male mice. Arch. Physiol. Biochem. 2023 129 3 655 662 10.1080/13813455.2020.1857775 33460343
    [Google Scholar]
  50. Badole S.L. Jangam G.B. Animal models of diabetic cardiomyopathy. Glucose Intake and Utilization in Pre-Diabetes and Diabetes. Elsevier Inc. 2015 181 190 10.1016/B978‑0‑12‑800093‑9.00014‑4
    [Google Scholar]
  51. Magalhães D.A.D. Kume W.T. Correia F.S. Queiroz T.S. Allebrandt Neto E.W. Santos M.P.D. Kawashita N.H. França S.A.D. High-fat diet and streptozotocin in the induction of type 2 diabetes mellitus: A new proposal. An. Acad. Bras. Cienc. 2019 91 1 e20180314 10.1590/0001‑3765201920180314
    [Google Scholar]
  52. Malone J.I. Hansen B.C. Does obesity cause type 2 diabetes mellitus (T2DM)? Or is it the opposite? Pediatr. Diabetes 2019 20 1 5 9 10.1111/pedi.12787 30311716
    [Google Scholar]
  53. Variya B.C. Bakrania A.K. Patel S.S. Antidiabetic potential of gallic acid from Emblica officinalis: Improved glucose transporters and insulin sensitivity through PPAR-γ and Akt signaling. Phytomedicine 2020 73 152906 10.1016/j.phymed.2019.152906 31064680
    [Google Scholar]
  54. Srinivasan P. Vijayakumar S. Kothandaraman S. Palani M. Anti-diabetic activity of quercetin extracted from Phyllanthus emblica L. fruit: In silico and in vivo approaches. J. Pharm. Anal. 2018 8 2 109 118 10.1016/j.jpha.2017.10.005 29736297
    [Google Scholar]
  55. Østergaard M.V. Sembach F.E. Skytte J.L. Roostalu U. Secher T. Overgaard A. Fink L.N. Vrang N. Jelsing J. Hecksher-Sørensen J. Automated image analyses of glomerular hypertrophy in a mouse model of diabetic nephropathy. Kidney360 2020 1 6 469 479 10.34067/KID.0001272019 35368599
    [Google Scholar]
  56. Zhang W. Liu C.Y. Ji L.N. Wang J.G. Blood pressure and glucose control and the prevalence of albuminuria and left ventricular hypertrophy in patients with hypertension and diabetes. J. Clin. Hypertens. 2020 22 2 212 220 10.1111/jch.13793 31944560
    [Google Scholar]
  57. Maity S. Das F. Kasinath B.S. Ghosh-Choudhury N. Ghosh Choudhury G. TGFβ acts through PDGFRβ to activate mTORC1 via the Akt/PRAS40 axis and causes glomerular mesangial cell hypertrophy and matrix protein expression. J. Biol. Chem. 2020 295 42 14262 14278 10.1074/jbc.RA120.014994 32732288
    [Google Scholar]
  58. Habib S.L. Kidney atrophy vs hypertrophy in diabetes: Which cells are involved? Cell Cycle 2018 17 14 1683 1687 10.1080/15384101.2018.1496744 29995580
    [Google Scholar]
  59. Gul M. Liu Z.W. Iahtisham-Ul-Haq; Rabail, R.; Faheem, F.; Walayat, N.; Nawaz, A.; Shabbir, M.A.; Munekata, P.E.S.; Lorenzo, J.M.; Aadil, R.M. Functional and nutraceutical significance of Amla (Phyllanthus emblica L.): A Review. Antioxidants 2022 11 5 816 10.3390/antiox11050816 35624683
    [Google Scholar]
  60. Cao Y.L. Lin J.H. Hammes H.P. Zhang C. Flavonoids in treatment of chronic kidney disease. Molecules 2022 27 7 2365 10.3390/molecules27072365 35408760
    [Google Scholar]
  61. Vodošek Hojs N. Bevc S. Ekart R. Hojs R. Oxidative stress markers in chronic kidney disease with emphasis on diabetic nephropathy. Antioxidants 2020 9 10 925 10.3390/antiox9100925 32992565
    [Google Scholar]
  62. Wu X.Q. Zhang D.D. Wang Y.N. Tan Y.Q. Yu X.Y. Zhao Y.Y. AGE/RAGE in diabetic kidney disease and ageing kidney. Free Radic. Biol. Med. 2021 171 260 271 10.1016/j.freeradbiomed.2021.05.025 34019934
    [Google Scholar]
  63. Ala M. Sestrin2 signaling pathway regulates podocyte biology and protects against diabetic nephropathy. J. Diabetes Res. 2023 2023 1 15 10.1155/2023/8776878 36818747
    [Google Scholar]
  64. Cheng Q. Pan J. Zhou Z. Yin F. Xie H. Chen P. Li J. Zheng P. Zhou L. Zhang W. Liu J. Lu L. Caspase-11/4 and gasdermin D-mediated pyroptosis contributes to podocyte injury in mouse diabetic nephropathy. Acta Pharmacol. Sin. 2021 42 6 954 963 10.1038/s41401‑020‑00525‑z 32968210
    [Google Scholar]
  65. Singh A.K. Rana H.K. Singh V. Chand Yadav T. Varadwaj P. Pandey A.K. Evaluation of antidiabetic activity of dietary phenolic compound chlorogenic acid in streptozotocin induced diabetic rats: Molecular docking, molecular dynamics, in silico toxicity, in vitro and in vivo studies. Comput. Biol. Med. 2021 134 104462 10.1016/j.compbiomed.2021.104462 34148008
    [Google Scholar]
  66. Ke R.Q. Wang Y. Hong S.H. Xiao L.X. Anti-diabetic effect of quercetin in type 2 diabetes mellitus by regulating the microRNA-92b-3p/EGR1 axis. J. Physiol. Pharmacol. 2023 74 2 149 158 37453091
    [Google Scholar]
  67. Tian J. Lian F. Tong X. Safety and effectiveness of different herbal medicine dosage of Gegen Qinlian Decoction in Chinese patients with type 2 diabetes: A double-blind, two-part, randomised controlled trial. Lancet Diabetes Endocrinol. 2016 4 S25 10.1016/S2213‑8587(16)30380‑1
    [Google Scholar]
  68. Ribeiro C.B. Ramos F.M. Manthey J.A. Cesar T.B. Effectiveness of Eriomin® in managing hyperglycemia and reversal of prediabetes condition: A double‐blind, randomized, controlled study. Phytother. Res. 2019 33 7 1921 1933 10.1002/ptr.6386 31183921
    [Google Scholar]
  69. Singh M.K. Dwivedi S. Yadav S.S. Yadav R.S. Khattri S. Anti-diabetic effect of Emblica-officinalis (Amla) against arsenic induced metabolic disorder in mice. Indian J. Clin. Biochem. 2020 35 2 179 187 10.1007/s12291‑019‑00820‑5 32226249
    [Google Scholar]
  70. Begum F. Lakshmanan K. Association of MnSOD, CAT, and GPx1 gene polymorphism with risk of diabetic nephropathy in south indian patients: A case–control study. Biochem. Genet. 2024 1 16 10.1007/s10528‑024‑10910‑6 39266926
    [Google Scholar]
  71. González P. Lozano P. Ros G. Solano F. Hyperglycemia and oxidative stress: An integral, updated and critical overview of their metabolic interconnections. Int. J. Mol. Sci. 2023 24 11 9352 10.3390/ijms24119352 37298303
    [Google Scholar]
  72. Naghdi A. Goodarzi M.T. Karimi J. Hashemnia M. Khodadadi I. Effects of curcumin and metformin on oxidative stress and apoptosis in heart tissue of type 1 diabetic rats. J. Cardiovasc. Thorac. Res. 2022 14 2 128 137 10.34172/jcvtr.2022.23 35935389
    [Google Scholar]
  73. Noor M. Panhwar S. Shaikh A.A. Ali Z. Brohi S. Meghwar S. Rehman S.U. Qualitative and quantitative photochemical analysis of amla (Emblica officinalis) and henna (Lawsonia inermis). Int. J. Environ. Sustain. Dev. 2023 22 2 194 209 10.1504/IJESD.2023.129885
    [Google Scholar]
  74. Almatroodi S.A. Alnuqaydan A.M. Babiker A.Y. Almogbel M.A. Khan A.A. Husain Rahmani A. 6-Gingerol, a bioactive compound of ginger attenuates renal damage in streptozotocin-induced diabetic rats by regulating the oxidative stress and inflammation. Pharmaceutics 2021 13 3 317 10.3390/pharmaceutics13030317 33670981
    [Google Scholar]
  75. Lee H. Kim M.J. Lee I.K. Hong C.W. Jeon J.H. Impact of hyperglycemia on immune cell function: A comprehensive review. Diabetol. Int. 2024 15 4 745 760 10.1007/s13340‑024‑00741‑6 39469566
    [Google Scholar]
  76. Araújo L.S. Torquato B.G.S. da Silva C.A. dos Reis Monteiro M.L.G. dos Santos Martins A.L.M. da Silva M.V. dos Reis M.A. Machado J.R. Renal expression of cytokines and chemokines in diabetic nephropathy. BMC Nephrol. 2020 21 1 308 10.1186/s12882‑020‑01960‑0 32723296
    [Google Scholar]
  77. Maheshwari S. Kumar V. Bhadauria G. Mishra A. Immunomodulatory potential of phytochemicals and other bioactive compounds of fruits: A review. Food Front. 2022 3 2 221 238 10.1002/fft2.129
    [Google Scholar]
  78. Wu Y. Li K. Zeng M. Qiao B. Zhou B. Serum Metabolomics analysis of the anti-inflammatory effects of gallic acid on rats with acute inflammation. Front. Pharmacol. 2022 13 830439 10.3389/fphar.2022.830439 35392557
    [Google Scholar]
  79. Doğan M.F. Kaya K. Demirel H.H. Başeğmez M. Şahin Y. Çiftçi O. The effect of vitamin C supplementation on favipiravir-induced oxidative stress and proinflammatory damage in livers and kidneys of rats. Immunopharmacol. Immunotoxicol. 2023 45 5 521 526 10.1080/08923973.2023.2181712 36794622
    [Google Scholar]
  80. Malik S. Suchal K. Bhatia J. Khan S.I. Vasisth S. Tomar A. Goyal S. Kumar R. Arya D.S. Ojha S.K. Therapeutic potential and molecular mechanisms of Emblica officinalis gaertn in countering nephrotoxicity in rats induced by the chemotherapeutic agent cisplatin. Front. Pharmacol. 2016 7 350 10.3389/fphar.2016.00350 27752245
    [Google Scholar]
  81. Kotake Y. Karashima S. Kawakami M. Hara S. Aono D. Konishi S. Kometani M. Mori H. Takeda Y. Yoneda T. Nambo H. Furukawa K. Impact of salt intake on urinary albumin excretion in patients with type 2 diabetic nephropathy: A retrospective cohort study based on a generalized additive model. Endocr. J. 2022 69 5 577 583 10.1507/endocrj.EJ21‑0447 34937811
    [Google Scholar]
  82. Muthu P.R. Bobby Z. Sankar P. Vickneshwaran V. Jacob S.E. Amla (Emblica officinalis) improves hepatic and renal oxidative stress and the inflammatory response in hypothyroid female wistar rats fed with a high-fat diet. J. Basic Clin. Physiol. Pharmacol. 2018 29 2 175 184 10.1515/jbcpp‑2017‑0116 29267168
    [Google Scholar]
  83. He S. Chinese herbal dose in ancient and modern times: A comparative study. J. Tradit. Chin. Med. 2013 33 2 268 271 10.1016/S0254‑6272(13)60138‑7 23789230
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266387196250714050937
Loading
/content/journals/ctmc/10.2174/0115680266387196250714050937
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test