Skip to content
2000
image of Preliminary Study on GZMA- and GSDMB-Associated Pyroptosis and CD8+ T Cell-Mediated Immune Evasion in Skin Cutaneous Melanoma

Abstract

Background

Skin cutaneous melanoma (SKCM) is a life-threatening malignancy, and pyroptosis-mediated inflammatory response is associated with SKCM progression. We aimed to uncover the underlying pathogenesis of SKCM based on pyroptosis features.

Method

The single-cell and bulk RNA-seq data and clinical information of SKCM patients were downloaded from the TCGA and GEO databases, and the REACTOME_PYROPTOSIS.v2024.1.Hs.gmt from the MSigDB database was used for Gene Set Enrichment Analysis (GSEA). Differentially expressed gene (DEG) analysis was performed utilizing the “limma” R package, and the “GSVA” R package was used for the analysis of pyroptosis pathway activation. In addition, scRNA-seq analysis and cell communication analysis were carried out by employing the “Seurat” R package and “CellChat” R package, respectively. Gene expression was measured using quantitative reverse transcription polymerase chain reaction (qRT-PCR), while cell counting kit-8 (CCK-8), wound healing, and Transwell assays were carried out to assess cell proliferation, migration, and invasion, respectively.

Results

DEGs analysis detected no significant pyroptosis-related DEGs. Analysis of the expression of two representative pyroptosis genes ( and ) revealed that was significantly upregulated in the SKCM tissues, but the expression of was downregulated. The pyroptosis pathway was not activated in the tumor group. In addition, we observed that high expression of and was closely associated with a favorable outcome in SKCM. The two genes were downregulated in SKCM cells, while the overexpression of significantly impaired the proliferation, migration, and invasion ability of SKCM cells. Nine main cell subpopulations were identified, and was specifically overexpressed in CD8+ T cells. Gene function analysis revealed that specific genes of CD8+ T cells were enriched in cell death-related and inflammation activation pathways. Cell communication demonstrated that CD8+ T cells interacted with melanocytes through the CD99-CD99 and HLA-C-KIR2DL3 ligand-receptor pairs.

Conclusion

Based on the pyroptosis features in SKCM, this study found that blocking GZMA protein in CD8+ T cells within melanocytes may be the potential underlying pathogenesis for tumor immune escape in cancer.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266416033250731102049
2025-07-31
2025-09-13
Loading full text...

Full text loading...

References

  1. Song W.M. Agrawal P. Von Itter R. Fontanals-Cirera B. Wang M. Zhou X. Mahal L.K. Hernando E. Zhang B. Network models of primary melanoma microenvironments identify key melanoma regulators underlying prognosis. Nat. Commun. 2021 12 1 1214 10.1038/s41467‑021‑21457‑0 33619278
    [Google Scholar]
  2. Zhu M. Tianyi X.U. Zhang H. Fan X. Wang Y. Zhang J. Characterization of prognosis and immune infiltration by a novel glutamine metabolism-related model in cutaneous melanoma. Biocell 2023 47 9 1931 1945 10.32604/biocell.2023.028968
    [Google Scholar]
  3. Zhang C. Chen H.J.O. A lipid metabolism-related gene model reveals the prognosis and immune microenvironment of cutaneous melanoma. Oncol. 2024 26 5 729 742 10.1515/oncologie‑2024‑0202
    [Google Scholar]
  4. Carr S. Smith C. Wernberg J. Epidemiology and risk factors of melanoma. Surg. Clin. North Am. 2020 100 1 1 12 10.1016/j.suc.2019.09.005 31753105
    [Google Scholar]
  5. Xu J. Liu W. Liu X. Zhou X. Li G. Alcohol drinking, smoking, and cutaneous melanoma risk: Mendelian randomization analysis. Gac. Sanit. 2023 37 102351 10.1016/j.gaceta.2023.102351 38052122
    [Google Scholar]
  6. Gandini S. Masala G. Palli D. Cavicchi B. Saieva C. Ermini I. Baldini F. Gnagnarella P. Caini S. Alcohol, alcoholic beverages, and melanoma risk: A systematic literature review and dose–response meta-analysis. Eur. J. Nutr. 2018 57 7 2323 2332 10.1007/s00394‑018‑1613‑5 29327230
    [Google Scholar]
  7. Ji Z.H. Ren W.Z. Yang S. Wang D.X. Jiang Z.P. Lin C. Jin Y. Tian W.T. Identification of immune-related biomarkers associated with tumorigenesis and prognosis in skin cutaneous melanoma. Am. J. Cancer Res. 2022 12 4 1727 1739 35530289
    [Google Scholar]
  8. Ding X. Wang W. Tao X. Li Z. Huang Y. Construction of a novel prognostic model in skin cutaneous melanoma based on chemokines-related gene signature. Sci. Rep. 2023 13 1 18172 10.1038/s41598‑023‑44598‑2 37875556
    [Google Scholar]
  9. Lin X. Hessenow R. Yang S. Ma D. Yang S. A seven-immune-genes risk model predicts the survival and suitable treatments for patients with skin cutaneous melanoma. Heliyon 2023 9 9 20234 10.1016/j.heliyon.2023.e20234 37809963
    [Google Scholar]
  10. Rastrelli M. Tropea S. Rossi C.R. Alaibac M. Melanoma: Epidemiology, risk factors, pathogenesis, diagnosis and classification. In Vivo 2014 28 6 1005 1011 25398793
    [Google Scholar]
  11. Berk-Krauss J. Stein J.A. Weber J. Polsky D. Geller A.C. New systematic therapies and trends in cutaneous melanoma deaths among US whites, 1986–2016. Am. J. Public Health 2020 110 5 731 733 10.2105/AJPH.2020.305567 32191523
    [Google Scholar]
  12. Wei S.C. Duffy C.R. Allison J.P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 2018 8 9 1069 1086 10.1158/2159‑8290.CD‑18‑0367 30115704
    [Google Scholar]
  13. Liu G. Zhang T. Gui D. Liu Q. Clinical significance and immune landscape of angiogenesis-related genes in bladder cancer. Aging 2023 15 22 13118 13133 10.18632/aging.205222 37988196
    [Google Scholar]
  14. Ketelut-Carneiro N. Fitzgerald K.A. Apoptosis, pyroptosis, and necroptosis—oh my! the many ways a cell can die. J. Mol. Biol. 2022 434 4 167378 10.1016/j.jmb.2021.167378 34838807
    [Google Scholar]
  15. Xiong R. Li N. Xiong J. Liu B. He R. Wang B. Geng Q. Oral hydroxychloroquine mitigates lipopolysaccharide-induced lung injury by inhibiting pyroptosis in mice. Curr. Mol. Pharmacol. 2023 16 3 362 373 10.2174/1874467215666220822110855 35996240
    [Google Scholar]
  16. Shi J. Zhao Y. Wang Y. Gao W. Ding J. Li P. Hu L. Shao F. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 2014 514 7521 187 192 10.1038/nature13683 25119034
    [Google Scholar]
  17. Ge Y. Ming L. Mechanism of pyroptosis in postoperative cognitive dysfunction rats and α7-nicotinic receptor agonist regulating NLRP3 inflammasome activation. Lett. Drug Des. Discov. 2024 21 18 4429 4438 10.2174/0115701808340483241119064321
    [Google Scholar]
  18. Kuang S. Zheng J. Yang H. Li S. Duan S. Shen Y. Ji C. Gan J. Xu X.W. Li J. Structure insight of GSDMD reveals the basis of GSDMD autoinhibition in cell pyroptosis. Proc. Natl. Acad. Sci. USA 2017 114 40 10642 10647 10.1073/pnas.1708194114 28928145
    [Google Scholar]
  19. Zhang Z. Zhang Y. Xia S. Kong Q. Li S. Liu X. Junqueira C. Meza-Sosa K.F. Mok T.M.Y. Ansara J. Sengupta S. Yao Y. Wu H. Lieberman J. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature 2020 579 7799 415 420 10.1038/s41586‑020‑2071‑9 32188940
    [Google Scholar]
  20. Fink S.L. Cookson B.T. Pyroptosis and host cell death responses during Salmonella infection. Cell. Microbiol. 2007 9 11 2562 2570 10.1111/j.1462‑5822.2007.01036.x 17714514
    [Google Scholar]
  21. Bhattacharjee R. Das S.S. Biswal S.S. Nath A. Das D. Basu A. Malik S. Kumar L. Kar S. Singh S.K. Upadhye V.J. Iqbal D. Almojam S. Roychoudhury S. Ojha S. Ruokolainen J. Jha N.K. Kesari K.K. Mechanistic role of HPV-associated early proteins in cervical cancer: Molecular pathways and targeted therapeutic strategies. Crit. Rev. Oncol. Hematol. 2022 174 103675 10.1016/j.critrevonc.2022.103675 35381343
    [Google Scholar]
  22. Fan J.X. Deng R.H. Wang H. Liu X.H. Wang X.N. Qin R. Jin X. Lei T.R. Zheng D. Zhou P.H. Sun Y. Zhang X.Z. Epigenetics-based tumor cells pyroptosis for enhancing the immunological effect of chemotherapeutic nanocarriers. Nano Lett. 2019 19 11 8049 8058 10.1021/acs.nanolett.9b03245 31558023
    [Google Scholar]
  23. Wong R.S. Apoptosis in cancer: From pathogenesis to treatment. Journal of experimental & clinical cancer research. CR (East Lansing Mich.) 2011 30 1 87
    [Google Scholar]
  24. Chai B. Qiu J. Pan W. Ma Z.J.O. Pyroptosis-related noncoding RNAs and cancer involvement. Oncol. 2023 25 4 335 343 10.1515/oncologie‑2023‑0045
    [Google Scholar]
  25. Qiu S. Hu Y. Dong S. Pan-cancer analysis reveals the expression, genetic alteration and prognosis of pyroptosis key gene GSDMD. Int. Immunopharmacol. 2021 101 108270 10.1016/j.intimp.2021.108270
    [Google Scholar]
  26. Zhang Y. Bai Y. Ma X.X. Song J.K. Luo Y. Fei X.Y. Ru Y. Luo Y. Jiang J.S. Zhang Z. Yang D. Xue T.T. Zhang H.P. Liu T.Y. Xiang Y.W. Kuai L. Liu Y.Q. Li B. Clinical-mediated discovery of pyroptosis in CD8+ T cell and NK cell reveals melanoma heterogeneity by single-cell and bulk sequence. Cell Death Dis. 2023 14 8 553 10.1038/s41419‑023‑06068‑5 37620327
    [Google Scholar]
  27. Liberzon A. Birger C. Thorvaldsdóttir H. Ghandi M. Mesirov J.P. Tamayo P. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 2015 1 6 417 425 10.1016/j.cels.2015.12.004 26771021
    [Google Scholar]
  28. Hänzelmann S. Castelo R. Guinney J. GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics 2013 14 1 7 10.1186/1471‑2105‑14‑7 23323831
    [Google Scholar]
  29. Song Z. Yu J. Wang M. Shen W. Wang C. Lu T. CHDTEPDB: Transcriptome expression profile database and interactive analysis platform for congenital heart disease. Congenit. Heart Dis. 2024 18 6 693 701 10.32604/chd.2024.048081
    [Google Scholar]
  30. Zeng Q. Feng K. Yu Y. Hsa_Circ_0000021 sponges miR-3940-3p/KPNA2 expression to promote cervical cancer progression. Curr. Mol. Pharmacol. 2024 17 1 170223213775 10.2174/1874467216666230217151946
    [Google Scholar]
  31. Ge G. Jiang X. Tian X. Zhou Y. Cao GJCPA The role of Salvia miltiorrhiza compounds in hepatocellular carcinoma: A preliminary investigation based on computational analysis and liquid chromatography-tandem mass spectrometry. Curr. Pharm. Anal. 2025 21 4 249 264 10.1016/j.cpan.2025.04.001
    [Google Scholar]
  32. Feng X. Xiao, L Galectin 2 regulates JAK/STAT3 signaling activity to modulate oral squamous cell carcinoma proliferation and migration in vitro. Biocell 2024 48 5 793 801 10.32604/biocell.2024.048395
    [Google Scholar]
  33. Xu Y. Cheng D. Hu L. Dong X. Lv L. Single-cell sequencing analysis reveals the molecular mechanism of promotion of SCAP proliferation upon AZD2858 treatment. Biocell 2023 47 4 825 836 10.32604/biocell.2023.026122
    [Google Scholar]
  34. Fang Z. Li J. Cao F. Li F. Integration of scRNA-Seq and bulk RNA-seq reveals molecular characterization of the immune microenvironment in acute pancreatitis. Biomolecules 2022 13 1 78 10.3390/biom13010078 36671463
    [Google Scholar]
  35. Xu X. Huang Y. Han X.J.C.H.D. Single-nucleus RNA sequencing reveals cardiac macrophage landscape in hypoplastic left heart syndrome. Congenit. Heart Dis. 2024 19 2 233 246 10.32604/chd.2024.050231
    [Google Scholar]
  36. Zhang W. Xie X. Huang Z. Zhong X. Liu Y. Cheong K.L. Zhou J. Tang S. The integration of single-cell sequencing, TCGA, and GEO data analysis revealed that PRRT3-AS1 is a biomarker and therapeutic target of SKCM. Front. Immunol. 2022 13 919145 10.3389/fimmu.2022.919145 36211371
    [Google Scholar]
  37. D’Arcy M.S. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int. 2019 43 6 582 592 10.1002/cbin.11137 30958602
    [Google Scholar]
  38. Ding J. Wang K. Liu W. She Y. Sun Q. Shi J. Sun H. Wang D.C. Shao F. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 2016 535 7610 111 116 10.1038/nature18590 27281216
    [Google Scholar]
  39. Zhou Z. He H. Wang K. Shi X. Wang Y. Su Y. Wang Y. Li D. Liu W. Zhang Y. Shen L. Han W. Shen L. Ding J. Shao F. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science 2020 368 6494 eaaz7548 10.1126/science.aaz7548 32299851
    [Google Scholar]
  40. Pan Q. Cheng Y. Cheng D. Identification of CD8+ T cell-related genes: Correlations with immune phenotypes and outcomes of liver cancer. J. Immunol. Res. 2021 2021 1 17 10.1155/2021/9960905 34124275
    [Google Scholar]
  41. Inoue H. Park J.H. Kiyotani K. Zewde M. Miyashita A. Jinnin M. Kiniwa Y. Okuyama R. Tanaka R. Fujisawa Y. Kato H. Morita A. Asai J. Katoh N. Yokota K. Akiyama M. Ihn H. Fukushima S. Nakamura Y. Intratumoral expression levels of PD-L1, GZMA, and HLA-A along with oligoclonal T cell expansion associate with response to nivolumab in metastatic melanoma. OncoImmunology 2016 5 9 1204507 10.1080/2162402X.2016.1204507 27757299
    [Google Scholar]
  42. Evavold C.L. Hafner-Bratkovič I. Devant P. D’Andrea J.M. Ngwa E.M. Boršić E. Doench J.G. LaFleur M.W. Sharpe A.H. Thiagarajah J.R. Kagan J.C. Control of gasdermin D oligomerization and pyroptosis by the Ragulator-Rag-mTORC1 pathway. Cell 2021 184 17 4495 4511.e19 10.1016/j.cell.2021.06.028 34289345
    [Google Scholar]
  43. Rühl S. Shkarina K. Demarco B. Heilig R. Santos J.C. Broz P. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science 2018 362 6417 956 960 10.1126/science.aar7607 30467171
    [Google Scholar]
  44. Yu F. Liu G. Zhang H. Wang X. Wu Z. Xu Q. Wu Y. Chen D. Cell adhesion molecule CD99 in cancer immunotherapy. Curr. Mol. Med. 2023 23 10 1028 1036 10.2174/1566524023666221007143513 36214301
    [Google Scholar]
  45. Huijbers E.J.M. van der Werf I.M. Faber L.D. Sialino L.D. van der Laan P. Holland H.A. Cimpean A.M. Thijssen V.L.J.L. van Beijnum J.R. Griffioen A.W. Targeting tumor vascular CD99 inhibits tumor growth. Front. Immunol. 2019 10 651 10.3389/fimmu.2019.00651 31001265
    [Google Scholar]
  46. Moradi S. Stankovic S. O’Connor G.M. Pymm P. MacLachlan B.J. Faoro C. Retière C. Sullivan L.C. Saunders P.M. Widjaja J. Cox-Livingstone S. Rossjohn J. Brooks A.G. Vivian J.P. Structural plasticity of KIR2DL2 and KIR2DL3 enables altered docking geometries atop HLA-C. Nat. Commun. 2021 12 1 2173 10.1038/s41467‑021‑22359‑x 33846289
    [Google Scholar]
  47. Frazier W.R. Steiner N. Hou L. Dakshanamurthy S. Hurley, CK Allelic variation in KIR2DL3 generates a KIR2DL2-like receptor with increased binding to its HLA-C ligand. J. Immunol. 2013 190 12 6198 6208 10.4049/jimmunol.1300464
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266416033250731102049
Loading
/content/journals/ctmc/10.2174/0115680266416033250731102049
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test