Skip to content
2000
image of Natural Oil and Polycystic Ovary Syndrome: A Comprehensive Review of Therapeutic Benefits

Abstract

Introduction

Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder affecting 70-75% of women. This condition is frequently linked with large and dysfunctional ovaries, high levels of androgens, and insulin resistance. A variety of conventional treatments, including metformin, oral contraceptives, and anti-androgen agents, have been used to treat PCOS and its complications, but they have been linked to several negative side effects, including hyperkalemia, weight gain, cardiovascular and hepatic toxicity, vitamin B12 and folic acid deficiency. As a result, there is growing interest in natural methods as complementary or alternative approaches to mitigate these side effects. According to several studies, traditionally used Natural oils (NOs) from various sources have been utilized to identify their ameliorating characteristics against PCOS. The paper aims to study pre-clinical investigations and clinical studies of NOs from different sources against PCOS and gives a comprehensive overview of controlling PCOS. Also, it highlights and tabulates the prominent bioactive phytoconstituents from the reported NOs and their mechanism of action.

Methods

For this review purpose, the authors have gone through a vast number of scientific literature from different scientific databases like Google Scholar, ScienceDirect, Web of Science, and PubMed.

Result

L., Mill., L., L., (L.) Voss, L., L., L., L., L., L., L., and fish oil have been reported to have anti-PCOS activity by maintaining body weight, testosterone, LH, FSH levels, and improving ovarian cysts.

Discussion

NOs derived from plant and animal sources show promise in treating PCOS by balancing hormone levels, enhancing ovarian morphology, and alleviating metabolic symptoms. However, significant clinical trials and molecular research are required to evaluate their therapeutic potential, identify suitable dosages, investigate their precise mechanisms of action, and ensure long-term safety and efficacy in PCOS management.

Conclusion

Further research is needed to understand the molecular mechanisms of NOs responsible for anti-PCOS activity. Studies are needed to concentrate on their mechanisms of action, routes of impact, safe dosage, and potential side effects to ensure their efficacy and safety in treating PCOS.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266370871250726131232
2025-08-05
2025-10-16
Loading full text...

Full text loading...

References

  1. Polycystic Ovary Syndrome. Geneva, Switzerland World Health Organization 2023
    [Google Scholar]
  2. Hoeger K.M. Dokras A. Piltonen T. Update on PCOS: Consequences, challenges, and guiding treatment. J. Clin. Endocrinol. Metab. 2021 106 3 e1071 e1083 10.1210/clinem/dgaa839 33211867
    [Google Scholar]
  3. Karmakar M. Chakraborty B. Hussain A.S. Barbhuiya P.A. Chang N.Y. Warjri I. Wankhar W. Barman U. Basak M. Sen S. Pathak M.P. A systemic review of pre-clinical studies of herbal plants having anti-polycystic ovarian syndrome activity: A PAN-India study. Nat. Prod. J. 2024 14 3 10.2174/0122103155303329240509115336
    [Google Scholar]
  4. Singh S. Pal N. Shubham S. Sarma D.K. Verma V. Marotta F. Kumar M. Polycystic ovary syndrome: Etiology, current management, and future therapeutics. J. Clin. Med. 2023 12 4 1454 10.3390/jcm12041454 36835989
    [Google Scholar]
  5. Dilliyappan S. Kumar A.S. Venkatesalu S. Palaniyandi T. Baskar G. Sivaji A. Rab S.O. Saeed M. Shivaranjani K.S. Polycystic ovary syndrome: Recent research and therapeutic advancements. Life Sci. 2024 359 123221 10.1016/j.lfs.2024.123221 39521272
    [Google Scholar]
  6. Farhana A.A. Shi J. A narrative review on global epidemiology of PCOS and its hormonal management. SSR Instit Inter. J. Life Sci. 2024 10 3 5516 5521 10.21276/SSR‑IIJLS.2024.10.3.17
    [Google Scholar]
  7. Manouchehri A. Abbaszadeh S. Ahmadi M. Nejad F.K. Bahmani M. Dastyar N. Polycystic ovaries and herbal remedies: A systematic review. JBRA Assist. Reprod. 2022 ••• 1 5 10.5935/1518‑0557.20220024 35916457
    [Google Scholar]
  8. de Melo A.S. Dias S.V. Cavalli R.C. Cardoso V.C. Bettiol H. Barbieri M.A. Ferriani R.A. Vieira C.S. Pathogenesis of polycystic ovary syndrome: Multifactorial assessment from the foetal stage to menopause. Reproduction 2015 150 1 R11 R24 10.1530/REP‑14‑0499 25835506
    [Google Scholar]
  9. Salehi M. Bravo-Vera R. Sheikh A. Gouller A. Poretsky L. Pathogenesis of polycystic ovary syndrome: What is the role of obesity? Metabolism 2004 53 3 358 376 10.1016/j.metabol.2003.10.005 15015150
    [Google Scholar]
  10. Diamanti-Kandarakis E. PCOS in adolescents. Best Pract. Res. Clin. Obstet. Gynaecol. 2010 24 2 173 183 10.1016/j.bpobgyn.2009.09.005 19932060
    [Google Scholar]
  11. Rosenfield R.L. Ehrmann D.A. The pathogenesis of polycystic ovary syndrome (PCOS): The hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr. Rev. 2016 37 5 467 520 10.1210/er.2015‑1104 27459230
    [Google Scholar]
  12. Whitaker K.N. Polycystic ovary syndrome: An overview. J. Pharm. Pract. 2011 24 1 94 101 10.1177/0897190010384632 21650066
    [Google Scholar]
  13. Witchel S.F. Burghard A.C. Tao R.H. Oberfield S.E. The diagnosis and treatment of PCOS in adolescents: An update. Curr. Opin. Pediatr. 2019 31 4 562 569 10.1097/MOP.0000000000000778 31299022
    [Google Scholar]
  14. Avijit M. Ashini S. A review on metformin: Clinical significance and side effects.Res. J. Pharm. Technol 20216179-6186
    [Google Scholar]
  15. Armanini D. Boscaro M. Bordin L. Sabbadin C. Controversies in the pathogenesis, diagnosis and treatment of pcos: Focus on insulin resistance, inflammation, and hyperandrogenism. Int. J. Mol. Sci. 2022 23 8 4110 10.3390/ijms23084110 35456928
    [Google Scholar]
  16. Pokale S.B. Jhadhav DR. Polycystic ovary syndrome activity of different plants used in traditional medicine.Int. J. Pharm. Res. 202113
    [Google Scholar]
  17. Barbhuiya P.A. Sen S. Pathak M.P. Ameliorative role of bioactive phytoconstituents targeting obesity associated nafld by modulation of inflammation and lipogenesis pathways: A comprehensive review. Phytochem. Rev. 2023 ••• 1 6
    [Google Scholar]
  18. Ibiapina A. Gualberto L.S. Dias B.B. Freitas B.C.B. Martins G.A.S. Melo Filho A.A. Essential and fixed oils from Amazonian fruits: Proprieties and applications. Crit. Rev. Food Sci. Nutr. 2022 62 32 8842 8854 10.1080/10408398.2021.1935702 34137326
    [Google Scholar]
  19. Zeng L.H. Rana S. Hussain L. Asif M. Mehmood M.H. Imran I. Younas A. Mahdy A. Al-Joufi F.A. Abed S.N. Polycystic ovary syndrome: A disorder of reproductive age, its pathogenesis, and a discussion on the emerging role of herbal remedies. Front. Pharmacol. 2022 13 874914 10.3389/fphar.2022.874914 35924049
    [Google Scholar]
  20. Küpeli Akkol E. İlhan M. Ayşe Demirel M. Keleş H. Tümen I. Süntar İ. Thuja occidentalis L. and its active compound, α-thujone: Promising effects in the treatment of polycystic ovary syndrome without inducing osteoporosis. J. Ethnopharmacol. 2015 168 25 30 10.1016/j.jep.2015.03.029 25818694
    [Google Scholar]
  21. Sadeghi Ataabadi M. Alaee S. Bagheri M.J. Bahmanpoor S. Role of essential oil of Mentha Spicata (Spearmint) in addressing reverse hormonal and folliculogenesis disturbances in a polycystic ovarian syndrome in a rat model. Adv. Pharm. Bull. 2017 7 4 651 654 10.15171/apb.2017.078 29399556
    [Google Scholar]
  22. Hosseinkhani A. Asadi N. Pasalar M. Zarshenas M.M. Traditional persian medicine and management of metabolic dysfunction in polycystic ovary syndrome. J. Tradit. Complement. Med. 2018 8 1 17 23 10.1016/j.jtcme.2017.04.006 29321985
    [Google Scholar]
  23. Nafiu A. Alimi S. Babalola A. Ogunlade A. Muhammad F. Abioye A. oluwafuyi, A.; Oyewole, L.; Akinola, O.; Olayemi, J.; Amin, A.; Abdulmajeed, W.; Musa, I.; Rahman, M. Anti-androgenic and insulin-sensitizing actions of Nigella sativa oil improve polycystic ovary and associated dyslipidemia and redox disturbances. J. Compl Med. Res. 2019 10 4 186 10.5455/jcmr.20190613045154
    [Google Scholar]
  24. Jung W. Choi H. Kim J. Kim J. Kim W. Nurkolis F. Kim B. Effects of natural products on polycystic ovary syndrome: From traditional medicine to modern drug discovery. Heliyon 2023 9 10 20889 10.1016/j.heliyon.2023.e20889 37867816
    [Google Scholar]
  25. de Zegher F. Ibáñez L. Early Origins of polycystic ovary syndrome: Hypotheses may change without notice. J. Clin. Endocrinol. Metab. 2009 94 10 3682 3685 10.1210/jc.2009‑1608 19808859
    [Google Scholar]
  26. Di Lorenzo M. Cacciapuoti N. Lonardo M.S. Nasti G. Gautiero C. Belfiore A. Guida B. Chiurazzi M. Pathophysiology and nutritional approaches in polycystic ovary syndrome (pcos): A comprehensive review. Curr. Nutr. Rep. 2023 12 3 527 544 10.1007/s13668‑023‑00479‑8 37213054
    [Google Scholar]
  27. Nath D. Barbhuiya P.A. Sen S. Pathak M.P. A review on in vivo and in vitro models of obesity and obesity-associated co-morbidities. Endocr. Metab. Immune Disord. Drug Targets 2025 25 6 458 478 10.2174/0118715303312932240801073903 39136512
    [Google Scholar]
  28. Garruti G. Depalo R. Vita M.G. Lorusso F. Giampetruzzi F. Damato A.B. Giorgino F. Adipose tissue, metabolic syndrome and polycystic ovary syndrome: From pathophysiology to treatment. Reprod. Biomed. Online 2009 19 4 552 563 10.1016/j.rbmo.2009.05.010 19909598
    [Google Scholar]
  29. Barber T.M. McCarthy M.I. Wass J.A.H. Franks S. Obesity and polycystic ovary syndrome. Clin. Endocrinol. 2006 65 2 137 145 10.1111/j.1365‑2265.2006.02587.x 16886951
    [Google Scholar]
  30. Jin X. Qiu T. Li L. Yu R. Chen X. Li C. Proud C.G. Jiang T. Pathophysiology of obesity and its associated diseases. Acta Pharm. Sin. B 2023 13 6 2403 2424 10.1016/j.apsb.2023.01.012 37425065
    [Google Scholar]
  31. Redinger R.N. The pathophysiology of obesity and its clinical manifestations. Gastroenterol. Hepatol. 2007 3 11 856 863 21960798
    [Google Scholar]
  32. Legro R. Obesity and PCOS: Implications for diagnosis and treatment. Semin. Reprod. Med. 2012 30 6 496 506 10.1055/s‑0032‑1328878 23074008
    [Google Scholar]
  33. Barber T.M. Hanson P. Weickert M.O. Franks S. Obesity and polycystic ovary syndrome: Implications for pathogenesis and novel management strategies. Clin. Med. Insights Reprod. Health 2019 13 1179558119874042 10.1177/1179558119874042 31523137
    [Google Scholar]
  34. Barber T.M. Franks S. Obesity and polycystic ovary syndrome. Clin. Endocrinol. 2021 95 4 531 541 10.1111/cen.14421 33460482
    [Google Scholar]
  35. Zheng L. Yang L. Guo Z. Yao N. Zhang S. Pu P. Obesity and its impact on female reproductive health: Unraveling the connections. Front. Endocrinol. 2024 14 1326546 10.3389/fendo.2023.1326546 38264286
    [Google Scholar]
  36. Gambineri A. Pelusi C. Vicennati V. Pagotto U. Pasquali R. Obesity and the polycystic ovary syndrome. Int. J. Obes. 2002 26 7 883 896 10.1038/sj.ijo.0801994 12080440
    [Google Scholar]
  37. Kanbour S.A. Dobs A.S. Hyperandrogenism in Women with Polycystic Ovarian Syndrome: Pathophysiology and Controversies. Androg Clin. Res. Ther. 2022 3 1 22 30 10.1089/andro.2021.0020
    [Google Scholar]
  38. Ibáñez L. Oberfield S.E. Witchel S. Auchus R.J. Chang R.J. Codner E. Dabadghao P. Darendeliler F. Elbarbary N.S. Gambineri A. Garcia Rudaz C. Hoeger K.M. López-Bermejo A. Ong K. Peña A.S. Reinehr T. Santoro N. Tena-Sempere M. Tao R. Yildiz B.O. Alkhayyat H. Deeb A. Joel D. Horikawa R. de Zegher F. Lee P.A. An international consortium update: Pathophysiology, diagnosis, and treatment of polycystic ovarian syndrome in adolescence. Horm. Res. Paediatr. 2017 88 6 371 395 10.1159/000479371 29156452
    [Google Scholar]
  39. Petersen M.C. Shulman G.I. Mechanisms of insulin action and insulin resistance. Physiol. Rev. 2018 98 4 2133 2223 10.1152/physrev.00063.2017 30067154
    [Google Scholar]
  40. Kahn B.B. Flier J.S. Obesity and insulin resistance. J. Clin. Invest. 2000 106 4 473 481 10.1172/JCI10842 10953022
    [Google Scholar]
  41. Sesti G. Pathophysiology of insulin resistance. Best Pract. Res. Clin. Endocrinol. Metab. 2006 20 4 665 679 10.1016/j.beem.2006.09.007 17161338
    [Google Scholar]
  42. Rodriguez Paris V. Bertoldo M.J. The mechanism of androgen actions in pcos etiology. Med. Sci. 2019 7 9 89 10.3390/medsci7090089 31466345
    [Google Scholar]
  43. Rohm T.V. Meier D.T. Olefsky J.M. Donath M.Y. Inflammation in obesity, diabetes, and related disorders. Immunity 2022 55 1 31 55 10.1016/j.immuni.2021.12.013 35021057
    [Google Scholar]
  44. Khatun M. Lundin K. Naillat F. Loog L. Saarela U. Tuuri T. Salumets A. Piltonen T.T. Tapanainen J.S. Induced pluripotent stem cells as a possible approach for exploring the pathophysiology of polycystic ovary syndrome (PCOS). Stem Cell Rev. Rep. 2024 20 1 67 87 10.1007/s12015‑023‑10627‑w 37768523
    [Google Scholar]
  45. Bergo I. Eckert D. Puşcaş A. Jîtcă G. Terovescan A. Hormone imbalance in polycystic ovarian syndrome. Acta. Biol. Maris 2023 6 1 10 20 10.2478/abmj‑2023‑0002
    [Google Scholar]
  46. Davis H.C. Hackney A.C. The hypothalamic-pituitary-ovarian axis and oral contraceptives: Regulation and function. Sex Hormones, Exercise and Women. Hackney A.C. Cham Springer International Publishing 2017 1 17 10.1007/978‑3‑319‑44558‑8_1
    [Google Scholar]
  47. Howles C.M. Role of LH and FSH in ovarian function. Mol. Cell. Endocrinol. 2000 161 1-2 25 30 10.1016/S0303‑7207(99)00219‑1 10773387
    [Google Scholar]
  48. Malini N.A. Roy George K. Evaluation of different ranges of LH:FSH ratios in polycystic ovarian syndrome (PCOS) - Clinical based case control study. Gen. Comp. Endocrinol. 2018 260 51 57 10.1016/j.ygcen.2017.12.007 29273352
    [Google Scholar]
  49. Dong J. Rees D.A. Polycystic ovary syndrome: Pathophysiology and therapeutic opportunities. BMJ Med. 2023 2 1 000548 10.1136/bmjmed‑2023‑000548 37859784
    [Google Scholar]
  50. Hajam Y.A. Rather H.A. Neelam; Kumar, R.; Basheer, M.; Reshi, M.S. A review on critical appraisal and pathogenesis of polycystic ovarian syndrome. Endocr Metab. Sci. 2024 14 100162 10.1016/j.endmts.2024.100162
    [Google Scholar]
  51. Ndefo U.A. Eaton A. Green M.R. Polycystic ovary syndrome: A review of treatment options with a focus on pharmacological approaches. 2013 38 6 336 355 23946629
  52. Ajmal N. Khan S.Z. Shaikh R. Polycystic ovary syndrome (PCOS) and genetic predisposition: A review article. Eur. J. Obstet. Gynecol. Reprod. Biol. X 2019 3 100060 10.1016/j.eurox.2019.100060 31403134
    [Google Scholar]
  53. Bulsara J. Patel P. Soni A. Acharya S. A review: Brief insight into Polycystic Ovarian syndrome. Endocr Metab. Sci. 2021 3 100085 10.1016/j.endmts.2021.100085
    [Google Scholar]
  54. Vaughn A.R. Clark A.K. Sivamani R.K. Shi V.Y. Natural oils for skin-barrier repair: Ancient compounds now backed by modern science. Am. J. Clin. Dermatol. 2018 19 1 103 117 10.1007/s40257‑017‑0301‑1 28707186
    [Google Scholar]
  55. Tongnuanchan P. Benjakul S. Essential oils: Extraction, bioactivities, and their uses for food preservation. J. Food Sci. 2014 79 7 R1231 R1249 10.1111/1750‑3841.12492 24888440
    [Google Scholar]
  56. Dagli N. Dagli R. Mahmoud R. Baroudi K. Essential oils, their therapeutic properties, and implication in dentistry: A review. J. Int. Soc. Prev. Community Dent. 2015 5 5 335 340 10.4103/2231‑0762.165933 26539382
    [Google Scholar]
  57. Reyes-Jurado F. Franco-Vega A. Ramírez-Corona N. Palou E. López-Malo A. Essential oils: Antimicrobial activities, extraction methods, and their modeling. Food Eng. Rev. 2015 7 3 275 297 10.1007/s12393‑014‑9099‑2
    [Google Scholar]
  58. Kent J.A. Animal and vegetable fats, oils, and waxes. Riegel’s Handbook of Industrial Chemistry. Kent J.A. Boston, MA Springer US 2003 243 328 10.1007/0‑387‑23816‑6_8
    [Google Scholar]
  59. Rahim M.A. Ayub H. Sehrish A. Ambreen S. Khan F.A. Itrat N. Nazir A. Shoukat A. Shoukat A. Ejaz A. Özogul F. Bartkiene E. Rocha J.M. Essential components from plant source oils: A review on extraction, detection, identification, and quantification. Molecules 2023 28 19 6881 10.3390/molecules28196881 37836725
    [Google Scholar]
  60. von der Haar D. Stäbler A. Wichmann R. Schweiggert-Weisz U. Enzyme-assisted process for DAG synthesis in edible oils. Food Chem. 2015 176 263 270 10.1016/j.foodchem.2014.12.072 25624232
    [Google Scholar]
  61. Bakkali F. Averbeck S. Averbeck D. Idaomar M. Biological effects of essential oils - A review. Food Chem. Toxicol. 2008 46 2 446 475 10.1016/j.fct.2007.09.106 17996351
    [Google Scholar]
  62. Stratakos A.C. Koidis A. Methods for Extracting Essential Oils. Essential Oils in Food. Preservation, Flavor and Safety. Amsterdam, Netherlands Elsevier 2016 31 38 10.1016/B978‑0‑12‑416641‑7.00004‑3
    [Google Scholar]
  63. Zhou W. Li J. Wang X. Liu L. Li Y. Song R. Zhang M. Li X. Research progress on extraction, separation, and purification methods of plant essential oils. Separations 2023 10 12 596 10.3390/separations10120596
    [Google Scholar]
  64. Ríos J-L. Essential oils. Essential Oils in Food. Preservation, Flavor and Safety. Amsterdam, Netherlands Elsevier 2016 3 10 10.1016/B978‑0‑12‑416641‑7.00001‑8
    [Google Scholar]
  65. Talan A. Kaur R. Tyagi R.D. Drogui P. Bioconversion of oily waste to polyhydroxyalkanoates: Sustainable technology with circular bioeconomy approach and multidimensional impacts. Bioresour. Technol. Rep. 2020 11 100496 10.1016/j.biteb.2020.100496
    [Google Scholar]
  66. Mills C.E. Hall W.L. Berry S.E.E. What are interesterified fats and should we be worried about them in our diet? Nutr. Bull. 2017 42 2 153 158 10.1111/nbu.12264 28729812
    [Google Scholar]
  67. Flickinger B.D. Matsuo N. Nutritional characteristics of DAG oil. Lipids 2003 38 2 129 132 10.1007/s11745‑003‑1042‑8 12733744
    [Google Scholar]
  68. Woodgate S.L. Van Der Veen J.T. Fats and oils - Animal based. Food. Processing. Clark S. Jung S. Lamsal B. Hoboken, New Jersey Wiley Online Library 2014 481 499 10.1002/9781118846315.ch21
    [Google Scholar]
  69. Merendino N. Costantini L. Manzi L. Molinari R. D’Eliseo D. Velotti F. Dietary ω -3 polyunsaturated fatty acid DHA: A potential adjuvant in the treatment of cancer. BioMed Res. Int. 2013 2013 1 11 10.1155/2013/310186 23762838
    [Google Scholar]
  70. Kabel A.M. Ashour A.M. Omar M.S. Estfanous R.S. Effect of fish oil and telmisartan on dehydroepiandrosterone‐induced polycystic ovarian syndrome in rats: The role of oxidative stress, transforming growth factor beta‐1, and nuclear factor kappa B. Food Sci. Nutr. 2020 8 9 5149 5159 10.1002/fsn3.1819 32994975
    [Google Scholar]
  71. Yi T. Li S.M. Fan J.Y. Fan L.L. Zhang Z.F. Luo P. Zhang X.J. Wang J.G. Zhu L. Zhao Z.Z. Chen H.B. Comparative analysis of EPA and DHA in fish oil nutritional capsules by GC-MS. Lipids Health Dis. 2014 13 1 190 10.1186/1476‑511X‑13‑190 25496531
    [Google Scholar]
  72. Komal F. Mahr-Un-Nisa; Khan, M.K.; Ashfaq, U.A.; Manzoor, F.; Masroor, A.; Nadeem, M.; Amir, R.M.; Kausar, R.; -Huda, N.U. Evaluation of the efficacy of different sources of omega-3 fatty acids in polycystic ovarian syndrome (PCOS) induced rats. Pak. J. Pharm. Sci. 2019 32 4 Supplementary. 1781 1788 31680073
    [Google Scholar]
  73. Ghasemi M. Riasi A. Kowsar R. Mahdavi A.H. Asgary Dastjerdi S. Talebi A. Moshtaghian S.J. Effect of fennel essential oil and flaxseed oil on blood parameters, insulin resistance, and histological structure of ovaries in rats suffered polycystic ovary syndrome. Comp. Clin. Pathol. 2021 30 3 445 452 10.1007/s00580‑021‑03236‑x
    [Google Scholar]
  74. Emam S.R. Abd-Elsalam R.M. Azouz A.A. Ali S.E. El Badawy S.A. Ibrahim M.A. Hassan B.B. Issa M.Y. Elmosalamy S.H. Linum usitatissimum seeds oil down-regulates mRNA expression for the steroidogenic acute regulatory protein and Cyp11A1 genes, ameliorating letrezole-induced polycystic ovarian syndrome in a rat model. J. Physiol. Pharmacol. 2021 72 1 34099585
    [Google Scholar]
  75. Soumya V. Muzib Y.I. Venkatesh P. A novel method of extraction of bamboo seed oil (Bambusa bambos Druce) and its promising effect on metabolic symptoms of experimentally induced polycystic ovarian disease. Indian J. Pharmacol. 2016 48 2 162 167 10.4103/0253‑7613.178833 27127318
    [Google Scholar]
  76. Soltani M. Moghimian M. The effects of clove oil on the biochemical and histological parameters, and autophagy markers in polycystic ovary syndrome-model rats. Int. J. Fertil. Steril. 2023 17 3 187 194 10.22074/ijfs.2022.543640.1260
    [Google Scholar]
  77. Mahood R.A.H. Effects of pimpinella anisum oil extract on some biochemical parameters in mice experimentally induced for human polycystic ovary syndrome. Magallat Markaz Buhut al-Tiqniyyat al-Ahya’iyyat 2012 6 2 67 73 10.24126/jobrc.2012.6.2.228
    [Google Scholar]
  78. Chen H. Liang X. Therapeutic potential of Rosa canina L. seed oil and metformin: Modulation of bax/bcl-2/p53/caspase-3 pathways and improvement of biochemical and oxidative stress parameters in estradiol-induced polycystic ovary syndrome rat model. Pharmacogn. Mag. 2024 20 3 921 933 10.1177/09731296241234124
    [Google Scholar]
  79. Akintoye O.O. Ajibare A.J. Omotuyi I.O. Virgin coconut oil reverses behavioral phenotypes of letrozole-model of PCOS in Wistar rats via modulation of NRF2 upregulation. J. Taibah Univ. Med. Sci. 2023 18 4 831 841 10.1016/j.jtumed.2022.12.020 36852244
    [Google Scholar]
  80. Demirel M.A. Ilhan M. Suntar I. Keles H. Kupeli Akkol E. Activity of Corylus avellana seed oil in letrozole-induced polycystic ovary syndrome model in rats. Rev. Bras. Farmacogn. 2016 26 1 83 88 10.1016/j.bjp.2015.09.009
    [Google Scholar]
  81. Na H. Miao S. Shasha X. Evening primrose oil resists oxidative stress in the ovaries of rats with polycystic ovary syndrome. 2022
    [Google Scholar]
  82. Vakili Z. The effect of evening primrose oil on changes in polycystic ovary syndrome induced by estradiol valerate in rat. Armagh Danesh 2018 22 6 714 724
    [Google Scholar]
  83. Naser B. Bodinet C. Tegtmeier M. Lindequist U. Thuja occidentalis (Arbor vitae): A Review of its pharmaceutical, pharmacological and clinical properties. Evid. Based Complement. Alternat. Med. 2005 2 1 69 78 10.1093/ecam/neh065 15841280
    [Google Scholar]
  84. Mahendran G. Verma S.K. Rahman L.U. The traditional uses, phytochemistry and pharmacology of spearmint (Mentha spicata L.): A review. J. Ethnopharmacol. 2021 278 114266 10.1016/j.jep.2021.114266 34087400
    [Google Scholar]
  85. Shahbazi Y. Chemical composition and In vitro antibacterial activity of Mentha spicata essential oil against common food-borne pathogenic bacteria. J. Pathogens 2015 2015 1 5 10.1155/2015/916305 26351584
    [Google Scholar]
  86. Shuid A.N. Mohamed N. Mohamed I.N. Othman F. Suhaimi F. Mohd Ramli E.S. Muhammad N. Soelaiman I.N. Nigella sativa: A Potential antiosteoporotic agent. Evid. Based Complement. Alternat. Med. 2012 2012 1 6 10.1155/2012/696230 22973403
    [Google Scholar]
  87. Ahmad A. Husain A. Mujeeb M. Khan S.A. Najmi A.K. Siddique N.A. Damanhouri Z.A. Anwar F. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac. J. Trop. Biomed. 2013 3 5 337 352 10.1016/S2221‑1691(13)60075‑1 23646296
    [Google Scholar]
  88. Saleh F.A. El-Darra N. Raafat K. Ghazzawi I.E. Phytochemical analysis of Nigella sativa L. utilizing GC-MS exploring its antimicrobial effects against multidrug-resistant bacteria. pharmacogn j 2017 10 99 105 10.5530/pj.2018.1.18
    [Google Scholar]
  89. Guo M. Lipids and lipid related functional foods. Functional Foods. Amsterdam, Netherlands Elsevier 2009 161 196 10.1533/9781845696078.161
    [Google Scholar]
  90. Huang T.H. Wang P.W. Yang S.C. Chou W.L. Fang J.Y. Cosmetic and therapeutic applications of fish oil’s fatty acids on the skin. Mar. Drugs 2018 16 8 256 10.3390/md16080256 30061538
    [Google Scholar]
  91. Rather M.A. Dar B.A. Sofi S.N. Bhat B.A. Qurishi M.A. Foeniculum vulgare: A comprehensive review of its traditional use, phytochemistry, pharmacology, and safety. Arab. J. Chem. 2016 9 S1574 S1583 10.1016/j.arabjc.2012.04.011
    [Google Scholar]
  92. Alam P. Abdel-Kader M.S. Alqarni M.H. Zaatout H.H. Ahamad S.R. Shakeel F. Chemical composition of fennel seed extract and determination of fenchone in commercial formulations by GC-MS method. J. Food Sci. Technol. 2019 56 5 2395 2403 10.1007/s13197‑019‑03695‑9 31168122
    [Google Scholar]
  93. Ahmadniaye Motlagh H. Horie Y. Rashid H. Banaee M. Multisanti C.R. Faggio C. Unveiling the effects of fennel (foeniculum vulgare) seed essential oil as a diet supplement on the biochemical parameters and reproductive function in female common carps (Cyprinus carpio). Water 2023 15 16 2978 10.3390/w15162978
    [Google Scholar]
  94. Coşkuner Y. Karababa E. Some physical properties of flaxseed (Linum usitatissimum L.). J. Food Eng. 2007 78 3 1067 1073 10.1016/j.jfoodeng.2005.12.017
    [Google Scholar]
  95. Fadzir U.A. Mokhtar K.I. Mustafa B.E. Darnis D.S. Evaluation of bioactive compounds on different extracts of Linum usitatissimum and its antimicrobial properties against selected oral pathogens. Makara J. Health Res. 2018 22 3 10.7454/msk.v22i3.10181
    [Google Scholar]
  96. Yang J. Wen C. Duan Y. Deng Q. Peng D. Zhang H. Ma H. The composition, extraction, analysis, bioactivities, bioavailability and applications in food system of flaxseed (Linum usitatissimum L.) oil: A review. Trends Food Sci. Technol. 2021 118 252 260 10.1016/j.tifs.2021.09.025
    [Google Scholar]
  97. Shanmughavel P. Francis K. Above ground biomass production and nutrient distribution in growing bamboo (Bambusa bambos (L.) Voss). Biomass Bioenergy 1996 10 5-6 383 391 10.1016/0961‑9534(95)00124‑7
    [Google Scholar]
  98. Soumya V. Muzib Y.I. Venkatesh P.G.C-M.S. Characterization, in vitro antioxidant and antimicrobial activity of newly isolated oil from edible wild bamboo rice (Bambusa Bambos). J. Biol. Act. Prod Nat. 2014 4 209 215
    [Google Scholar]
  99. Mbaveng A.T. Kuete V. Syzygium aromaticum. Medicinal Spices and Vegetables from Africa. Amsterdam, Netherlands Elsevier 2017 611 625 10.1016/B978‑0‑12‑809286‑6.00029‑7
    [Google Scholar]
  100. Uchôa Lopes C. Saturnino de Oliveira J. Holanda V. Rodrigues A. Martins da Fonseca C. Galvão Rodrigues F. Camilo C. Lima V. Coutinho H. Kowalski R. da Costa J. GC-MS analysis and hemolytic, antipyretic and antidiarrheal potential of syzygium aromaticum (Clove) essential oil. Separations 2020 7 2 35 10.3390/separations7020035
    [Google Scholar]
  101. Mahboubi M. Mahboubi M. Pimpinella anisum and female disorders: A review. Phytomed Plus 2021 1 3 100063 10.1016/j.phyplu.2021.100063
    [Google Scholar]
  102. Chitra V. Dhivya; Derera, Precious Role of herbals in the management of polycystic ovarian syndrome and its associated symptoms. Int. J. Herb. Med. 2017 5 5 125 131
    [Google Scholar]
  103. Ilyasoğlu H. Characterization of rosehip (Rosa canina L.) seed and seed oil. Int. J. Food Prop. 2014 17 7 1591 1598 10.1080/10942912.2013.777075
    [Google Scholar]
  104. Kiralan M. Yildirim G. Rosehip (Rosa Canina L.) oil. Fruit Oils: Chemistry and Functionality. Ramadan M.F. Cham Springer International Publishing 2019 803 814 10.1007/978‑3‑030‑12473‑1_43
    [Google Scholar]
  105. Srivastava Y. Semwal A.D. Sharma G.K. Virgin coconut oil as functional oil. Therapeutic, Probiotic, and Unconventional Foods. Amsterdam, Netherlands Elsevier 2018 291 301 10.1016/B978‑0‑12‑814625‑5.00015‑7
    [Google Scholar]
  106. Nieto G. Lorenzo J.M. Plant source: Vegetable oils. Food. Lipids. Amsterdam, Netherlands Elsevier 2022 69 85 10.1016/B978‑0‑12‑823371‑9.00011‑3
    [Google Scholar]
  107. Gugule S. Fatimah F. Maanari C.P. Tallei T.E. Data on the use of virgin coconut oil and bioethanol produced from sugar palm sap as raw materials for biodiesel synthesis. Data Brief 2020 29 105199 10.1016/j.dib.2020.105199 32055669
    [Google Scholar]
  108. Poșta D.S. Radulov I. Cocan I. Berbecea A.A. Alexa E. Hotea I. Iordănescu O.A. Băla M. Cântar I.C. Rózsa S. Crista F.L. Boldea M.V. Negrea M. Popescu I. Hazelnuts (Corylus avellana L.) from spontaneous flora of the west part of romania: A source of nutrients for locals. Agronomy 2022 12 1 214 10.3390/agronomy12010214
    [Google Scholar]
  109. Sun J. Feng X. Lyu C. Zhou S. Liu Z. Effects of different processing methods on the lipid composition of hazelnut oil: A lipidomics analysis. Food Sci. Hum. Wellness 2022 11 2 427 435 10.1016/j.fshw.2021.11.024
    [Google Scholar]
  110. Turan D. Yeşilçubuk N.Ş. Akoh C.C. Enrichment of sn-2 position of hazelnut oil with palmitic acid: Optimization by response surface methodology. Lebensm. Wiss. Technol. 2013 50 2 766 772 10.1016/j.lwt.2012.07.009
    [Google Scholar]
  111. Mahboubi M. Evening primrose (Oenothera biennis) oil in management of female ailments. J. Menopausal Med. 2019 25 2 74 82 10.6118/jmm.18190 31497576
    [Google Scholar]
  112. Timoszuk M. Bielawska K. Skrzydlewska E. Evening primrose (Oenothera biennis) biological activity dependent on chemical composition. Antioxidants 2018 7 8 108 10.3390/antiox7080108 30110920
    [Google Scholar]
  113. Fecker R. Magyari-Pavel I.Z. Cocan I. Alexa E. Popescu I.M. Lombrea A. Bora L. Dehelean C.A. Buda V. Folescu R. Danciu C. Oxidative stability and protective effect of the mixture between Helianthus annuus L. and Oenothera biennis L. oils on 3D tissue models of skin irritation and phototoxicity. Plants 2022 11 21 2977 10.3390/plants11212977 36365432
    [Google Scholar]
  114. Shrinet K. Singh R.K. Chaurasia A.K. Tripathi A. Kumar A. Bioactive compounds and their future therapeutic applications. Natural Bioactive Compounds. Amsterdam, Netherlands Elsevier 2021 337 362 10.1016/B978‑0‑12‑820655‑3.00017‑3
    [Google Scholar]
  115. Samtiya M. Aluko R.E. Dhewa T. Moreno-Rojas J.M. Potential health benefits of plant food-derived bioactive components: An overview. Foods 2021 10 4 839 10.3390/foods10040839 33921351
    [Google Scholar]
  116. Mesbahzadeh B. Garmsiri M. Jalalvand F. Shojaie L. Kakar M.A. Oral administration of menthol alleviate adverse effects of polycystic ovarian syndrome in blood biochemical parameters and antioxidant status in Wister rats. GMJ Med 2017 9 14
    [Google Scholar]
  117. Moradi Negahdari F. Hadjzadeh M-A-R. The protective effects of trans-anethole against polycystic ovary syndrome induced histopathological and metabolic changes in rat. Int. J. Fertil. Steril. 2022 16 3 192 199 10.22074/ijfs.2021.532941.1148
    [Google Scholar]
  118. Wang T. Sha L. Li Y. Zhu L. Wang Z. Li K. Lu H. Bao T. Guo L. Zhang X. Wang H. Dietary α-linolenic acid-rich flaxseed oil exerts beneficial effects on polycystic ovary syndrome through sex steroid hormones—microbiota—inflammation axis in rats. Front. Endocrinol. 2020 11 284 10.3389/fendo.2020.00284 32670195
    [Google Scholar]
  119. Komal F. Khan M.K. Imran M. Ahmad M.H. Anwar H. Ashfaq U.A. Ahmad N. Masroor A. Ahmad R.S. Nadeem M. Nisa M.U. Impact of different omega-3 fatty acid sources on lipid, hormonal, blood glucose, weight gain and histopathological damages profile in PCOS rat model. J. Transl. Med. 2020 18 1 349 10.1186/s12967‑020‑02519‑1 32928224
    [Google Scholar]
  120. Alaee S. Mirani M. Derakhshan Z. Koohpeyma F. Bakhtari A. Thymoquinone improves folliculogenesis, sexual hormones, gene expression of apoptotic markers and antioxidant enzymes in polycystic ovary syndrome rat model. Vet. Med. Sci. 2023 9 1 290 300 10.1002/vms3.958 36104839
    [Google Scholar]
  121. Kokabiyan Z. Yaghmaei P. Jameie S.B. Hajebrahimi Z. Therapeutic effects of eugenol in polycystic ovarian rats induced by estradiol valerate: A histopathological and a biochemical study. Int. J. Fertil. Steril. 2021 ••• 1 7 36029055
    [Google Scholar]
  122. Snoussi M. Noumi E. Trabelsi N. Flamini G. Papetti A. De Feo V. Mentha spicata essential oil: Chemical composition, antioxidant and antibacterial activities against planktonic and biofilm cultures of vibrio spp. strains. Molecules 2015 20 8 14402 14424 10.3390/molecules200814402 26262604
    [Google Scholar]
  123. Ward R.C. Costoff A. Mahesh V.B. The induction of polycystic ovaries in mature cycling rats by the administration of dehydroepiandrosterone (DHA). Biol. Reprod. 1978 18 4 614 623 10.1095/biolreprod18.4.614 148928
    [Google Scholar]
  124. Lizárraga-Velázquez C.E. Leyva-López N. Hernández C. Gutiérrez-Grijalva E.P. Salazar-Leyva J.A. Osuna-Ruíz I. Martínez-Montaño E. Arrizon J. Guerrero A. Benitez-Hernández A. Ávalos-Soriano A. Antioxidant molecules from plant waste: Extraction techniques and biological properties. Processes 2020 8 12 1566 10.3390/pr8121566
    [Google Scholar]
  125. Ninkuu V. Zhang L. Yan J. Fu Z. Yang T. Zeng H. Biochemistry of terpenes and recent advances in plant protection. Int. J. Mol. Sci. 2021 22 11 5710 10.3390/ijms22115710 34071919
    [Google Scholar]
  126. Kamatou G.P.P. Vermaak I. Viljoen A.M. Lawrence B.M. Menthol: A simple monoterpene with remarkable biological properties. Phytochemistry 2013 96 15 25 10.1016/j.phytochem.2013.08.005 24054028
    [Google Scholar]
  127. Hassanzadeh S.A. Abbasi-Maleki S. Mousavi Z. Anti-depressive-like effect of monoterpene trans-anethole via monoaminergic pathways. Saudi J. Biol. Sci. 2022 29 5 3255 3261 10.1016/j.sjbs.2022.01.060 35844399
    [Google Scholar]
  128. Pelkonen O. Abass K. Wiesner J. Thujone and thujone-containing herbal medicinal and botanical products: Toxicological assessment. Regul. Toxicol. Pharmacol. 2013 65 1 100 107 10.1016/j.yrtph.2012.11.002 23201408
    [Google Scholar]
  129. Goyal S.N. Prajapati C.P. Gore P.R. Patil C.R. Mahajan U.B. Sharma C. Talla S.P. Ojha S.K. Therapeutic potential and pharmaceutical development of thymoquinone: A multitargeted molecule of natural origin. Front. Pharmacol. 2017 8 656 10.3389/fphar.2017.00656 28983249
    [Google Scholar]
  130. Butnariu M. Quispe C. Herrera-Bravo J. Helon P. Kukula-Koch W. López V. Les F. Vergara C.V. Alarcón-Zapata P. Alarcón-Zapata B. Martorell M. Pentea M. Dragunescu A.A. Samfira I. Yessimsiitova Z. Daştan S.D. Castillo C.M.S. Roberts T.H. Sharifi-Rad J. Koch W. Cho W.C. The effects of thymoquinone on pancreatic cancer: Evidence from preclinical studies. Biomed. Pharmacother. 2022 153 113364 10.1016/j.biopha.2022.113364 35810693
    [Google Scholar]
  131. Darakhshan S. Bidmeshki Pour A. Hosseinzadeh Colagar A. Sisakhtnezhad S. Thymoquinone and its therapeutic potentials. Pharmacol. Res. 2015 95-96 138 158 10.1016/j.phrs.2015.03.011 25829334
    [Google Scholar]
  132. Jiang F. Dusting G. Natural phenolic compounds as cardiovascular therapeutics: Potential role of their antiinflammatory effects. Curr. Vasc. Pharmacol. 2003 1 2 135 156 10.2174/1570161033476736 15320840
    [Google Scholar]
  133. Ulanowska M. Olas B. Biological properties and prospects for the application of eugenol—A review. Int. J. Mol. Sci. 2021 22 7 3671 10.3390/ijms22073671 33916044
    [Google Scholar]
  134. Nisar M.F. Khadim M. Rafiq M. Chen J. Yang Y. Wan C.C. Pharmacological properties and health benefits of eugenol: A comprehensive review. Oxid. Med. Cell. Longev. 2021 2021 1 2497354 10.1155/2021/2497354 34394824
    [Google Scholar]
  135. Damude H.G. Kinney A.J. Enhancing plant seed oils for human nutrition. Plant Physiol. 2008 147 3 962 968 10.1104/pp.108.121681 18612073
    [Google Scholar]
  136. Peng L.P. Men S.Q. Liu Z.A. Tong N.N. Imran M. Shu Q.Y. Fatty acid composition, phytochemistry, antioxidant activity on seed coat and kernel of Paeonia ostii from main geographic production areas. Foods 2019 9 1 30 10.3390/foods9010030 31905710
    [Google Scholar]
  137. Fernandes G. Venkatraman J.T. Role of omega-3 fatty acids in health and disease. Nutr. Res. 1993 13 S19 S45 10.1016/S0271‑5317(05)80282‑9
    [Google Scholar]
  138. Rosa R. Andrade A.M. Bandarra N.M. Nunes M.L. Physiological and biochemical effects of conjugated linoleic acid and its use in aquaculture. Rev. Aquacult. 2010 2 2 59 72 10.1111/j.1753‑5131.2010.01021.x
    [Google Scholar]
  139. Kim K.B. Nam Y.A. Kim H.S. Hayes A.W. Lee B.M. α-Linolenic acid: Nutraceutical, pharmacological and toxicological evaluation. Food Chem. Toxicol. 2014 70 163 178 10.1016/j.fct.2014.05.009 24859185
    [Google Scholar]
  140. Echeverría F. Valenzuela R. Catalina Hernandez-Rodas M. Valenzuela A. Docosahexaenoic acid (DHA), a fundamental fatty acid for the brain: New dietary sources. Prostaglandins Leukot. Essent. Fatty Acids 2017 124 1 10 10.1016/j.plefa.2017.08.001 28870371
    [Google Scholar]
  141. Brinton E.A. Mason R.P. Prescription omega-3 fatty acid products containing highly purified eicosapentaenoic acid (EPA). Lipids Health Dis. 2017 16 1 23 10.1186/s12944‑017‑0415‑8 28137294
    [Google Scholar]
  142. Ghavi F. Taghizadeh M. Taebi M. Abdolahian S. Effect of Foeniculum vulgare essence on symptoms of polycystic ovarian syndrome (PCOS): A randomized double-blind, placebo-controlled trial. J. Herb. Med. 2019 17-18 100277 10.1016/j.hermed.2019.100277
    [Google Scholar]
  143. Naeimi S.A. Tansaz M. Hajimehdipoor H. Saber S. Comparing the effect of Nigella sativa oil soft gel and placebo on oligomenorrhea, amenorrhea and laboratory characteristics in patients with polycystic ovarian syndrome, a randomized clinical trial. Res. J. Pharmacogn 2020 7
    [Google Scholar]
  144. Rahmani E. Jamilian M. Dadpour B. Nezami Z. Vahedpoor Z. Mahmoodi S. Aghadavod E. Taghizadeh M. Beiki Hassan A. Asemi Z. The effects of fish oil on gene expression in patients with polycystic ovary syndrome. Eur. J. Clin. Invest. 2018 48 3 12893 10.1111/eci.12893 29359480
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266370871250726131232
Loading
/content/journals/ctmc/10.2174/0115680266370871250726131232
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: hyperkalaemia ; PCOS ; hepatotoxicity ; infertility ; essential oils
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test