Skip to content
2000
image of Elucidating the Role of Galectin-3 in the Recurrence of Primary Sclerosing Cholangitis Post-Liver Transplantation as a Potential Therapeutic Target

Abstract

Primary sclerosing cholangitis (PSC) occurs in approximately 25% of patients post-liver transplantation (LT) and is associated with significant morbidity and mortality. Hepatic duct cholestasis following recurrent PSC may lead to the development of liver cirrhosis and the need for liver retransplantation. To date, the exact etiology of the recurrence of PSC post-LT remains unknown, and it is not currently possible to predict which patients are at risk for recurrence of PSC. Extracellular Galectin-3 (Gal-3) acts as a damage-associated molecular pattern (DAMP) when released into the extracellular matrix (ECM) by injured liver cells. Gal-3 plays a crucial role in immune responses and inflammation by binding and cross-linking surface proteins of neutrophils and macrophages, facilitating the chemotaxis of immune cells to the site of injury, and activating the macrophage inflammasome complex. In addition, Gal-3, by activation of hepatic satellite cells (HSC) to myofibroblast phenotype, induces profibrotic molecules, such as transforming growth factor beta (TGF-β) and increases the expression of collagens in the ECM, leading to liver fibrogenesis. According to the evidence, targeting Gal-3 may have important therapeutic potential in preventing the progression of recurrence in PSC and cholestatic progression post-LT.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266378899250630063559
2025-08-05
2026-01-31
Loading full text...

Full text loading...

References

  1. Rabiee A. Silveira M.G. Primary sclerosing cholangitis. Transl. Gastroenterol. Hepatol. 2021 6 29 10.21037/tgh‑20‑266 33824933
    [Google Scholar]
  2. Pinzani M. Luong T.V. Pathogenesis of biliary fibrosis Biochim 5 Biophys. Acta. Mol. Basis Dis 2018 1864 4 1279 1283> (4 Pt B) 10.1016/j.bbadis.2017.07.026 28754450
    [Google Scholar]
  3. Gochanour E. Jayasekera C. Kowdley K. Primary sclerosing cholangitis: Epidemiology, genetics, diagnosis, and current management. Clin. Liver Dis. (Hoboken) 2020 15 3 125 128 10.1002/cld.902 32257124
    [Google Scholar]
  4. Egawa H. Ueda Y. Ichida T. Teramukai S. Nakanuma Y. Onishi S. Tsubouchi H. Risk factors for recurrence of primary sclerosing cholangitis after living donor liver transplantation in Japanese registry. Am. J. Transplant. 2011 11 3 518 527 10.1111/j.1600‑6143.2010.03402.x 21219581
    [Google Scholar]
  5. Alexander J. Lord J.D. Yeh M.M. Cuevas C. Bakthavatsalam R. Kowdley K.V. Risk factors for recurrence of primary sclerosing cholangitis after liver transplantation. Liver Transpl. 2008 14 2 245 251 10.1002/lt.21394 18236405
    [Google Scholar]
  6. Miki C. Harrison J.D. Gunson B.K. Buckels J A C. McMaster P. Mayer A.D. Inflammatory bowel disease in primary sclerosing cholangitis: An analysis of patients undergoing liver transplantation. Br. J. Surg. 1995 82 8 1114 1117 10.1002/bjs.1800820836 7648169
    [Google Scholar]
  7. Morgan M.A. Khot R. Sundaram K.M. Ludwig D.R. Nair R.T. Mittal P.K. Ganeshan D.M. Venkatesh S.K. Primary sclerosing cholangitis: review for radiologists. Abdom. Radiol. (N.Y.) 2022 48 1 136 150 10.1007/s00261‑022‑03655‑6 36063181
    [Google Scholar]
  8. Guichelaar M.M.J. Benson J.T. Malinchoc M. Krom R.A.F. Wiesner R.H. Charlton M.R. Risk factors for and clinical course of non-anastomotic biliary strictures after liver transplantation. Am. J. Transplant. 2003 3 7 885 890 10.1034/j.1600‑6143.2003.00165.x 12814481
    [Google Scholar]
  9. Torras J. Lladó L. Figueras J. Ramos E. Lama C. Fabregat J. Rafecas A. Escalante E. Dominguez J. Sancho C. Jaurrieta E. Biliary tract complications after liver transplantation: type, management, and outcome. Transplant. Proc. 1999 31 6 2406 10.1016/S0041‑1345(99)00404‑2 10500643
    [Google Scholar]
  10. He X.S. Ansari A.A. Ridgway W.M. Coppel R.L. Gershwin M.E. New insights to the immunopathology and autoimmune responses in primary biliary cirrhosis. Cell. Immunol. 2006 239 1 1 13 10.1016/j.cellimm.2006.04.006 16765923
    [Google Scholar]
  11. Tian J. Yang G. Chen H.Y. Hsu D.K. Tomilov A. Olson K.A. Dehnad A. Fish S.R. Cortopassi G. Zhao B. Liu F.T. Gershwin M.E. Török N.J. Jiang J.X. Galectin‐3 regulates inflammasome activation in cholestatic liver injury. FASEB J. 2016 30 12 4202 4213 10.1096/fj.201600392RR 27630169
    [Google Scholar]
  12. Grujcic M. Milovanovic M. Nedeljkovic J. Jovanovic D. Arsenijevic D. Solovjova N. Stankovic V. Tanaskovic I. Arsenijevic A. Milovanovic J. The possible effects of galectin-3 on mechanisms of renal and hepatocellular injury induced by intravascular hemolysis. Int. J. Mol. Sci. 2024 25 15 8129 10.3390/ijms25158129 39125698
    [Google Scholar]
  13. Henderson N.C. Mackinnon A.C. Farnworth S.L. Poirier F. Russo F.P. Iredale J.P. Haslett C. Simpson K.J. Sethi T. Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc. Natl. Acad. Sci. USA 2006 103 13 5060 5065 10.1073/pnas.0511167103 16549783
    [Google Scholar]
  14. Zhao J. Fan Y.C. Liu X.Y. Zhao Z.H. Li F. Wang K. Hypermethylation of the galectin-3 promoter is associated with poor prognosis of acute-on-chronic hepatitis B liver failure. Dig. Liver Dis. 2017 49 6 664 671 10.1016/j.dld.2017.01.158
    [Google Scholar]
  15. Bouffette S. Botez, I Targeting galectin-3 in inflammatory and fibrotic diseases. Trends Pharmacol. Sci. 2023 44 8 519 531
    [Google Scholar]
  16. Slack R.J. Mills R. Mackinnon A.C. The therapeutic potential of galectin-3 inhibition in fibrotic disease. Int. J. Biochem. Cell Biol. 2021 130 105881 10.1016/j.biocel.2020.105881 33181315
    [Google Scholar]
  17. Henderson N.C. Mackinnon A.C. Farnworth S.L. Kipari T. Haslett C. Iredale J.P. Liu F.T. Hughes J. Sethi T. Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am. J. Pathol. 2008 172 2 288 298 10.2353/ajpath.2008.070726 18202187
    [Google Scholar]
  18. Matsuda Y. Yamagiwa Y. Fukushima K. Ueno Y. Shimosegawa T. Expression of galectin-3 involved in prognosis of patients with hepatocellular carcinoma. Hepatol. Res. 2008 38 11 1098 1111 10.1111/j.1872‑034X.2008.00387.x
    [Google Scholar]
  19. Butscheid M. Hauptvogel P. Fritz P. Klotz U. Alscher D.M. Hepatic expression of galectin-3 and receptor for advanced glycation end products in patients with liver disease. J. Clin. Pathol. 2007 60 4 415 418 10.1136/jcp.2005.032391 16775125
    [Google Scholar]
  20. Shimonishi T. Miyazaki K. Kono N. Sabit H. Tuneyama K. Harada K. Hirabayashi J. Kasai K. Nakanuma Y. Expression of endogenous galectin-1 and galectin-3 in intrahepatic cholangiocarcinoma. Hum. Pathol. 2001 32 3 302 310 10.1053/hupa.2001.22767 11274640
    [Google Scholar]
  21. Jiang J.X. Chen X. Hsu D.K. Baghy K. Serizawa N. Scott F. Takada Y. Takada Y. Fukada H. Chen J. Devaraj S. Adamson R. Liu F.T. Török N.J. Galectin-3 modulates phagocytosis-induced stellate cell activation and liver fibrosis in vivo. Am. J. Physiol. Gastrointest. Liver Physiol. 2012 302 4 G439 G446 10.1152/ajpgi.00257.2011 22159281
    [Google Scholar]
  22. Honsawek S. Chongsrisawat V. Praianantathavorn K. Theamboonlers A. Poovorawan Y. Elevation of serum galectin-3 and liver stiffness measured by transient elastography in biliary atresia. European journal of pediatric surgery: official journal of Austrian Association of Pediatric Surgery [et al] =. Z. Kinderchir. 2011 21 4 250 254
    [Google Scholar]
  23. Dumic J. Dabelic S. Flögel M. Galectin-3: An open-ended story. Biochim. Biophys. Acta, Gen. Subj. 2006 1760 4 616 635 10.1016/j.bbagen.2005.12.020 16478649
    [Google Scholar]
  24. Lepur A. Salomonsson E. Nilsson U.J. Leffler H. Ligand induced galectin-3 protein self-association. J. Biol. Chem. 2012 287 26 21751 21756 10.1074/jbc.C112.358002 22549776
    [Google Scholar]
  25. Barondes S.H. Cooper D.N. Gitt M.A. Leffler H. Galectins. Structure and function of a large family of animal lectins. J. Biol. Chem. 1994 269 33 20807 20810 10.1016/S0021‑9258(17)31891‑4 8063692
    [Google Scholar]
  26. Nabi I.R. Shankar J. Dennis J.W. The galectin lattice at a glance. J. Cell Sci. 2015 128 13 2213 2219 10.1242/jcs.151159 26092931
    [Google Scholar]
  27. Sciacchitano S. Lavra L. Morgante A. Ulivieri A. Magi F. De Francesco G. Bellotti C. Salehi L. Ricci A. Galectin-3: One molecule for an alphabet of diseases, from A to Z. Int. J. Mol. Sci. 2018 19 2 379 10.3390/ijms19020379 29373564
    [Google Scholar]
  28. Oka N. Nakahara S. Takenaka Y. Fukumori T. Hogan V. Kanayama H. Yanagawa T. Raz A. Galectin-3 inhibits tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by activating Akt in human bladder carcinoma cells. Cancer Res. 2005 65 17 7546 7553 10.1158/0008‑5472.CAN‑05‑1197 16140916
    [Google Scholar]
  29. Shimura T. Takenaka Y. Fukumori T. Tsutsumi S. Okada K. Hogan V. Kikuchi A. Kuwano H. Raz A. Implication of galectin-3 in Wnt signaling. Cancer Res. 2005 65 9 3535 3537 10.1158/0008‑5472.CAN‑05‑0104 15867344
    [Google Scholar]
  30. Gaughan E.E. Quinn T.M. Mills A. Bruce A.M. Antonelli J. MacKinnon A.C. Aslanis V. Li F. O’Connor R. Boz C. Mills R. Emanuel P. Burgess M. Rinaldi G. Valanciute A. Mills B. Scholefield E. Hardisty G. Findlay E.G. Parker R.A. Norrie J. Dear J.W. Akram A.R. Koch O. Templeton K. Dockrell D.H. Walsh T.S. Partridge S. Humphries D. Wang-Jairaj J. Slack R.J. Schambye H. Phung D. Gravelle L. Lindmark B. Shankar-Hari M. Hirani N. Sethi T. Dhaliwal K. An inhaled galectin-3 inhibitor in COVID-19 pneumonitis: A phase Ib/IIa randomized controlled clinical Trial (DEFINE). Am. J. Respir. Crit. Care Med. 2023 207 2 138 149 10.1164/rccm.202203‑0477OC 35972987
    [Google Scholar]
  31. Rabinovich G.A. Toscano M.A. Jackson S.S. Vasta G.R. Functions of cell surface galectin-glycoprotein lattices. Curr. Opin. Struct. Biol. 2007 17 5 513 520 10.1016/j.sbi.2007.09.002 17950594
    [Google Scholar]
  32. Chen J. Zhang S. The role of inflammation in cholestatic liver injury. J. Inflamm. Res. 2023 16 4527 4540 10.2147/JIR.S430730 37854312
    [Google Scholar]
  33. van Golen R.F. van Gulik T.M. Heger M. The sterile immune response during hepatic ischemia/reperfusion. Cytokine Growth Factor Rev. 2012 23 3 69 84 10.1016/j.cytogfr.2012.04.006 22609105
    [Google Scholar]
  34. van Riel W.G. van Golen R.F. Reiniers M.J. Heger M. van Gulik T.M. How much ischemia can the liver tolerate during resection? Hepatobiliary Surg. Nutr. 2016 5 1 58 71 26904558
    [Google Scholar]
  35. van Golen R.F. van Gulik T.M. Heger M. Mechanistic overview of reactive species-induced degradation of the endothelial glycocalyx during hepatic ischemia/reperfusion injury. Free Radic. Biol. Med. 2012 52 8 1382 1402 10.1016/j.freeradbiomed.2012.01.013 22326617
    [Google Scholar]
  36. van Golen R.F. Reiniers M.J. Marsman G. Alles L.K. van Rooyen D.M. Petri B. Van der Mark V.A. van Beek A.A. Meijer B. Maas M.A. Zeerleder S. Verheij J. Farrell G.C. Luken B.M. Teoh N.C. van Gulik T.M. Murphy M.P. Heger M. The damage-associated molecular pattern HMGB1 is released early after clinical hepatic ischemia/reperfusion. Biochim. Biophys. Acta Mol. Basis Dis. 2019 1865 6 1192 1200 10.1016/j.bbadis.2019.01.014 30658161
    [Google Scholar]
  37. Srejovic I.M. Lukic M.L. Galectin-3 in T cell-mediated immunopathology and autoimmunity. Immunol. Lett. 2021 233 57 67 10.1016/j.imlet.2021.03.009 33753135
    [Google Scholar]
  38. Liu F.T. Rabinovich G.A. Galectins as modulators of tumour progression. Nat. Rev. Cancer 2005 5 1 29 41 10.1038/nrc1527 15630413
    [Google Scholar]
  39. Arsenijevic A. Milovanovic M. Milovanovic J. Stojanovic B. Zdravkovic N. Leung P.S.C. Liu F.T. Gershwin M.E. Lukic M.L. Deletion of galectin-3 enhances xenobiotic induced murine primary biliary cholangitis by facilitating apoptosis of becs and release of autoantigens. Sci. Rep. 2016 6 1 23348 10.1038/srep23348 26996208
    [Google Scholar]
  40. Arsenijevic A. Milovanovic J. Stojanovic B. Djordjevic D. Stanojevic I. Jankovic N. Vojvodic D. Arsenijevic N. Lukic M.L. Milovanovic M. Gal-3 deficiency suppresses Novosphyngobium aromaticivorans inflammasome activation and IL-17 driven autoimmune cholangitis in mice. Front. Immunol. 2019 10 1309 10.3389/fimmu.2019.01309 31231399
    [Google Scholar]
  41. Bauernfeind F.G. Horvath G. Stutz A. Alnemri E.S. MacDonald K. Speert, D Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol. 2009 183 2 787 791
    [Google Scholar]
  42. Halle A. Hornung V. Petzold G.C. Stewart C.R. Monks B.G. Reinheckel T. Fitzgerald K.A. Latz E. Moore K.J. Golenbock D.T. The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat. Immunol. 2008 9 8 857 865 10.1038/ni.1636 18604209
    [Google Scholar]
  43. Ramos-Tovar E. Muriel P. NLRP3 inflammasome in hepatic diseases: A pharmacological target. Biochem. Pharmacol. 2023 217 115861 10.1016/j.bcp.2023.115861 37863329
    [Google Scholar]
  44. Davis B.K. Wen H. Ting J.P.Y. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu. Rev. Immunol. 2011 29 1 707 735 10.1146/annurev‑immunol‑031210‑101405 21219188
    [Google Scholar]
  45. Tian J. Yang G. Chen H.Y. Hsu D.K. Tomilov A. Olson K.A. Dehnad A. Fish S.R. Cortopassi G. Zhao B. Liu F.T. Gershwin M.E. Torok N.J. Jiang J.X. Galectin-3 regulates inflammasome activation in cholestatic liver injury. FASEB J. 2016 30 12 4202 4213 10.1096/fj.201600392RR 27630169
    [Google Scholar]
  46. Wu H. Chen C. Ziani S. Nelson L.J. Ávila M.A. Nevzorova Y.A. Cubero F.J. Fibrotic events in the progression of cholestatic liver disease. Cells 2021 10 5 1107 10.3390/cells10051107 34062960
    [Google Scholar]
  47. Alvaro D. Mancino M.G. New insights on the molecular and cell biology of human cholangiopathies. Mol. Aspects Med. 2008 29 1-2 50 57 10.1016/j.mam.2007.09.007 18230407
    [Google Scholar]
  48. Milani S. Herbst H. Schuppan D. Surrenti C. Riecken E.O. Stein H. Cellular localization of type I III and IV procollagen gene transcripts in normal and fibrotic human liver. Am. J. Pathol. 1990 137 1 59 70 2372043
    [Google Scholar]
  49. Sotoudeheian M. Galectin-3 and severity of liver fibrosis in metabolic dysfunction-associated fatty liver disease. Protein Pept. Lett. 2024 31 4 290 304 10.2174/0109298665301698240404061300 38715329
    [Google Scholar]
  50. Li L. Li J. Gao J. Functions of galectin-3 and its role in fibrotic diseases. J. Pharmacol. Exp. Ther. 2014 351 2 336 343 10.1124/jpet.114.218370 25194021
    [Google Scholar]
  51. Moon H.W. Park M. Hur M. Kim H. Choe W.H. Yun Y.M. Usefulness of enhanced liver fibrosis, glycosylation isomer of Mac-2 Binding protein, galectin-3, and soluble suppression of tumorigenicity 2 for assessing liver fibrosis in chronic liver diseases. Ann. Lab. Med. 2018 38 4 331 337 10.3343/alm.2018.38.4.331 29611383
    [Google Scholar]
  52. MacKinnon A.C. Farnworth S.L. Hodkinson P.S. Henderson N.C. Atkinson K.M. Leffler H. Regulation of alternative macrophage activation by galectin-3. J. Immunol. 2008 180 4 2650 2658 10.4049/jimmunol.180.4.2650
    [Google Scholar]
  53. Guicciardi M.E. Trussoni C.E. Krishnan A. Bronk S.F. Lorenzo Pisarello M.J. O’Hara S.P. Splinter P.L. Gao Y. Vig P. Revzin A. LaRusso N.F. Gores G.J. Macrophages contribute to the pathogenesis of sclerosing cholangitis in mice. J. Hepatol. 2018 69 3 676 686 10.1016/j.jhep.2018.05.018 29802947
    [Google Scholar]
  54. Gudowska M. Gruszewska E. Cylwik B. Panasiuk A. Rogalska M. Flisiak R. Szmitkowski M. Chrostek L. Galectin-3 concentration in liver diseases. Ann. Clin. Lab. Sci. 2015 45 6 669 673 26663797
    [Google Scholar]
  55. Cervantes-Alvarez E. Limon-de la Rosa N. Vilatoba M. Pérez-Monter C. Hurtado-Gomez S. Martinez-Cabrera C. Galectin-3 is overexpressed in advanced cirrhosis and predicts post-liver transplant infectious complications. Liver Int. 2022 42 10 2260 2273 10.1111/liv.15365
    [Google Scholar]
  56. An Y. Xu S. Liu Y. Xu X. Philips C.A. Chen J. Méndez-Sánchez N. Guo X. Qi X. Role of Galectins in the Liver diseases: A systematic review and Meta-analysis. Front. Med. (Lausanne) 2021 8 744518 10.3389/fmed.2021.744518 34778306
    [Google Scholar]
  57. Abu-Elsaad N.M. Elkashef W.F. Modified citrus pectin stops progression of liver fibrosis by inhibiting galectin-3 and inducing apoptosis of stellate cells. Can. J. Physiol. Pharmacol. 2016 94 5 554 562 10.1139/cjpp‑2015‑0284 27010252
    [Google Scholar]
  58. Volarevic V. Milovanovic M. Ljujic B. Pejnovic N. Arsenijevic N. Nilsson U. Leffler H. Lukic M.L. Galectin-3 deficiency prevents concanavalin A–induced hepatitis in mice. Hepatology 2012 55 6 1954 1964 10.1002/hep.25542 22213244
    [Google Scholar]
  59. Pedrosa L.F. Raz A. Fabi J.P. The complex biological effects of pectin: Galectin-3 targeting as potential human health improvement? Biomolecules 2022 12 2 289 10.3390/biom12020289 35204790
    [Google Scholar]
  60. Zetterberg F.R. MacKinnon A. Brimert T. Gravelle L. Johnsson R.E. Kahl-Knutson B. Leffler H. Nilsson U.J. Pedersen A. Peterson K. Roper J.A. Schambye H. Slack R.J. Tantawi S. Discovery and Optimization of the First Highly Effective and Orally Available Galectin-3 Inhibitors for Treatment of Fibrotic Disease. J. Med. Chem. 2022 65 19 12626 12638 10.1021/acs.jmedchem.2c00660 36154172
    [Google Scholar]
  61. Traber P.G. Zomer E. Therapy of experimental NASH and fibrosis with galectin inhibitors. PLoS One 2013 8 12 e83481 10.1371/journal.pone.0083481 24367597
    [Google Scholar]
  62. Traber P.G. Chou H. Zomer E. Hong F. Klyosov A. Fiel M.I. Friedman S.L. Regression of fibrosis and reversal of cirrhosis in rats by galectin inhibitors in thioacetamide-induced liver disease. PLoS One 2013 8 10 e75361 10.1371/journal.pone.0075361 24130706
    [Google Scholar]
  63. Chalasani N. Abdelmalek M.F. Garcia-Tsao G. Vuppalanchi R. Alkhouri N. Rinella M. Noureddin M. Pyko M. Shiffman M. Sanyal A. Allgood A. Shlevin H. Horton R. Zomer E. Irish W. Goodman Z. Harrison S.A. Traber P.G. Abdelmalek M. Balart L. Borg B. Chalasani N. Charlton M. Conjeevaram H. Fuchs M. Ghalib R. Gholam P. Halegoua-De Marzio D. Harrison S. Jue C. Kemmer N. Kowdley K. Lai M. Lawitz E. Loomba R. Noureddin M. Paredes A. Rinella M. Rockey D. Rodriguez M. Rubin R. Ryan M. Sanyal A. Scanga A. Sepe T. Shiffman M. Shiffman M. Tetri B. Thuluvath P. Torres D. Vierling J. Wattacheril J. Weiland A. Zogg D. Effects of belapectin, an inhibitor of galectin-3, in patients with nonalcoholic steatohepatitis with cirrhosis and portal hypertension. Gastroenterology 2020 158 5 1334 1345.e5 10.1053/j.gastro.2019.11.296 31812510
    [Google Scholar]
  64. MacKinnon A.C. Gibbons M.A. Farnworth S.L. Leffler H. Nilsson U.J. Delaine T. Simpson A.J. Forbes S.J. Hirani N. Gauldie J. Sethi T. Regulation of transforming growth factor-β1-driven lung fibrosis by galectin-3. Am. J. Respir. Crit. Care Med. 2012 185 5 537 546 10.1164/rccm.201106‑0965OC 22095546
    [Google Scholar]
  65. Yu H. Yang F. Zhong W. Jiang X. Zhang F. Ji X. Xue M. Qiu Y. Yu J. Hu X. Chen J. Bao Z. Secretory Galectin-3 promotes hepatic steatosis via regulation of the PPARγ/CD36 signaling pathway. Cell. Signal. 2021 84 110043 10.1016/j.cellsig.2021.110043 33991615
    [Google Scholar]
  66. Hirani N. MacKinnon A.C. Nicol L. Ford P. Schambye H. Pedersen A. Nilsson U.J. Leffler H. Sethi T. Tantawi S. Gravelle L. Slack R.J. Mills R. Karmakar U. Humphries D. Zetterberg F. Keeling L. Paul L. Molyneaux P.L. Li F. Funston W. Forrest I.A. Simpson A.J. Gibbons M.A. Maher T.M. Target inhibition of galectin-3 by inhaled TD139 in patients with idiopathic pulmonary fibrosis. Eur. Respir. J. 2021 57 5 2002559 10.1183/13993003.02559‑2020 33214209
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266378899250630063559
Loading
/content/journals/ctmc/10.2174/0115680266378899250630063559
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test