Skip to content
2000
image of Harnessing the Potential of Polysaccharide-Derived Biomaterials for Wound Healing Applications

Abstract

Introduction

Polysaccharide-derived biomaterials have emerged as promising candidates for wound healing applications due to their biocompatibility, biodegradability, and ability to mimic the extracellular matrix. These materials play a crucial role in maintaining a moist wound environment, promoting cell proliferation, and exhibiting anti-microbial properties, making them suitable alternatives to traditional wound dressings.

Methods

A systematic literature review was conducted using reputable databases including ScienceDirect, PubMed, Scopus, and Google Scholar. Relevant studies were identified, screened, and analyzed to ensure comprehensive coverage of the topic.

Result

Wound healing is aided by essential polysaccharides such as chitosan, alginate, cellulose, and carrageenan, which help to retain moisture, promote cell proliferation, and prevent infections.

Discussion

Polysaccharide-derived biomaterials, including chitosan, alginate, and cellulose, facilitate wound healing by maintaining moisture, promoting cell migration, and exhibiting anti-microbial properties. However, challenges such as weak mechanical strength and rapid degradation limit their clinical use. Recent advancements in composite hydrogels, nanomaterials, and 3D-printed scaffolds have improved stability, drug release, and anti-microbial efficacy. Further research is required to enhance their mechanical properties and long-term applicability for clinical wound care solutions.

Conclusion

Biomaterials developed from polysaccharides have the potential to revolutionize wound healing by providing biocompatible, adaptable solutions that promote enhanced tissue regeneration and infection control.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266376125250711135143
2025-07-24
2025-12-17
Loading full text...

Full text loading...

References

  1. Rahnamaeian M. Vilcinskas A. Short antimicrobial peptides as cosmetic ingredients to deter dermatological pathogens. Appl. Microbiol. Biotechnol. 2015 99 21 8847 8855 10.1007/s00253‑015‑6926‑1 26307444
    [Google Scholar]
  2. Devi A. Kumar M. Kumar M. Mandal U.K. Review on disease, dose, destination and delivery aspects of simvastatin. Drug Deliv. Lett. 2020 10 4 278 287 10.2174/2210303110999200730215812
    [Google Scholar]
  3. Okur M.E. Karantas I.D. Şenyiğit Z. Okur N.Ü. Siafaka P.I. Recent trends on wound management: New therapeutic choices based on polymeric carriers. Asian J. Pharm. Sci. 2020 15 6 661 684 10.1016/j.ajps.2019.11.008 33363624
    [Google Scholar]
  4. Sen C.K. Human wound and its burden: Updated 2020 compendium of estimates. Adv. Wound Care (New Rochelle) 2021 10 5 281 292 10.1089/wound.2021.0026 33733885
    [Google Scholar]
  5. Ongarora B.G. Recent technological advances in the management of chronic wounds: A literature review. Health Sci. Rep. 2022 5 3 e641 10.1002/hsr2.641 35601031
    [Google Scholar]
  6. Lindholm C. Searle R. Wound management for the 21st century: Combining effectiveness and efficiency. Int. Wound. J. 2016 13 S2 5 15.(Suppl. 2) 10.1111/iwj.12623 27460943
    [Google Scholar]
  7. Prasathkumar M. Sadhasivam S. Chitosan/Hyaluronic acid/Alginate and an assorted polymers loaded with honey, plant, and marine compounds for progressive wound healing—Know-how. Int. J. Biol. Macromol. 2021 186 186 656 685 10.1016/j.ijbiomac.2021.07.067 34271047
    [Google Scholar]
  8. Yu R. Zhang H. Guo B. Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering. Nano-Micro Lett. 2021 14 1 1 46 34859323
    [Google Scholar]
  9. Katiyar S Singh D Kumari S Srivastava P Mishra A A Novel strategies for designing regenerative skin products for accelerated wound healing. 3 Biotech 2022 12 11 316 322 10.1007/s13205‑022‑03331‑y 36276437
    [Google Scholar]
  10. Falanga V. Isseroff R.R. Soulika A.M. Romanelli M. Margolis D. Kapp S. Granick M. Harding, K Chronic wounds. Nat. Rev. Dis. Primers 2022 8 1 50 10.1038/s41572‑022‑00377‑3 35864102
    [Google Scholar]
  11. Sachdeva C. Satyamoorthy K. Murali T.S. Microbial interplay in skin and chronic wounds. Curr. Clin. Microbiol. Rep. 2022 9 3 21 31
    [Google Scholar]
  12. Alam W. Hasson J. Reed M. Clinical approach to chronic wound management in older adults. J. Am. Geriatr. Soc. 2021 69 8 2327 2334 34002364
    [Google Scholar]
  13. Rezvani Ghomi E. Niazi M. Ramakrishna S. The evolution of wound dressings: From traditional to smart dressings. Polym. Adv. Technol. 2023 34 2 520 530
    [Google Scholar]
  14. Farahani M. Shafiee A. Wound healing: From passive to smart dressings. Adv. Healthc. Mater. 2021 10 16 e2100477 34174163
    [Google Scholar]
  15. Naseri-Nosar M. Ziora Z.M. Wound dressings from naturally-occurring polymers: A review on homopolysaccharide-based composites. Carbohydr. Polym. 2018 189 379 398 29580422
    [Google Scholar]
  16. Farzamfar S. Naseri-Nosar M. Samadian H. Mahakizadeh S. Tajerian R. Rahmati M. Vaez A. Salehi M. Taurine-loaded poly (ε-caprolactone)/gelatin electrospun mat as a potential wound dressing material: In vitro and in vivo evaluation. J. Bioact. Compat. Polym. 2018 33 3 282 294 10.1177/0883911517737103
    [Google Scholar]
  17. Kim H.S. Sun X. Lee J.H. Kim H.W. Fu X. Leong K.W. Advanced drug delivery systems and artificial skin grafts for skin wound healing. Adv. Drug Deliv. Rev. 2019 146 146 209 239 10.1016/j.addr.2018.12.014 30605737
    [Google Scholar]
  18. Rezvani Ghomi E. Khalili S. Nouri Khorasani S. Esmaeely Neisiany R. Ramakrishna S. Wound dressings: Current advances and future directions. J. Appl. Polym. Sci. 2019 136 27 47738 10.1002/app.47738
    [Google Scholar]
  19. Song H.Q. Fan Y. Hu Y. Cheng G. Xu F.J. Polysaccharide–peptide conjugates: A versatile material platform for biomedical applications. Adv. Funct. Mater. 2021 31 6 2005978 10.1002/adfm.202005978
    [Google Scholar]
  20. Falbo F. Spizzirri U.G. Restuccia D. Aiello F. Natural compounds and biopolymers-based hydrogels join forces to promote wound healing. Pharmaceutics 2023 15 1 271 10.3390/pharmaceutics15010271 36678899
    [Google Scholar]
  21. Khan S.A. Abbasi N. Hussain D. Khan T.A. Sustainable mitigation of paracetamol with a novel dual-functionalized pullulan/kaolin hydrogel nanocomposite from simulated wastewater. Langmuir 2022 38 27 8280 8295 10.1021/acs.langmuir.2c00702 35758902
    [Google Scholar]
  22. Sood A. Gupta A. Agrawal G. Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering applications. Carbohydr Polymer Technol Applications 2021 2 100067 10.1016/j.carpta.2021.100067
    [Google Scholar]
  23. Zhu T. Mao J. Cheng Y. Liu H. Lv L. Ge M. Li S. Huang J. Chen Z. Li H. Yang L. Recent progress of polysaccharide‐based hydrogel interfaces for wound healing and tissue engineering. Adv. Mater. Interfaces 2019 6 17 1900761
    [Google Scholar]
  24. Zubair M. Hussain A. Shahzad S. Arshad M. Ullah A. Emerging trends and challenges in polysaccharide derived materials for wound care applications: A review. Int. J. Biol. Macromol. 2024 270 Pt 1 132048 38704062
    [Google Scholar]
  25. Cui R. Zhang L. Ou R. Xu Y. Xu L. Zhan X.Y. Li D. Polysaccharide-based hydrogels for wound dressing: Design considerations and clinical applications. Front. Bioeng. Biotechnol. 2022 10 845735 10.3389/fbioe.2022.845735 35321022
    [Google Scholar]
  26. Tang N. Zhang R. Zheng Y. Wang J. Khatib M. Jiang X. Zhou C. Omar R. Saliba W. Wu W. Yuan M. Cui D. Haick H. Highly efficient self‐healing multifunctional dressing with antibacterial activity for sutureless wound closure and infected wound monitoring. Adv. Mater. 2022 34 3 e2106842 34741350
    [Google Scholar]
  27. Abazari M. Akbari T. Hasani M. Sharifikolouei E. Raoufi M. Foroumadi A. Sharifzadeh M. Firoozpour L. Khoobi M. Polysaccharide-based hydrogels containing herbal extracts for wound healing applications. Carbohydr. Polym. 2022 294 119808 35868768
    [Google Scholar]
  28. Naghib S.M. Zarrineh M. Mozafari M.R. Printing chitosan-based nanobiomaterials for biomedicine and drug delivery: Recent advances on the promising bioactive agents and technologies. Curr. Org. Chem. 2024 28 7 510 525
    [Google Scholar]
  29. Sadeghianmaryan A. Ahmadian N. Wheatley S. Alizadeh Sardroud H. Nasrollah S.A.S. Naseri E. Ahmadi A. Advancements in 3D-printable polysaccharides, proteins, and synthetic polymers for wound dressing and skin scaffolding: A review. Int. J. Biol. Macromol. 2024 266 Pt 1 131207 10.1016/j.ijbiomac.2024.131207 38552687
    [Google Scholar]
  30. Biranje S.S. Sun J. Shi Y. Yu S. Jiao H. Zhang M. Wang Q. Wang J. Liu J. Polysaccharide-based hemostats: Recent developments, challenges, and future perspectives. Cellulose 2021 28 8899 8937
    [Google Scholar]
  31. Panahi H.K. Dehhaghi M. Amiri H. Guillemin G.J. Gupta V.K. Rajaei A. Yang Y. Peng W. Pan J. Aghbashlo M. Tabatabaei M. Current and emerging applications of saccharide-modified chitosan: A critical review. Biotechnol. Adv. 2023 66 108172 10.1016/j.biotechadv.2023.108172 37169103
    [Google Scholar]
  32. Abourehab M.A. Rajendran R.R. Singh A. Pramanik S. Shrivastav P. Ansari M.J. Manne R. Amaral L.S. Deepak A. Alginate as a promising biopolymer in drug delivery and wound healing: A review of the state-of-the-art. Int. J. Mol. Sci. 2022 23 16 9035 10.3390/ijms23169035 36012297
    [Google Scholar]
  33. Antoszewska M. Sokolewicz E.M. Barańska-Rybak W. Wide use of hyaluronic acid in the process of wound healing: A rapid review. Sci. Pharm. 2024 92 2 23 10.3390/scipharm92020023
    [Google Scholar]
  34. Gardikiotis I. Cojocaru F.D. Mihai C.T. Balan V. Dodi G. Borrowing the features of biopolymers for emerging wound healing dressings: A review. Int. J. Mol. Sci. 2022 23 15 8778 10.3390/ijms23158778
    [Google Scholar]
  35. Berradi A. Aziz F. Achaby M.E. Ouazzani N. Mandi L. A comprehensive review of polysaccharide-based hydrogels as promising biomaterials. Polymers 2023 15 13 2908 10.3390/polym15132908 37447553
    [Google Scholar]
  36. Souza P.R. de Oliveira A.C. Vilsinski B.H. Kipper M.J. Martins A.F. Polysaccharide-based materials created by physical processes: From preparation to biomedical applications. Pharmaceutics 2021 13 5 621 10.3390/pharmaceutics13050621 33925380
    [Google Scholar]
  37. Ozuna-Valencia K.H. Rodríguez-Félix F. Márquez-Ríos E. Moreno-Vásquez M.J. Graciano-Verdugo A.Z. Robles-García M.Á. Aubourg-Martínez S.P. Quintero-Reyes I.E. López-Corona B.E. Tapia-Hernández J.A. Improving the properties of polysaccharide-based films by incorporation of polyphenols through free radical grafting: A review. Polysaccharides 2024 5 4 672 697 10.3390/polysaccharides5040043
    [Google Scholar]
  38. Tiwari S. Patil R. Bahadur P. Polysaccharide based scaffolds for soft tissue engineering applications. Polymers 2018 11 1 1 10.3390/polym11010001 30959985
    [Google Scholar]
  39. Greaves N.S. Ashcroft K.J. Baguneid M. Bayat A. Current understanding of molecular and cellular mechanisms in fibroplasia and angiogenesis during acute wound healing. J. Dermatol. Sci. 2013 72 3 206 10.1016/j.jdermsci.2013.07.008
    [Google Scholar]
  40. Sun B.K. Siprashvili Z. Khavari P.A. Advances in skin grafting and treatment of cutaneous wounds. Science 2014 346 6212 941 10.1126/science.1253836
    [Google Scholar]
  41. Bielefeld K.A. Amini-Nik S. Alman B.A. Cutaneous wound healing: Recruiting developmental pathways for regeneration. Cell. Mol. Life Sci. 2013 70 12 2059 2081 23052205
    [Google Scholar]
  42. Artuc M. Hermes B. Stckelings U.M. Grützkau A. Henz B.M. Mast cells and their mediators in cutaneous wound healing – active participants or innocent bystanders? Exp. Dermatol. 1999 8 1 1 16 10.1111/j.1600‑0625.1999.tb00342.x 10206716
    [Google Scholar]
  43. Velnar T. Bailey T. Smrkolj V. The wound healing process: An overview of the cellular and molecular mechanisms. J. Int. Med. Res. 2009 37 5 1528 1542 19930861
    [Google Scholar]
  44. Gonzalez A.C. Costa T.F. Andrade Z.A. Medrado A.R. Wound healing: A literature review. An. Bras. Dermatol. 2016 91 5 614 620 27828635
    [Google Scholar]
  45. Mahmoodi M. Hydari M.H. Mahmoodi L. Gazanfari L. Mirhaj M. Electrophoretic deposition of graphene oxide reinforced hydroxyapatite on the tantalum substrate for bone implant applications: In vitro corrosion and bio-tribological behavior. Surf. Coat. Tech. 2021 424 127642 10.1016/j.surfcoat.2021.127642
    [Google Scholar]
  46. Zhang M. Zhao X. Alginate hydrogel dressings for advanced wound management. Int. J. Biol. Macromol. 2020 162 162 1414 1428 32777428
    [Google Scholar]
  47. Das S. Baker A.B. Biomaterials and nanotherapeutics for enhancing skin wound healing. Front. Bioeng. Biotechnol. 2016 4 82 10.3389/fbioe.2016.00082 27843895
    [Google Scholar]
  48. Darge H.F. Andrgie A.T. Tsai H.C. Lai J.Y. Polysaccharide and polypeptide based injectable thermo-sensitive hydrogels for local biomedical applications. Int. J. Biol. Macromol. 2019 133 133 545 563 31004630
    [Google Scholar]
  49. Zhang Y. Wang F. Carbohydrate drugs: Current status and development prospect. Drug Discov. Ther. 2015 9 2 79 87 10.5582/ddt.2015.01028 25994058
    [Google Scholar]
  50. Ngwuluka N.C. Responsive polysaccharides and polysaccharides-based nanoparticles for drug delivery. Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications. Woodhead Publishing 2018 531 554 10.1016/B978‑0‑08‑101997‑9.00023‑0
    [Google Scholar]
  51. Mohammed A.S.A. Naveed M. Jost N. Polysaccharides: Classification, chemical properties, and future perspective applications in fields of pharmacology and biological medicine (a review of current applications and upcoming potentialities). J. Polym. Environ. 2021 29 8 2359 2371 33526994
    [Google Scholar]
  52. Yang W. Kang X. Gao X. Zhuang Y. Fan C. Shen H. Chen Y. Dai J. Biomimetic natural biopolymer‐based wet‐tissue adhesive for tough adhesion, seamless sealed, emergency/nonpressing hemostasis, and promoted wound healing. Adv. Funct. Mater. 2023 33 6 2211340
    [Google Scholar]
  53. Alipour R. Khorshidi A. Shojaei A.F. Mashayekhi F. Moghaddam M.J. Skin wound healing acceleration by Ag nanoparticles embedded in PVA/PVP/Pectin/Mafenide acetate composite nanofibers. Polym. Test. 2019 79 106022 10.1016/j.polymertesting.2019.106022
    [Google Scholar]
  54. Li Z. Lin Z. Recent advances in polysaccharide‐based hydrogels for synthesis and applications. Aggregate 2021 2 2 e21 10.1002/agt2.21
    [Google Scholar]
  55. Rajalekshmy G.P. Devi L.L. Joseph J. Rekha M.R. An overview on the potential biomedical applications of polysaccharides. Functional Polysaccharide Biomed. Appl. 2019 1 33 94 10.1016/B978‑0‑08‑102555‑0.00002‑9
    [Google Scholar]
  56. Guo H. Zhang W. Jiang Y. Wang H. Chen G. Guo M. Physicochemical, structural, and biological properties of polysaccharides from dandelion. Molecules 2019 24 8 1485 10.3390/molecules24081485 30991766
    [Google Scholar]
  57. Lee K.Y. Mooney D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012 37 1 106 126 10.1016/j.progpolymsci.2011.06.003 22125349
    [Google Scholar]
  58. Shariatinia Z. Pharmaceutical applications of chitosan. Adv. Colloid Interface Sci. 2019 263 263 131 194 10.1016/j.cis.2018.11.008 30530176
    [Google Scholar]
  59. Liu J. Zhan X. Wan J. Wang Y. Wang C. Review for carrageenan-based pharmaceutical biomaterials: Favourable physical features versus adverse biological effects. Carbohydr. Polym. 2015 121 121 27 36 10.1016/j.carbpol.2014.11.063 25659668
    [Google Scholar]
  60. Hu Q. Lu Y. Luo Y. Recent advances in dextran-based drug delivery systems: From fabrication strategies to applications. Carbohydr. Polym. 2021 264 117999 10.1016/j.carbpol.2021.117999 33910733
    [Google Scholar]
  61. Díaz-Montes E. Dextran: Sources, structures, and properties. Polysaccharides 2021 2 3 554 565 10.3390/polysaccharides2030033
    [Google Scholar]
  62. Kang Z. Liu L. Liu S. Microbial production of hyaluronic acid: Current state, challenges, and perspectives. Functional Carbohydrates 2017 2 21 42 10.1201/9781315371061‑2
    [Google Scholar]
  63. Singh R.S. Kaur N. Rana V. Kennedy J.F. Pullulan: A novel molecule for biomedical applications. Carbohydr. Polym. 2017 171 171 102 121 10.1016/j.carbpol.2017.04.089 28578944
    [Google Scholar]
  64. Cherng J.H. The strategies of natural polysaccharide in wound healing. Wound. Healing - Current Perspectives; IntechOpen 2018 10.5772/intechopen.73808
    [Google Scholar]
  65. Arif Z.U. The role of polysaccharide-based biodegradable soft polymers in the healthcare sector. Adv. Ind. Eng. Polym. Res. 2024 8 132 136 10.5772/intechopen.73808
    [Google Scholar]
  66. Yuan N. Shao K. Huang S. Chen C. Chitosan, alginate, hyaluronic acid and other novel multifunctional hydrogel dressings for wound healing: A review. Int. J. Biol. Macromol. 2023 240 124321 10.1016/j.ijbiomac.2023.124321 37019198
    [Google Scholar]
  67. Wu S.H. Rethi L. Pan W.Y. Nguyen H.T. Chuang A.E.Y. Emerging horizons and prospects of polysaccharide-constructed gels in the realm of wound healing. Colloids Surf. B Biointerfaces 2024 235 113759 10.1016/j.colsurfb.2024.113759 38280240
    [Google Scholar]
  68. Panyamao P. Ruksiriwanich W. Sirisa-Ard P. Charumanee S. Injectable thermosensitive chitosan/pullulan-based hydrogels with improved mechanical properties and swelling capacity. Polymers 2020 12 11 2514 10.3390/polym12112514 33126695
    [Google Scholar]
  69. Lu Y. Fan L. Yang L.Y. Huang F. Ouyang, XK PEI-modified core-shell/bead-like amino silica enhanced poly (vinyl alcohol)/chitosan for diclofenac sodium efficient adsorption. Carbohydr. Polym. 2020 229 115459 10.1016/j.carbpol.2019.115459 31826399
    [Google Scholar]
  70. Tan Y. Wu H. Xie T. Chen L. Hu S. Tian H. Wang Y. Wang J. Characterization and antibacterial effect of quaternized chitosan anchored cellulose beads. Int. J. Biol. Macromol. 2020 155 155 1325 1332 10.1016/j.ijbiomac.2019.11.104 31730988
    [Google Scholar]
  71. Gupta A. Kowalczuk M. Heaselgrave W. Britland S.T. Martin C. Radecka I. The production and application of hydrogels for wound management: A review. Eur. Polym. J. 2019 111 111 134 151 10.1016/j.eurpolymj.2018.12.019
    [Google Scholar]
  72. Güiza-Argüello V.R. Solarte-David V.A. Pinzón-Mora A.V. Ávila-Quiroga J.E. Becerra-Bayona S.M. Current advances in the development of hydrogel-based wound dressings for diabetic foot ulcer treatment. Polymers 2022 14 14 2764 10.3390/polym14142764 35890541
    [Google Scholar]
  73. Narain R., Ed.; Polymers and Nanomaterials for Gene Therapy. Woodhead Publishing 2016
    [Google Scholar]
  74. Croisier F. Jérôme C. Chitosan-based biomaterials for tissue engineering. Eur. Polym. J. 2013 49 4 780 792 10.1016/j.eurpolymj.2012.12.009
    [Google Scholar]
  75. Trinca R.B. Westin C.B. da Silva J.A.F. Moraes Â.M. Electrospun multilayer chitosan scaffolds as potential wound dressings for skin lesions. Eur. Polym. J. 2017 88 88 161 170 10.1016/j.eurpolymj.2017.01.021
    [Google Scholar]
  76. Hu Z. Zhang D.Y. Lu S.T. Li P.W. Li S.D. Chitosan-based composite materials for prospective hemostatic applications. Mar. Drugs 2018 16 8 273 10.3390/md16080273 30081571
    [Google Scholar]
  77. Aliakbar Ahovan Z. Khosravimelal S. Eftekhari B.S. Mehrabi S. Hashemi A. Eftekhari S. Brouki Milan P. Mobaraki M. Seifalian A.M. Gholipourmalekabadi M. Thermo-responsive chitosan hydrogel for healing of full-thickness wounds infected with XDR bacteria isolated from burn patients: In vitro and in vivo animal model. Int. J. Biol. Macromol. 2020 164 164 4475 4486 32888993
    [Google Scholar]
  78. Malinowska-Pańczyk E. Staroszczyk H. Gottfried K. Kołodziejska I. Wojtasz-Pająk A. Antimicrobial properties of chitosan solutions, chitosan films and gelatin-chitosan films. Polimery 2015 61 11/12 735 741 10.14314/polimery.2015.735
    [Google Scholar]
  79. Sun Z. Shi C. Wang X. Fang Q. Huang J. Synthesis, characterization, and antimicrobial activities of sulfonated chitosan. Carbohydr. Polym. 2017 155 155 321 328 10.1016/j.carbpol.2016.08.069 27702518
    [Google Scholar]
  80. Ibrahim H.M. El-Zairy E.M. Chitosan as a biomaterial—structure, properties, and electrospun nanofibers. Concepts. Compound Alternat Antibacterial 2015 1 1 81 101
    [Google Scholar]
  81. Teng L. Shao Z. Bai Q. Zhang X. He Y.S. Lu J. Zou D. Feng C. Dong C-M. Biomimetic glycopolypeptide hydrogels with tunable adhesion and microporous structure for fast hemostasis and highly efficient wound healing. Adv. Funct. Mater. 2021 31 43 2105628 10.1002/adfm.202105628
    [Google Scholar]
  82. Qu J. Zhao X. Liang Y. Xu Y. Ma P.X. Guo B. Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing. Chem. Eng. J. 2019 362 362 548 560 10.1016/j.cej.2019.01.028
    [Google Scholar]
  83. Li Z. Li B. Li X. Lin Z. Chen L. Chen H. Jin Y. Zhang T. Xia H. Lu Y. Zhang Y. Ultrafast in-situ forming halloysite nanotube-doped chitosan/oxidized dextran hydrogels for hemostasis and wound repair. Carbohydr. Polym. 2021 267 118155 10.1016/j.carbpol.2021.118155 34119129
    [Google Scholar]
  84. Kim S. Competitive biological activities of chitosan and its derivatives: antimicrobial, antioxidant, anticancer, and anti‐inflammatory activities. Int. J. Polym. Sci. 2018 2018 1 1 13 10.1155/2018/1708172
    [Google Scholar]
  85. Wang Y.H. Liu C.C. Cherng J.H. Fan G.Y. Wang Y.W. Chang S.J. Hong Z.J. Lin Y.C. Hsu S.D. Evaluation of chitosan-based dressings in a swine model of artery-injury-related shock. Sci. Rep. 2019 9 1 14608 10.1038/s41598‑019‑51208‑7 31601964
    [Google Scholar]
  86. Feng P. Luo Y. Ke C. Qiu H. Wang W. Zhu Y. Hou R. Xu L. Wu S. Chitosan-based functional materials for skin wound repair: Mechanisms and applications. Front. Bioeng. Biotechnol. 2021 9 650598 10.3389/fbioe.2021.650598 33681176
    [Google Scholar]
  87. Bayat S. Amiri N. Pishavar E. Kalalinia F. Movaffagh J. Hashemi M. Bromelain-loaded chitosan nanofibers prepared by electrospinning method for burn wound healing in animal models. Life Sci. 2019 229 57 66 10.1016/j.lfs.2019.05.028 31085247
    [Google Scholar]
  88. Del Gaudio P. Amante C. Civale R. Bizzarro V. Petrella A. Pepe G. Campiglia P. Russo P. Aquino R.P. In situ gelling alginate-pectin blend particles loaded with Ac2-26: A new weapon to improve wound care armamentarium. Carbohydr. Polym. 2020 227 115305 10.1016/j.carbpol.2019.115305 31590879
    [Google Scholar]
  89. Aderibigbe B.A. Buyana B. Alginate in wound dressings. Pharmaceutics 2018 10 2 42 10.3390/pharmaceutics10020042 29614804
    [Google Scholar]
  90. Venkatesan J. Bhatnagar I. Manivasagan P. Kang K.H. Kim S.K. Alginate composites for bone tissue engineering: A review. Int. J. Biol. Macromol. 2015 72 72 269 281 10.1016/j.ijbiomac.2014.07.008 25020082
    [Google Scholar]
  91. Stößlein S. Grunwald I. Stelten J. Hartwig A. In-situ determination of time-dependent alginate-hydrogel formation by mechanical texture analysis. Carbohydr. Polym. 2019 205 205 287 294 10.1016/j.carbpol.2018.10.056 30446107
    [Google Scholar]
  92. Ching S.H. Bansal N. Bhandari, B Alginate gel particles: A review of production techniques and physical properties. Crit. Rev. Food Sci. Nutr. 2017 57 6 1133 1152 10.1080/10408398.2014.965773 25976619
    [Google Scholar]
  93. Asadpoor M. Ithakisiou G.N. Van Putten J.P. Pieters R.J. Folkerts G. Braber S. Antimicrobial activities of alginate and chitosan oligosaccharides against Staphylococcus aureus and Group B Streptococcus. Front. Microbiol. 2021 12 700605 10.3389/fmicb.2021.700605 34589067
    [Google Scholar]
  94. Serrano-Aroca Á. Ferrandis-Montesinos M. Wang R. Antiviral properties of alginate-based biomaterials: Promising antiviral agents against SARS-CoV-2. ACS Appl. Bio Mater. 2021 4 8 5897 5907 10.1021/acsabm.1c00523 35006918
    [Google Scholar]
  95. Barbu A. Neamtu B. Zăhan M. Iancu G.M. Bacila C. Mireșan V. Current trends in advanced alginate-based wound dressings for chronic wounds. J. Pers. Med. 2021 11 9 890 10.3390/jpm11090890 34575668
    [Google Scholar]
  96. Cardoso M.J. Costa R.R. Mano J.F. Marine origin polysaccharides in drug delivery systems. Mar. Drugs 2016 14 2 34 10.3390/md14020034 26861358
    [Google Scholar]
  97. Op’t Veld R.C. Walboomers X.F. Jansen J.A. Wagener F.A. Design considerations for hydrogel wound dressings: Strategic and molecular advances. Tissue Eng. Part B Rev. 2020 26 3 230 248 10.1089/ten.teb.2019.0281 31928151
    [Google Scholar]
  98. de Macedo G.H. Chagas V.L. dos Santos M.H. dos Santos G.D. Bazán J.M. Zagmignan A. Carvalho E.M. de Miranda R.D. Teixeira C.S. da Silva L.C. Development and characterization of alginate-derived crosslinked hydrogel membranes incorporated with ConA and gentamicin for wound dressing applications. Biochem. Eng. J. 2022 187 108664 10.1016/j.bej.2022.108664
    [Google Scholar]
  99. Bi D. Yang X. Yao L. Hu Z. Li H. Xu X. Lu J. Potential food and nutraceutical applications of alginate: A review. Mar. Drugs 2022 20 9 564 10.3390/md20090564 36135753
    [Google Scholar]
  100. Jadach B. Świetlik W. Froelich A. Sodium alginate as a pharmaceutical excipient: Novel applications of a well-known polymer. J. Pharm. Sci. 2022 111 5 1250 1261 10.1016/j.xphs.2021.12.024 34986359
    [Google Scholar]
  101. Kozlowska J. Prus W. Stachowiak N. Microparticles based on natural and synthetic polymers for cosmetic applications. Int. J. Biol. Macromol. 2019 129 129 952 956 30776440
    [Google Scholar]
  102. Sahoo D.R. Biswal T. Alginate and its application to tissue engineering. SN Appl. Sci. 2021 3 1 30
    [Google Scholar]
  103. Ehterami A. Salehi M. Farzamfar S. Samadian H. Vaez A. Ghorbani S. Ai J. Sahrapeyma H. Chitosan/alginate hydrogels containing Alpha-tocopherol for wound healing in rat model. J. Drug Deliv. Sci. Technol. 2019 51 51 204 213 10.1016/j.jddst.2019.02.032
    [Google Scholar]
  104. Xiao Q. Lim L.T. Pullulan-alginate fibers produced using free surface electrospinning. Int. J. Biol. Macromol. 2018 112 809 817 10.1016/j.ijbiomac.2018.02.005 29410269
    [Google Scholar]
  105. Jabeen N. Atif M. Polysaccharides based biopolymers for biomedical applications: A review. Polym. Adv. Technol. 2024 35 1 e6203 10.1002/pat.6203
    [Google Scholar]
  106. Rongpipi S. Ye D. Gomez E.D. Gomez E.W. Progress and opportunities in the characterization of cellulose–an important regulator of cell wall growth and mechanics. Front Plant. Sci. 2019 9 1894 10.3389/fpls.2018.01894 30881371
    [Google Scholar]
  107. Arif M.M. Khan S.M. Gull N. Tabish T.A. Zia S. Khan R.U. Awais S.M. Butt M.A. Polymer-based biomaterials for chronic wound management: Promises and challenges. Int. J. Pharm. 2021 598 120270 10.1016/j.ijpharm.2021.120270 33486030
    [Google Scholar]
  108. Zubair M. Wu J. Ullah, A Bionanocomposites from spent hen proteins reinforced with polyhedral oligomeric silsesquioxane (POSS)/cellulose nanocrystals (CNCs). Biocatal. Agric. Biotechnol. 2022 43 102434 10.1016/j.bcab.2022.102434
    [Google Scholar]
  109. Teixeira M.A. Paiva M.C. Amorim M.T. Felgueiras H.P. Electrospun nanocomposites containing cellulose and its derivatives modified with specialized biomolecules for an enhanced wound healing. Nanomaterials 2020 10 3 557 10.3390/nano10030557 32204521
    [Google Scholar]
  110. He W. Wu J. Xu J. Mosselhy D.A. Zheng Y. Yang, S Bacterial cellulose: Functional modification and wound healing applications. Adv. Wound Care (New Rochelle) 2021 10 11 623 640 10.1089/wound.2020.1219 32870775
    [Google Scholar]
  111. Naomi R. Bt Hj Idrus R. Fauzi M.B. Plant-vs. Bacterial-derived cellulose for wound healing: A review. Int. J. Environ. Res. Public Health 2020 17 18 6803 10.3390/ijerph17186803 32961877
    [Google Scholar]
  112. Huang W. Wang Y. Huang Z. Wang X. Chen L. Zhang Y. Zhang L. On-demand dissolvable self-healing hydrogel based on carboxymethyl chitosan and cellulose nanocrystal for deep partial thickness burn wound healing. ACS Appl. Mater. Interfaces 2018 10 48 41076 41088 10.1021/acsami.8b14526 30398062
    [Google Scholar]
  113. Liu J. Chinga-Carrasco G. Cheng F. Xu W. Willför S. Syverud K. Xu C. Hemicellulose-reinforced nanocellulose hydrogels for wound healing application. Cellulose 2016 23 3129 3143
    [Google Scholar]
  114. Kang H.W. Lee S.J. Ko I.K. Kengla C. Yoo J.J. Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 2016 34 3 312 319 10.1038/nbt.3413 26878319
    [Google Scholar]
  115. Fallacara A. Baldini E. Manfredini S. Vertuani S. Hyaluronic acid in the third millennium. Polymers 2018 10 7 701 10.3390/polym10070701 30960626
    [Google Scholar]
  116. Hussain Z. Thu H.E. Katas H. Bukhari, SN Hyaluronic acid-based biomaterials: a versatile and smart approach to tissue regeneration and treating traumatic, surgical, and chronic wounds. Polym. Rev. (Phila. Pa.) 2017 57 4 594 630 10.1080/15583724.2017.1315433
    [Google Scholar]
  117. Graça M.F. Miguel S.P. Cabral C.S. Correia, IJ Hyaluronic acid—Based wound dressings: A review. Carbohydr. Polym. 2020 241 116364 10.1016/j.carbpol.2020.116364 32507198
    [Google Scholar]
  118. Longinotti C. The use of hyaluronic acid based dressings to treat burns: A review. Burns Trauma 2014 2 4 162 168 10.4103/2321‑3868.142398 27602379
    [Google Scholar]
  119. Bai Q. Gao Q. Hu F. Zheng C. Chen W. Sun N. Liu J. Zhang Y. Wu X. Lu T. Chitosan and hyaluronic-based hydrogels could promote the infected wound healing. Int. J. Biol. Macromol. 2023 232 123271 10.1016/j.ijbiomac.2023.123271 36646352
    [Google Scholar]
  120. Mero A. Campisi M. Hyaluronic acid bioconjugates for the delivery of bioactive molecules. Polymers 2014 6 2 346 369 10.3390/polym6020346
    [Google Scholar]
  121. Zhao J.Y. Chai J.K. Song H.F. Zhang J. Xu M.H. Liang Y.D. Influence of hyaluronic acid on wound healing using composite porcine acellular dermal matrix grafts and autologous skin in rabbits. Int. Wound J. 2013 10 5 562 572 10.1111/j.1742‑481X.2012.01023.x 22682212
    [Google Scholar]
  122. Su Z. Ma H. Wu Z. Zeng H. Li Z. Wang Y. Liu G. Xu B. Lin Y. Zhang P. Wei X. Enhancement of skin wound healing with decellularized scaffolds loaded with hyaluronic acid and epidermal growth factor. Mater. Sci. Eng. C 2014 44 44 440 448 10.1016/j.msec.2014.07.039 25280726
    [Google Scholar]
  123. Liu S. Zhang Q. Yu J. Shao N. Lu H. Guo J. Qiu X. Zhou D. Huang Y. Absorbable thioether grafted hyaluronic acid nanofibrous hydrogel for synergistic modulation of inflammation microenvironment to accelerate chronic diabetic wound healing. Adv. Healthc. Mater. 2020 9 11 2000198 10.1002/adhm.202000198 32338465
    [Google Scholar]
  124. Xie M. Zeng Y. Wu H. Wang S. Zhao J. Multifunctional carboxymethyl chitosan/oxidized dextran/sodium alginate hydrogels as dressing for hemostasis and closure of infected wounds. Int. J. Biol. Macromol. 2022 219 219 1337 1350 10.1016/j.ijbiomac.2022.08.166 36057297
    [Google Scholar]
  125. Sun G. Zhang X. Shen Y.I. Sebastian R. Dickinson L.E. Fox-Talbot K. Reinblatt M. Steenbergen C. Harmon J.W. Gerecht S. Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing. Proc. National Academy Sci. 2011 20976 20981 10.1073/pnas.1115973108
    [Google Scholar]
  126. Li N. Zhan A. Jiang Y. Liu H. A novel matrix metalloproteinases-cleavable hydrogel loading deferoxamine accelerates diabetic wound healing. Int. J. Biol. Macromol 2022 222 Pt A 1551 1559 10.1016/j.ijbiomac.2022.09.185 36155786
    [Google Scholar]
  127. Guan S. Zhang K. Cui L. Liang J. Li J. Guan F. Injectable gelatin/oxidized dextran hydrogel loaded with apocynin for skin tissue regeneration. Biomaterials Advances 2022 133 112604 10.1016/j.msec.2021.112604 35527157
    [Google Scholar]
  128. Cunha L. Grenha A. Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications. Mar. Drugs 2016 14 3 42 10.3390/md14030042 26927134
    [Google Scholar]
  129. Pacheco-Quito E.M. Ruiz-Caro R. Veiga M.D. Carrageenan: Drug delivery systems and other biomedical applications. Mar. Drugs 2020 18 11 583 10.3390/md18110583 33238488
    [Google Scholar]
  130. Neamtu B. Barbu A. Negrea M.O. Berghea-Neamțu C.Ș. Popescu D. Zăhan M. Mireșan V. Carrageenan-based compounds as wound healing materials. Int. J. Mol. Sci. 2022 23 16 9117 10.3390/ijms23169117 36012381
    [Google Scholar]
  131. Bhardwaj T.R. Kanwar M. Lal R. Gupta A. Natural gums and modified natural gums as sustained-release carriers. Drug Dev. Ind. Pharm. 2000 26 10 1025 1038 10.1081/DDC‑100100266 11028217
    [Google Scholar]
  132. Necas J. Bartosikova L. Carrageenan: A review. Vol. 58. Vet. Med. (Praha) 2013 58 4 187 10.17221/6758‑VETMED
    [Google Scholar]
  133. Pawar H.V. Tetteh J. Boateng J.S. Preparation, optimisation and characterisation of novel wound healing film dressings loaded with streptomycin and diclofenac. Colloids Surf. B Biointerfaces 2013 102 102 102 110 23006557
    [Google Scholar]
  134. Boateng J.S. Pawar H.V. Tetteh J. Polyox and carrageenan based composite film dressing containing anti-microbial and anti-inflammatory drugs for effective wound healing. Int. J. Pharm. 2013 441 1-2 181 191 10.1016/j.ijpharm.2012.11.045 23228898
    [Google Scholar]
  135. Singh R.S. Kaur N. Rana V. Kennedy J.F. Recent insights on applications of pullulan in tissue engineering. Carbohydr. Polym. 2016 153 153 455 462 27561517
    [Google Scholar]
  136. Li X. Zhao S. Chen L. Zhou Q. Qiu J. Xin X. Zhang Y. Yuan W. Tian C. Yang J. Yu X. High-level production of pullulan from high concentration of glucose by mutagenesis and adaptive laboratory evolution of Aureobasidium pullulans. Carbohydr. Polym. 2023 302 120426 10.1016/j.carbpol.2022.120426 36604088
    [Google Scholar]
  137. Feng Z. Chen S. Ahmad A. Chen L. Bai W. Ultra-high molecular weight pullulan-based material with high deformability and shape-memory properties. Carbohydr. Polym. 2022 295 119836 10.1016/j.carbpol.2022.119836 35988995
    [Google Scholar]
  138. Mao G. Wang Z. Tian S. Li H. Yang W. A novel chitosan-hyaluronic acid-pullulan composite film wound dressing for effectively inhibiting bacteria and accelerating wound healing. Mater. Today Commun. 2022 33 104801 10.1016/j.mtcomm.2022.104801
    [Google Scholar]
  139. Younas A. Dong Z. Hou Z. Asad M. Li M. Zhang N. A chitosan/fucoidan nanoparticle-loaded pullulan microneedle patch for differential drug release to promote wound healing. Carbohydr. Polym. 2023 306 120593 10.1016/j.carbpol.2023.120593 36746584
    [Google Scholar]
  140. Chen K. Sivaraj D. Davitt M.F. Leeolou M.C. Henn D. Steele S.R. Huskins S.L. Trotsyuk A.A. Kussie H.C. Greco A.H. Padmanabhan J. Perrault D.P. Zamaleeva A.I. Longaker M.T. Gurtner G.C. Pullulan‐Collagen hydrogel wound dressing promotes dermal remodelling and wound healing compared to commercially available collagen dressings. Wound Repair Regen. 2022 30 3 397 408 10.1111/wrr.13012 35384131
    [Google Scholar]
  141. Ye S. Xie C. Agar O.T. Barrow C.J. Dunshea F.R. Suleria H.A.R. Alginates from brown seaweeds as a promising natural source: A review of its properties and health benefits. Food Rev. Int. 2024 40 9 2682 2710 10.1080/87559129.2023.2279583
    [Google Scholar]
  142. Khan A. Alamry K.A. Recent advances of emerging green chitosan-based biomaterials with potential biomedical applications: A review. Carbohydr. Res. 2021 506 108368 10.1016/j.carres.2021.108368 34111686
    [Google Scholar]
  143. Abazari M.F. Gholizadeh S. Karizi S.Z. Birgani N.H. Abazari D. Paknia S. Derakhshankhah H. Allahyari Z. Amini S.M. Hamidi M. Delattre C. Recent advances in cellulose-based structures as the wound-healing biomaterials: A clinically oriented review. Appl. Sci. 2021 11 17 7769 10.3390/app11177769
    [Google Scholar]
  144. Tan Y. Cai B. Li X. Wang X. Preparation and application of biomass-based sprayable hydrogels. Paper and Biomaterials 2023 8 2 1 19 10.26599/PBM.2023.9260006
    [Google Scholar]
  145. Ribeiro M. Simões M. Vitorino C. Mascarenhas-Melo F. Hydrogels in cutaneous wound healing: Insights into characterization, properties, formulation and therapeutic potential. Gels 2024 10 3 188 10.3390/gels10030188 38534606
    [Google Scholar]
  146. Ding Y.W. Wang Z.Y. Ren Z.W. Zhang X.W. Wei D.X. Advances in modified hyaluronic acid-based hydrogels for skin wound healing. Biomater. Sci. 2022 10 13 3393 3409 10.1039/D2BM00397J 35575243
    [Google Scholar]
  147. Silva A.C.Q. Silvestre A.J.D. Vilela C. Freire C.S.R. Natural polymers-based materials: A contribution to a greener future. Molecules 2021 27 1 94 10.3390/molecules27010094 35011326
    [Google Scholar]
  148. Tan G. Wang L. Pan W. Chen K. Polysaccharide electrospun nanofibers for wound healing applications. Int. J. Nanomedicine 2022 17 3913 3931 10.2147/IJN.S371900 36097445
    [Google Scholar]
  149. Iacob A.T. Drăgan M. Ionescu O.M. Profire L. Ficai A. Andronescu E. Confederat L.G. Lupașcu D. An overview of biopolymeric electrospun nanofibers based on polysaccharides for wound healing management. Vol. 12. Pharmaceutics 2020 12 10 983 10.3390/pharmaceutics12100983 33080849
    [Google Scholar]
  150. Wang P. Cai F. Li Y. Yang X. Feng R. Lu H. Bai X. Han J. Emerging trends in the application of hydrogel-based biomaterials for enhanced wound healing: A literature review. Int. J. Biol. Macromol. 2024 261 Pt 1 129300 10.1016/j.ijbiomac.2024.129300 38216016
    [Google Scholar]
  151. Ding C. Liu X. Zhang S. Sun S. Yang J. Chai G. Wang N. Ma S. Ding Q. Liu W. Multifunctional hydrogel bioscaffolds based on polysaccharide to promote wound healing: A review. Int. J. Biol. Macromol. 2024 259 Pt 2 129356 10.1016/j.ijbiomac.2024.129356 38218300
    [Google Scholar]
  152. Lee H. Jung Y. Lee N. Lee I. Lee J.H. Nature-derived polysaccharide-based composite hydrogels for promoting wound healing. Int. J. Mol. Sci. 2023 24 23 16714 10.3390/ijms242316714 38069035
    [Google Scholar]
  153. Nezami S. Sadeghi M. Mohajerani H. A novel pH-sensitive and magnetic starch-based nanocomposite hydrogel as a controlled drug delivery system for wound healing. Polym. Degrad. Stabil. 2020 179 109255 10.1016/j.polymdegradstab.2020.109255
    [Google Scholar]
  154. Abdollahi Z. Zare E.N. Salimi F. Goudarzi I. Tay F.R. Makvandi P. Bioactive carboxymethyl starch-based hydrogels decorated with CuO nanoparticles: Antioxidant and antimicrobial properties and accelerated wound healing in vivo. Int. J. Mol. Sci. 2021 22 5 2531 10.3390/ijms22052531 33802469
    [Google Scholar]
  155. Hussain I. Sayed S.M. Liu S. Oderinde O. Yao F. Fu G. Glycogen-based self-healing hydrogels with ultra-stretchable, flexible, and enhanced mechanical properties via sacrificial bond interactions. Int. J. Biol. Macromol. 2018 117 117 648 658 10.1016/j.ijbiomac.2018.04.088 29679673
    [Google Scholar]
  156. Alvandi H. Rajati H. Naseriyeh T. Rahmatabadi S.S. Hosseinzadeh L. Arkan E. Incorporation of Aloe vera and green synthesized ZnO nanoparticles into the chitosan/PVA nanocomposite hydrogel for wound dressing application. Polym. Bull. 2024 81 5 4123 4148 10.1007/s00289‑023‑04874‑7
    [Google Scholar]
  157. Wang J. Cheng H. Chen W. Han P. Yao X. Tang B. Duan W. Li P. Wei X. Chu P.K. Zhang X. An injectable, self-healing composite hydrogel with enhanced near-infrared photo-antibacterial therapeutic effects for accelerated wound healing. Chem. Eng. J. 2023 452 139474 10.1016/j.cej.2022.139474
    [Google Scholar]
  158. He J. Shi M. Liang Y. Guo B. Conductive adhesive self-healing nanocomposite hydrogel wound dressing for photothermal therapy of infected full-thickness skin wounds. Chem. Eng. J. 2020 394 124888 10.1016/j.cej.2020.124888
    [Google Scholar]
  159. Zhao N. Yuan W. Self-healing and shape-adaptive nanocomposite hydrogels with anti-inflammatory, antioxidant, antibacterial activities and hemostasis for real-time visual regeneration of diabetic wounds. Compos., Part B Eng. 2023 262 110819 10.1016/j.compositesb.2023.110819
    [Google Scholar]
  160. Liu C. Ling J. Yang L.Y. Ouyang X. Wang N. Chitosan-based carbon nitride-polydopamine silver composite dressing with antibacterial properties for wound healing. Carbohydr. Polym. 2023 303 120436 10.1016/j.carbpol.2022.120436 36657833
    [Google Scholar]
  161. Yang X. Li P. Tang W. Du S. Yu M. Lu H. Tan H. Xing X. A facile injectable carbon dot/oxidative polysaccharide hydrogel with potent self-healing and high antibacterial activity. Carbohydr. Polym. 2021 251 117040 33142598
    [Google Scholar]
  162. Guo B. Liu Y. Han S. Wu P. Xu W. Ma X. Zhang Z. Peng S. Hu J. Chen S. Yang L. Carbon dots loaded polycarbonate thermosensitive hydrogel: An innovative strategy for promoting infected wound healing. Eur. Polym. J. 2024 215 113230
    [Google Scholar]
  163. Won J.S. Prasad C. Jeong S.G. Rosaiah P. Reddy A.S. Ahmad Z. Sangaraju S. Choi H.Y. Recent advances in the development of MXenes/cellulose based composites: A review. Int. J. Biol. Macromol. 2023 240 124477 10.1016/j.ijbiomac.2023.124477 37076072
    [Google Scholar]
  164. Zhang M. Zhang C. Li Z. Fu X. Huang S. Advances in 3D skin bioprinting for wound healing and disease modeling. Regen. Biomater. 2023 10 rbac105 10.1093/rb/rbac105 36683757
    [Google Scholar]
  165. Yayehrad A.T. Siraj E.A. Matsabisa M. Birhanu G. 3D printed drug loaded nanomaterials for wound healing applications. Regen. Ther. 2023 24 24 361 376 37692197
    [Google Scholar]
  166. Arif Z.U. Khalid M.Y. Tariq A. Hossain M. Umer R. 3D printing of stimuli-responsive hydrogel materials: Literature review and emerging applications. Giant 2023 14 100209
    [Google Scholar]
  167. Remaggi G. Bergamonti L. Graiff C. Ossiprandi M.C. Elviri, L Rapid prototyping of 3D-printed AgNPs- and Nano-TiO2-Embedded hydrogels as novel devices with multiresponsive antimicrobial capability in wound healing. Antibiotics 2023 12 7 1104 10.3390/antibiotics12071104 37508200
    [Google Scholar]
  168. Bergonzi C. Bianchera A. Remaggi G. Ossiprandi M.C. Bettini R. Elviri, L 3D printed chitosan/alginate hydrogels for the controlled release of silver sulfadiazine in wound healing applications: Design, characterization and antimicrobial activity. Micromachines 2023 14 1 137 10.3390/mi14010137 36677198
    [Google Scholar]
  169. Kammona O. Tsanaktsidou E. Kiparissides C. Recent developments in 3D-(Bio)printed hydrogels as wound dressings. Gels 2024 10 2 147 10.3390/gels10020147 38391477
    [Google Scholar]
  170. Zhu Y. Guo S. Ravichandran D. Ramanathan A. Sobczak M.T. Sacco A.F. Patil D. Thummalapalli S.V. Pulido T.V. Lancaster J.N. Yi J. Cornella J.L. Lott D.G. Chen X. Mei X. Zhang Y.S. Wang L. Wang X. Zhao Y. Hassan M.K. Chambers L.B. Theobald T.G. Yang S. Liang L. Song K. 3D-printed polymeric biomaterials for health applications. Adv. Healthc. Mater. 2025 14 1 e2402571 39498750
    [Google Scholar]
  171. Kim H. Dutta S.D. Randhawa A. Patil T.V. Ganguly K. Acharya R. Lee J. Park H. Lim K.T. Recent advances and biomedical application of 3D printed nanocellulose-based adhesive hydrogels: A review. Int. J. Biol. Macromol. 2024 264 Pt 2 130732 38479658
    [Google Scholar]
  172. Baniasadi H. Abidnejad R. Fazeli M. Lipponen J. Niskanen J. Kontturi E. Seppälä J. Rojas O.J. Innovations in hydrogel-based manufacturing: A comprehensive review of direct ink writing technique for biomedical applications. Adv. Colloid Interface Sci. 2024 324 103095 38301316
    [Google Scholar]
  173. Bhardwaj D. Singhmar R. Garg M. Gupta D. Dhiman A. Han S.S. Agrawal G. Designing advanced hydrogel inks with direct ink writing based 3D printability for engineered biostructures. Eur. Polym. J. 2024 4 112736
    [Google Scholar]
  174. Abdelhamid H.N. Polysaccharides for biomedical implants. Plant. Polysaccharides as Pharmaceutical Excipients 2023 1 533 544 10.1016/B978‑0‑323‑90780‑4.00015‑2
    [Google Scholar]
  175. Azehaf H. Benzine Y. Tagzirt M. Skiba M. Karrout Y. Microbiota-sensitive drug delivery systems based on natural polysaccharides for colon targeting. Drug Discov. Today 2023 28 7 103606 10.1016/j.drudis.2023.103606 37146964
    [Google Scholar]
  176. Han J. Guo D. Sun X.Y. Wang J.M. Ouyang J.M. Gui B.S. Repair effects of astragalus polysaccharides with different molecular weights on oxidatively damaged HK-2 cells. Sci. Rep. 2019 9 1 9871 10.1038/s41598‑019‑46264‑y 31285477
    [Google Scholar]
  177. Lv J. Ma H. Ye G. Jia S. He J. Jiaduo W. Ma J. Qu Y. Gou K. Zeng R. Bilayer microneedles based on Bletilla striata polysaccharide containing asiaticoside effectively promote scarless wound healing. Mater. Des. 2023 226 111655 10.1016/j.matdes.2023.111655
    [Google Scholar]
  178. Deng X. Gould M. Ali M.A. A review of current advancements for wound healing: Biomaterial applications and medical devices. J. Biomed. Mater. Res. B Appl. Biomater. 2022 110 11 2542 2573 10.1002/jbm.b.35086 35579269
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266376125250711135143
Loading
/content/journals/ctmc/10.2174/0115680266376125250711135143
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test