Skip to content
2000
image of Total Synthesis of Biologically Potent Peptides and their In Silico Studies: A TAG Approach

Abstract

Introduction

Current trends in peptide synthesis protocols have emerged as the most attractive domain in the field of pharma and medicine. Since most of the peptide/peptidomimetic-based molecules serve as potential candidates for many diseases, as they are bioavailable molecules.

Methods

We present the synthesis of bioactive peptides through TAGGING approach with the help of TAG-OH as a linker to the -protected amino acid.

Results

FRDEHKK and NKDRG are two peptides that possess antioxidant and antiproliferative activity, and their investigations reveal that they exhibit anticancer properties when bound to the AXL kinase and EGFR proteins.

Discussion

This TAG method enables the easy isolation of peptides at each step as solids, and all the impurities were washed off by simple filtration. The method allows a bulk-scale preparation of the peptides without any difficulty, and hence the protocol is highly efficient for the production of peptides of therapeutic importance.

Conclusion

The two peptides FRDEHKK and NKDRG were isolated as fine solids with 82% and 85% yield and were characterized by NMR and MASS spectroscopy. studies reveal FRDEHKK and NKDRG peptides exhibit good affinity towards EGFR and AXL kinase.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266377804250721145504
2025-08-04
2026-01-31
Loading full text...

Full text loading...

References

  1. Alzaydi A. Barbhuiya R.I. Routray W. Elsayed A. Singh A. Bioactive peptides: Synthesis, applications, and associated challenges. Food Bioeng. 2023 2 3 273 290 10.1002/fbe2.12057
    [Google Scholar]
  2. Zaky A.A. Simal-Gandara J. Eun J.B. Shim J.H. Abd El-Aty A.M. Bioactivities, applications, safety, and health benefits of bioactive peptides from food and by-products: A review. Front. Nutr. 2022 8 815640 815658 10.3389/fnut.2021.815640 35127796
    [Google Scholar]
  3. Ghadiri N. Javidan M. Sheikhi S. Taştan Ö. Parodi A. Liao Z. Tayybi Azar M. Ganjalıkhani-Hakemi M. Bioactive peptides: An alternative therapeutic approach for cancer management. Front. Immunol. 2024 15 1310443 1310461 10.3389/fimmu.2024.1310443 38327525
    [Google Scholar]
  4. Bhandari D. Rafiq S. Gat Y. Gat P. Waghmare R. Kumar V. A review on bioactive peptides: Physiological functions, bioavailability and safety. Int. J. Pept. Res. Ther. 2020 26 1 139 150 10.1007/s10989‑019‑09823‑5
    [Google Scholar]
  5. Nourmohammadi E. Mahoonak A.S. Health implications of bioactive peptides: A review. Int. J. Vitam. Nutr. Res. 2018 88 5-6 319 343 10.1024/0300‑9831/a000418 31140388
    [Google Scholar]
  6. Akbarian M. Khani A. Eghbalpour S. Uversky V.N. Bioactive peptides: Synthesis, sources, applications, and proposed mechanisms of action. Int. J. Mol. Sci. 2022 23 3 1445 1475 10.3390/ijms23031445 35163367
    [Google Scholar]
  7. Sorrenti V. Burò I. Consoli V. Vanella L. Recent advances in health benefits of bioactive compounds from food wastes and by-products: Biochemical aspects. Int. J. Mol. Sci. 2023 24 3 2019 2045 10.3390/ijms24032019 36768340
    [Google Scholar]
  8. Rizwan D. Masoodi F.A. Wani S.M. Mir S.A. Bioactive peptides from fermented foods and their relevance in COVID-19 mitigation. Food. Product Proc Nutrit 2023 5 1 53 76 10.1186/s43014‑023‑00165‑w
    [Google Scholar]
  9. Zhang J. Wu S. Wang Q. Yuan Q. Li Y. Reboredo-Rodríguez P. Varela-López A. He Z. Wu F. Hu H. Liu X. Oxidative stress amelioration of novel peptides extracted from enzymatic hydrolysates of chinese pecan cake. Int. J. Mol. Sci. 2022 23 20 12086 12101 10.3390/ijms232012086 36292968
    [Google Scholar]
  10. Zehiroglu C. Ozturk Sarikaya S.B. The importance of antioxidants and place in today’s scientific and technological studies. J. Food Sci. Technol. 2019 56 11 4757 4774 10.1007/s13197‑019‑03952‑x 31741500
    [Google Scholar]
  11. Mahmoud A.M. Wilkinson F.L. Lightfoot A.P. Dos Santos J.M. Sandhu M.A. The role of natural and synthetic antioxidants in modulating oxidative stress in drug‐induced injury and metabolic disorders 2020. Oxid. Med. Cell. Longev. 2021 2021 1 9892021 9892024 10.1155/2021/9892021
    [Google Scholar]
  12. Al Musaimi O. Peptide therapeutics: Unveiling the potential against cancer—a journey through 1989. Cancers 2024 16 5 1032 1064 10.3390/cancers16051032 38473389
    [Google Scholar]
  13. Lim J.Y. Chai T.T. Lam M.Q. Ng W.J. Ee K.Y. In silico enzymatic hydrolysis of soy sauce cake glycinin G4 to reveal the bioactive peptides as potential food ingredients. J. Food Meas. Charact. 2022 16 5 3477 3487 10.1007/s11694‑022‑01433‑y
    [Google Scholar]
  14. Vadevoo S.M.P. Gurung S. Lee H.S. Gunassekaran G.R. Lee S.M. Yoon J.W. Lee Y.K. Lee B. Peptides as multifunctional players in cancer therapy. Exp. Mol. Med. 2023 55 6 1099 1109 10.1038/s12276‑023‑01016‑x 37258584
    [Google Scholar]
  15. Senapati S. Mahanta A.K. Kumar S. Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther. 2018 3 1 7 26 10.1038/s41392‑017‑0004‑3 29560283
    [Google Scholar]
  16. Skjånes K. Aesoy R. Herfindal L. Skomedal H. Bioactive peptides from microalgae: Focus on anti‐cancer and immunomodulating activity. Physiol. Plant. 2021 173 2 612 623 10.1111/ppl.13472 34085279
    [Google Scholar]
  17. Wang L. Dong C. Li X. Han W. Su X. Anticancer potential of bioactive peptides from animal sources. Oncol. Rep. 2017 38 2 637 651 10.3892/or.2017.5778 28677775
    [Google Scholar]
  18. Isidro-Llobet A. Kenworthy M.N. Mukherjee S. Kopach M.E. Wegner K. Gallou F. Smith A.G. Roschangar F. Sustainability challenges in peptide synthesis and purification: From R&D to production. J. Org. Chem. 2019 84 8 4615 4628 10.1021/acs.joc.8b03001 30900880
    [Google Scholar]
  19. Chen L. Song L. Li T. Zhu J. Xu J. Zheng Q. Yu R. A new antiproliferative and antioxidant peptide isolated from Arca subcrenata. Mar. Drugs 2013 11 6 1800 1814 10.3390/md11061800 23708186
    [Google Scholar]
  20. Sah B.N.P. Vasiljevic T. McKechnie S. Donkor O.N. Antioxidant peptides isolated from synbiotic yoghurt exhibit antiproliferative activities against HT-29 colon cancer cells. Int. Dairy J. 2016 63 99 106 10.1016/j.idairyj.2016.08.003
    [Google Scholar]
  21. Elena M. Alexandra G.P. Laura M.S. Rodica T. Viorica C. Oana C. antioxidant and antiproliferative activity of small peptides isolated from marine algae by green methods. Nat. Instit Res. Develop Biol. Sci. 2024 XXVIII 1 1 6
    [Google Scholar]
  22. Srinivasan R. Aruna A. Lee J.S. Kim M. Shivakumar M.S. Natarajan D. Antioxidant and antiproliferative potential of bioactive molecules ursolic acid and thujone isolated from Memecylon edule and Elaeagnus indica and their inhibitory effect on topoisomerase ii by molecular docking approach. BioMed Res. Int. 2020 2020 1 8716927 10.1155/2020/8716927 32149143
    [Google Scholar]
  23. Sabana I. Naufal M. Wiani I. Zainuddin A. Hidayat A. Harneti D. Nurlelasari N. Al-Anshori J. Supratman U. Maharani R. Synthesis of antioxidant peptide SCAP1 (Leu-Ala-Asn-Ala-Lys). Egypt J. Chem. 2019 0 0 0 10.21608/ejchem.2019.12996.1818
    [Google Scholar]
  24. De Marco R. Spinella M. De Lorenzo A. Leggio A. Liguori A. C → N and N → C solution phase peptide synthesis using the N-acyl 4-nitrobenzenesulfonamide as protection of the carboxylic function. Org. Biomol. Chem. 2013 11 23 3786 3796 10.1039/c3ob40169c 23649304
    [Google Scholar]
  25. Okada Y. Hosoya S. Suzuki H. Chiba K. Total synthesis of elastin peptide using high pressure-liquid phase synthesis assisted by a soluble tag strategy. Org. Lett. 2014 16 24 6448 6451 10.1021/ol5032798 25494479
    [Google Scholar]
  26. Liu X. Zhang N. Gu X. Qin Y. Song D. Zhang L. Ma S. Total synthesis of semaglutide based on a soluble hydrophobic-support-assisted liquid-phase synthetic method. ACS Comb. Sci. 2020 22 12 821 825 10.1021/acscombsci.0c00134 33058727
    [Google Scholar]
  27. Zhang J. Zhang H. Wang L. Guo X. Wang X. Yao H. Isolation and identification of antioxidative peptides from rice endosperm protein enzymatic hydrolysate by consecutive chromatography and MALDI-TOF/TOF MS/MS. Food Chem. 2010 119 1 226 234 10.1016/j.foodchem.2009.06.015
    [Google Scholar]
  28. Naqash S.Y. Nazeer R.A. In vitro antioxidant and antiproliferative activities of bioactive peptide isolated from Nemipterus japonicus backbone. Int. J. Food Prop. 2012 15 6 1200 1211 10.1080/10942912.2010.517342
    [Google Scholar]
  29. Honorato R.V. Trellet M.E. Jiménez-García B. Schaarschmidt J.J. Giulini M. Reys V. Koukos P.I. Rodrigues J.P.G.L.M. Karaca E. van Zundert G.C.P. Roel-Touris J. van Noort C.W. Jandová Z. Melquiond A.S.J. Bonvin A.M.J.J. The HADDOCK2.4 web server for integrative modeling of biomolecular complexes. Nat. Protoc. 2024 19 11 3219 3241 10.1038/s41596‑024‑01011‑0 38886530
    [Google Scholar]
  30. Honorato R.V. Koukos P.I. Jiménez-García B. Tsaregorodtsev A. Verlato M. Giachetti A. Rosato A. Bonvin A.M.J.J. Structural biology in the clouds: The WeNMR-EOSC ecosystem. Front. Mol. Biosci. 2021 8 729513 10.3389/fmolb.2021.729513 34395534
    [Google Scholar]
  31. Kumar B.K. Kumar K.M. Reddy G.B.M. Abraham S. Yogisharadhya R. Prashantha C.N. Molecular modelling and insilico engineering of papmv-cp towards display and development of capripox viral like particles based on immunogenic P32 envelop protein is the homologous of the vaccinia-viral H3L Gene: An insilico approach. Int. J. Pept. Res. Ther. 2020 26 4 2155 2167 10.1007/s10989‑019‑10007‑4 32421016
    [Google Scholar]
  32. Gupta S. Kapoor P. Chaudhary K. Gautam A. Kumar R. Raghava G.P.S. Peptide toxicity prediction. Methods Mol. Biol. 2015 1268 143 157 10.1007/978‑1‑4939‑2285‑7_7 25555724
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266377804250721145504
Loading
/content/journals/ctmc/10.2174/0115680266377804250721145504
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: Anticancer ; Antioxidant ; TAGGING technique ; NKDRG peptide ; Bioactive peptides ; FRDEHKK
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test